(整理)高功率脉冲电源
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高功率脉冲电源
学院(系):电气工程学院班级:1113班
学生姓名:高玲
学号:21113043
大连理工大学
Dalian University of Technology
1分类及结构原理
高功率脉冲最早始于30年代,随着用电容器放电产生X射线的出现,经过了几十年的发展,目前高功率脉冲电源应用范围非常广泛,例如用于闪光X射线照相、高功率激光、大功率微波、电磁脉冲、电磁发射(或推进)、粒子束武器和电磁成形等离子体物理与受控核聚变研究、核爆炸模拟等方面。‘
如图1所示。高功率脉冲电源包括初级能源、中间储能脉冲成形系统及转换系统等几个部分。
图1. 高功率脉冲电源组成框图
脉冲功率的形成过程是:首先经过慢储能,使初级能源具有足够的能量;其次,向中间储能和脉冲形成系统注入能量;再次,能量经过储存、压缩、形成脉冲或转化,等复杂过程之后,最后快速释放给负载。
(1)初级能源为小功率的能量输入设备,如电容器的充电机、电感线圈的励磁电源、飞轮电机的拖动电机,其能源来在电网。
(2)中间储能设备有以电容器和Marx发生器为例的电场储能,以常温或超导电感线圈为例的磁场储能,以各类具有转动惯量的脉冲发电机为主的机械储能,以蓄电池、磁流体发电机、爆炸磁通压缩发生器为代表的化学储能,以及以核能磁流体发电机为例的核能初级能源,等等。
(3)能量转换与释放系统主要包括各种大容量闭合开关和断路开关及各种波形调节技术设备。
脉冲功率装置初级能源的储能方式主要包括:以电场形式储能的电容器、以磁场方式储能的电感器、机械能发电机、化学能装置以及核能等。如表1所示。
(1)电容储能简单、技术成熟,因此它的应用最为广泛,如惯性约束、强激光、粒子束武器、大功率微波等。世界上一些著名的脉冲功率装置都采用电容储能放电回路,如美国的PBFA.II等。
(2)电感储能最大的优点是储能密度大,所以倍受研究者的关注。电感储能技术在诸如受控等离子体物理、受控核聚变、电磁推进等现代科学技术领域中,都有着极为重要的应用。
(3)机械储能具有储能密度高、结构紧凑、易做成移动式,且提取十分方便等优点,因此也得到了广泛的应用。目前,其主要的应用领域有:近代同步加速器、托卡马克热核装置、等离子体。箍缩、大型风洞装置、大截面金属对头焊接等。
表1. 脉冲功率电源组成及关键技术
三种常用储能方式的各种性能比较,如表2所示。
由于电容器在工业上得到了广泛应用,在电磁轨道炮发展的起步阶段,人们通常把电容器组作为提供电源的首选。利用闭合开关可以对脉冲的形状进行相对灵活的控制。重点实验室组建的高功率脉冲电源是电容器储能方式。
表2. 常用储能方式研究水平
2 国内外研究概况
高功率脉冲电源是为脉冲功率装置的负载提供电磁能量的装置,构成脉冲功率装置的主体。高功率脉冲电源是随着高功率脉冲技术的发展而发展的。
高功率脉冲技术发源于英国的阿尔马斯登(Aldermaston)原子武器研究中心的J.C.马丁及其领导的脉冲功率小组。他们的开创性研究工作闻名于世界,该小组的许多成员,如:I.D.Simith,T.H.Martin,ED.A.Champeny,EW.Spence 等为脉冲功率的发展都做出了很大的贡献。从20世纪60年代中期起,美国的圣地亚实验室一直领导了脉冲功率发展的世界新潮流。在国防部(DOD)和能源部(DOE)的支持下,许多与国防有关的研究所,一些著名的大学,还有几个公司都积极投入了这方面的研究工作。美国武器军事实验中心(ARL.WMRD)已经建造了4.5MJ的脉冲电源系统,早期场发射公司生产了一系列小型300kV-2MV,3-5kA,20ns闪光X射线机,离子物理公司将静电加速器对传输线直流充电,生产了FX.25至IJFX.100型脉冲功率装置,以后才建造了大批规模一个比一个大的油介质和水介质传输线装置,其研究处于世界领先。
美国的主要研究机构有:圣地亚实验室(Sandia),利弗莫尔实验室(Livemore),洛斯阿拉莫斯实验室(Los Alamos),海军研究实验室(NRL),海军水面武器中心(Nswc),空军武器实验室(NFWL),陆军实验室(HDL),康乃尔大学(Conell),马里兰大学(Malyland),德克萨斯大学(Texas),物理国际公司(PI),麦克斯韦公(Maxwell)等等。在美国,研究与制造分工明确,使用单位与研究单位关系也比较协调,技术也比较先进。
俄罗斯(前苏联)的重要研究机构有:库尔恰托夫原子能研究所,列别捷夫物理研究所,叶菲利莫夫电物理装置研究所,实验物理研究所(Arzamas-16),新西伯利亚的大电流研究所,电物理研究所和核物理研究所f121。俄罗斯在重复频率运行的脉冲功率装置和脉冲径向线加速器研究方面独具特色。所生产的基于Tesla变压器技术的“Sinus”和“Radan”系列脉冲功率装置,结构紧凑,易于重复频率工作,他们在高功率微波(HPM)研究方面,在世界上处于领先地位。
欧洲的研究所使用单模块贮能的电容器建立了高效灵活的LRC脉冲成形单元,可以贮能50 kJ,峰值电流50KA。德国从1998年开始研究能量密度为214MJ/m3的高能放电电容器,并在2002年研制了紧凑式高功率放电装置。韩国在2000年建立了300kJ的脉冲电源模块,充电电压22kV,电流150kA,整个系统的总贮能214MJ。
我国的主要研究机构:中国工程物理研究院,中国原子能科学研究院,西北核技术研究所和长沙国防科技大学以及中国科学院的电子、电工所,清华大学电机工程系等。我们国家主要依靠自己的力量,建造了一些与国际上同类装置具有同等水平的机器,进行了许多有特色的物理实验,取得了一系列重大成果。从80年代以来,我国相继进行了集体离子加速、准分子激光、自由电子激光、高功率微波、电磁轨道炮、抗核加固、闪光X射线照相等高新技术研究,先后建造20余台强脉冲电子束加速器,为开展强流束物理及应用研究创造了良好条件。现在已经有几十台高功率脉冲装置在运行,如中国工程物理研究院的8MVl00kA,脉宽80ns的“闪光一号”相对论电子加速器以及12vM束流2kA的直线感应电子加速器,西北核技术研究所的1.47MV0.72MA,脉宽70~80ns的“闪光二号"相对论电子加速器等1161。弹道国防科技重点实验室自开展电热化学(Electrothermal Chemical,ETC)发射系统研究以来,经过多次改扩建,形成了目前用于中小口径电热化学发射研究的2MJ脉冲电源系统。这些都标志着我国在脉