实验四 放大电路电路频率响应分析和仿真实验-(空白)

合集下载

放大电路频率响应的仿真课程设计案例

放大电路频率响应的仿真课程设计案例

放大电路频率响应的仿真课程设计案例
仿真课程设计案例:对放大电路的频率响应仿真
仿真课程设计案例:放大电路频率响应仿真,是一种通过计算机技术来研究放
大电路频率响应特性的技术。

它主要用于放大电路的设计,模拟其频率响应特性,以判断其将来的表现。

大多数情况下,它通过仿真计算出电路参数,从而得到电路对信号幅度和频率的响应。

一般情况下,仿真课程设计案例:对放大电路的频率响应仿真,要求学生具备
一定的电路理论基础,已经具备了一定的计算机技术,在仿真之前,首先需要分析要仿真的电路,考虑其参数如何调整,以达到获得频率响应特性最好的效果。

然后,在使用仿真软件时,需要选择合适的参数,确定电路的频率范围,观察仿真结果,并进行结果的分析。

根据分析结果,可以在改变参数的情况下,重复仿真,然后不断优化调整参数,从而提升获得最佳的放大电路频率响应特性的成功率。

最后,以放大电路的频率响应仿真为例,可以看出,学生在设计课程时,不仅
要了解具体的技术,而且还要掌握仿真和计算机技术之间的联系。

只有将两者结合起来,才能够获得最佳的放大电路频率响应特性。

论文多级放大电路频率响应仿真分析

论文多级放大电路频率响应仿真分析

多级放大电路频率响应仿真分析摘要:频率响应是多级放大器中放大电路的主要性能指标,表明放大电路对于不同频率信号的放大功能。

本文从以下几点来阐述多级放大电路的频率响应:首先推导出多级放大电路放大倍数与各级放大电路放大倍数之间的关系式;然后以基本放大电路为出发点,分析其对于高频、中频和低频三个不同频段信号的放大能力,推导出多级放大电路的频率响应表达式;得出多级放大电路的通频带由各级放大电路通频带所决定,且其通频带小于组成它的各级放大电路的通频带的结论。

最后将使用Multisim软件对上述结论进行仿真,通过对图形的分析,从而对理论结果进行验证。

关键词:多级放大电路,频率响应,截止频率,通频带,Multisim1 引言如今电子科技发展日新月异,越来越多的电子产品开始进入人们的日常生产生活当中,放大器应用于对各种信号(最终转化为电信号)的放大作用,使得一个微小的信号能够放大来进行使用,如我们所见的声音信号、图像信号等。

可以说,如果没有放大器,我们便如法使用各种各样的数码产品来丰富我们的日常生活。

但单级放大电路的电压放大倍数一般只可以达几倍到几十倍,然而,在许多场合,这样的放大倍数是不够用的,常需要把若干个单级放大电路串接起来,组成多级放大器,把信号经过多次放大,从而得到所需的放大倍数,这便是多级放大器,而构成多级放大器的电路便是我们要探讨研究的多级放大电路。

所以,多级放大电路是对基本放大电路的延伸应用,其结构较之基本放大电路也更加复杂,因为所要分析的方面也更加多。

多级放大电路的一个重要性能指标就是其频率响应,频率响应特性反映了多级放大电路对于不同频率信号的放大能力,在设计一个多级放大器时,我们必须首先了解信号的频率范围,根据这个范围来设计合适的放大电路,以保证设计的放大电路有适用于该信号频率范围的通频带,这样才能保证放大电路良好的放大效果,由此可见研究放大电路的频率响应对于设计放大电路的重要意义。

本文中从最基本的单级放大电路出发,从高、中、低三个频段研究其频率响应特性,得出影响放大电路频率响应的主要因素。

仿真实验四共射极放大电路分析

仿真实验四共射极放大电路分析

仿真实验四 共射极放大电路分析一、实验目的:(1)认真理解和掌握含三极管的非线性电路的特点(2)使用Multisim 验证三极管的等效小信号模型二、实验原理及实例小信号分析法是分析非线性电阻电路的主要方法之一。

在非线性电路中,同时有直流电压0U 和随时间变化变化的输入信号源s u t () 的作用。

如果在任何时刻都有0U >s u t () ,则可以采用小信号分析法。

具体步骤如下:(1)画放大电路的小信号等效电路。

(2)估算be r 。

为此,还要求得静态电流eq I(3)求电压增益V A 。

(4)计算输入、输出电阻o ,R R i三、仿真实验设计如下图所示求该电路的电压增益。

(1)当电路中只有直流电流作用时,求出静态工作点2120.0454m 250800.0036312 1.104BE B C B CE C V I A K I I A V R I Vββ-==Ω====-=(2)画出该电路的小信号等效电路计算相关参数:26200(180)7730.0454 3.63be r =++=Ω+ ()155.24770.63b C E V b BEi b be o C i R R A i R R R r R R k β=-=-=≈Ω≈=Ω对其仿真得:由仿真结果可得67.56m 154.03435.23u O V i V V A V V===验证输入与输出的波形关系:可得到输入波形与输出波形为反向,所以-154.03V A =测量输入、输出电阻的阻值:i 435771.30.435263.552824.40.0225i i O o V V R I mAV V R Io mA ===Ω===Ω四、实验总结理论值和仿真结果有一定的误差,主要原因是电压表电流表都有内阻,使结果偏小,导致得不到理论值。

并且三极管内有小电阻rbe,导致电压偏小。

通过本次仿真电压路实验设计,我了解了三极管内部结构,其中有发射集,集电极,基极,而且会使用了三极管,依旧有二极管的单项导电性,其中计算时更不能忘记三极管的内部小电阻。

4-2-5第五章放大电路的频率响应

4-2-5第五章放大电路的频率响应
的Q点求解。
赣南师范学院物电学院电工电子教研室--模拟电路多媒体课件
第五章放大电路的频率响应
5.2.2 晶体管电流放大倍数β的频率响应
从混合π等效模型可以看出,管子工作在高频段时,若 基极注入的交流电流Ib的幅值不变,则随着信号频率的 升高,b/-e间的电压Ub/e的幅值将减小,相移将增大; 从而使IC的幅值随Ub/e线性下降,并产生与Ub/e相同的 相移。
值下降到 0.707 0 (即
1 2
0
)时的频率。
当 f = f 时,
1 2
0
0.707 0
20lg 20lg0 20lg 2 20lg0 3(dB)
值下降到中频时的 70% 左右。或对数幅频特 性下降了 3 dB。
赣南师范学院物电学院电工电子教研室--模拟电路多媒体课件
第五章放大电路的频率响应
赣南师范学院物电学院电工电子教研室--模拟电路多媒体课件
第五章放大电路的频率响应
5.4 单管放大电路的频率响应
5.4.1单管共射放大电路的频率响应
中频段:各种电 抗影响忽略,Au 与 f 无关;
低频段: 隔直 电容压降增大, Au 降低。与电路中电阻
Rb
C1 +
Rs +
US
+
~
Ui
Rc
+VCC
C2
小结
(1)电路的截止频率决定于电容所在回路的时间 常数τ,即决定了fL和fH。
(2)当信号频率等于fL或fH放大电路的增益下降 3dB,且产生+450或-450相移。
(3)近似分析中,可以用折线化的近似波特图 表示放大电路的频率特性。
赣南师范学院物电学院电工电子教研室--模拟电路多媒体课件

电子技术实验报告—实验4单级放大电路

电子技术实验报告—实验4单级放大电路

电子技术实验报告实验名称:单级放大电路系别:班号:实验者:学号:实验日期:实验报告完成日期:目录一、实验目的 (3)二、实验仪器 (3)三、实验原理 (3)(一)单级低频放大器的模型和性能 (3)(二)放大器参数及其测量方法 (4)四、实验容 (5)1、搭接实验电路 (5)2、静态工作点的测量和调试 (6)3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (6)4、放大器上限、下限频率的测量 (7)5、电流串联负反馈放大器参数测量 (8)五、思考题 (8)六、实验总结 (8)一、实验目的1.学会在面包板上搭接电路的方法;2.学习放大电路的调试方法;3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法;4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能;5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。

二、实验仪器1.示波器 1台2.函数信号发生器 1台3. 直流稳压电源 1台4.数字万用表 1台5.多功能电路实验箱 1台6.交流毫伏表 1台三、实验原理(一)单级低频放大器的模型和性能1. 单级低频放大器的模型单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。

从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。

若反馈信号的极性与原输入信号的极性相反,则为负反馈。

根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。

负反馈是改变房卡器及其他电子系统特性的一种重要手段。

负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。

放大电路中的频率响应分析

放大电路中的频率响应分析

放大电路中的频率响应分析频率响应是指电路对不同频率信号的响应程度,它描述了一个电路在不同频率下的增益和相位关系。

在放大电路中,频率响应分析十分重要,可以帮助我们了解电路的放大特性及其在不同频率下的表现。

本文将对放大电路中的频率响应进行详细的分析和探讨。

1. 引言在电子电路设计中,信号的放大是一项基本且必要的技术。

而放大电路的频率响应对信号的增益和相位有着重要的影响。

了解和分析放大电路的频率响应可以帮助我们优化电路设计,达到更好的信号放大效果。

2. 频率响应的定义与意义频率响应是指电路对不同频率信号的放大或衰减程度。

可以用增益-频率特性曲线来描述。

频率响应分析有助于我们了解电路的放大范围和频率范围内的增益情况。

3. 放大电路中的频率响应特性不同类型的放大电路,其频率响应特性存在差异。

接下来我们将讨论常见的放大电路的频率响应特性。

3.1 集成放大器的频率响应集成放大器是一种常见的放大电路。

在低频范围内,集成放大器的增益较高,但在高频范围内会出现增益下降的情况。

这是因为集成放大器的极点和零点的存在。

3.2 增强型共射放大器的频率响应增强型共射放大器的频率响应特性会受到电容的影响。

输入和输出的电容以及内部电容会对频率响应产生影响,因此在高频范围内,增强型共射放大器的增益会下降。

4. 频率响应分析方法在分析放大电路的频率响应时,我们可以使用频谱分析或者特定频率点响应分析的方法。

频谱分析可以得到整个频率范围内的响应情况,而特定频率点响应分析则可以更详细地了解某个特定频率下的放大情况。

5. 频率响应优化策略为了优化放大电路的频率响应,我们可以采取一些策略。

比如使用补偿电容来提高高频增益,调整电容和电感的数值以改变频率响应特性等。

6. 实例分析在这一节中,我们将以具体的实例来分析和展示频率响应的影响。

通过实际的测量数据,我们可以更直观地观察到频率响应曲线的变化。

7. 结论频率响应是放大电路分析中的重要内容。

通过频率响应分析,可以帮助我们深入了解电路的放大特性和响应情况。

放大电路频率特性的仿真分析及其应用

放大电路频率特性的仿真分析及其应用
性 如 图 1 示 ,其上 限截 止 频 率 0所 lH 。由此 可 见 ,该 运 Oz
放在开环 状态 下具有很 高的电压增益 (O d ) 1O B ,但是通频带 很窄,只有 lH 。在工程实践 中,电路处理 的信号带宽通常 Oz 比较大 ( 如音频信号为 2 H  ̄2k z ,因此 ,需要在 电路 中 0z OH )
【 收稿 日期 】2 1— 3 2 020—6 【 基金项 目】微 电子 专业主干课程教学 团队 ( J O 2 A) ZTI1
图 1 阻容耦 合共射 放 大 电路

图 2 阻容耦 合 共射 电路 的频率 特性

【 作者 简介 】李旭琼 ( 9 3 ,桂林电子科技 大学信 息与通信 学院讲 师,硕士 ,从事电路与 系统方面的教 学与科研 工作 。 17 一)
图 9 开环放 大 电路
图 1 开放 大 电路 的 频率特 性 0
豳 { 4 0
10 0 lk O 1 M IO 1 O H 6 1 10 0 1k O
图 1 闭环 放 大电路 1
1 M 1O 1 0M G
图 1 闭环 放 大电路 的频 率特 性 2
由 L 34 D构 成 的 实 用放 大器 如 图 1 M2A 1所 示 , 电 阻 R 、 3
具栏 中的 S m l t  ̄A a y i -P rm tr S e p iu a e n l ss* a a e e w e ,打开设
置 窗 口进 行 仿 真 设 置 , O tu 在 u p t选 项 中选 择 输 出节 点 , 后 然 单击 Smlt 进行仿真 。 iu a e
节点等 ) 然后进行仿真 ,得到图 2 , 所示 的频率特性 曲线 。 据 此 引出放大 电路频率特性 的概念 ,即:放大 电路的电压增 益

运算放大器的频率响应

运算放大器的频率响应

运算放大器的频率响应一、实验目的1、图示开环和闭环运算放大器的频率响应曲线。

2、由开环和闭环运算放大器的分贝增益确定运方的中频增益。

3、测定开环和闭环运算放大器的高端截至频率。

4、测定开环运算放大器的高频分贝增益。

5、测定开环放大器的单位增益宽带。

6、用运放的单位增益宽带计算放大器的宽带。

7、测定开环运放的截至频率及中频式输入和输出波形的相移。

8、测定负反馈对闭环运放带宽的影响。

9、用脉冲输入测定闭环运放的高端截至频率。

二、实验器材LM741运算放大器 1个信号发生器 1台波特图仪 1台示波器 1台电阻:100KΩ 2个, 1KΩ、10KΩ各1个三、试验原理用图1所示的电路可测量开环运算放大器的高端截至频率(近似等于宽带)和特征频率(单位增益频率)。

同相比例放大器为串联电压负反馈电路。

其高端截至频率可用图2所示的电路测定。

图1开环运放的频率响应图2同相比例运放的频率响应分贝电压增益与实际电压增益的关系为(dB)放大器的高端截至频率fH等于幅频特性曲线上中频增益下降3dB时的频率。

单位增益频率fu实施放大器电压增益下降为1(0dB)的输入信号频率。

放大器的增益宽带积是一个常数,等于单位增益频率,即图2所示的同相比例放大器的闭环电压增益为在图3所示的同相比例放大电路中,如果输入端加上脉冲信号,则输出波形的上升时间Tr (从幅值的10%至90%)可用来测定放大器的宽带。

输出上升时间(Tr)与放大器宽带(fH)只见的关系为图3通向比例运放的脉冲响应四、试验步骤1、在EWB平台上建立如图1所示的实验电路,仪器安图摄制。

用波特图仪图示运放开环增益的幅频特性曲线,频率变化范围为1.0 Hz—2MHz,增益单位是dB。

2、单击仿真开关运行动态分析,观察波特图仪显示的幅频特性曲线,注意曲线的品质部分在地段接近1Hz。

移动光标,测定放大器的中频电压增益,单位为dB。

3、步骤2分贝增益的测量值,计算放大器的中频电压增益,单位为dB。

实验四 放大电路电路频率响应分析和仿真实验-(空白)

实验四 放大电路电路频率响应分析和仿真实验-(空白)

实验四放大电路电路频率响应分析和仿真实验1 实验要求与目的(1). 熟悉Hspice 编程语言和文件格式;(2). 通过实验掌握Hspice软件的基本用法;(3). 通过实验了解共源放大器、源极跟随器和共源共栅增益级放大电路频率响应分析和仿真。

2 实验原理(1). 共源放大器电路分析为了进行高频分析,图1中共源放大器的小信号等效电路如图2 所示。

这里,Cgs1 是M1 的栅极-源极电容。

注意,我们已经假设输入源极的输出电容可以忽略。

电容C2 由M1和M2 的漏极- 衬底电容与负载电容CL 的并联组成。

CL 一般占主导地位。

图1 电流源负载共源放大器图2 共源放大器高频分析的小信号模型(2). 源极跟随器放大器电路分析图4 源极跟随器频率响应的结构图5源极跟随器的一个等效小信号模型加补偿后源极跟随器(3) 共源共栅增益级3,实验步骤(1) 共源放大器a) Hspice仿真SP文件如下:.title Common-Source Amp Frequency Test.option post=2 numdgt=7 tnom=27Vdd 1 0 dc 5Ibias 2 0 dc 100uM3 2 2 1 1 pmos w=100u l=1.6uM2 3 2 1 1 pmos w=100u l=1.6uM1 3 4 0 0 nmos w=100u l=1.6uRin 5 4 180kVin 5 0 dc 0.849 ac 1Cl 3 0 0.3p.op.ac dec 20 1k 100Meg.print vdb(3).MODEL nmos NMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=500,VMAX=2.0E5,PHI=0.6,GAMMA=0.5,+NSUB=2.5E16,VTO=0.7,NFS=8.2E11,CGSO=2.5E-10,+CGBO=2.5E-10,CJSW=2.5E-10,CGDO=2.5E-10,MJ=0.5,+CJ=2.5E-4,PB=0.9,IS=1.0E-16,JS=1.0E-4+KF=600E-27 AF=0.8 NLEV=2 RS=600+RD=600 ETA=0.05 KAPPA=0.007 THETA=0.06+ACM=2 XJ=2.7E-7 DELTA=0.7.MODEL pmos PMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=165,VMAX=2.7E5,PHI=0.80,GAMMA=0.75,+NSUB=5.5E16,VTO=-0.7,NFS=7.6E11,CGSO=2.5E-10,+CGBO=2.75E-10,CJSW=3.4E-10,CGDO=2.5E-10,MJ=0.5,+CJ=3.7E-4,PB=0.8,IS=1.0E-16,JS=1.0E-4+KF=400E-27 AF=1.0 NLEV=2 RS=1200+RD=1200 ETA=0.12 KAPPA=1.5 THETA=0.135+ACM=2 XJ=2.3E-7 DELTA=0.3.end仿真过程增益随频率变化(2) 源极跟随器放大器a) 源极跟随器HSPICE 频率分析.title source follower frequency test.option post=2 numdgt=7 tnom=27Vdd 1 0 dc 5Vss 2 0 dc -5Ibias 3 2 dc 100uRin 4 0 180kCin 4 0 30fCl 3 0 10pM1 1 4 3 2 nmos w=100u l=1.6uIin 4 0 pulse(0 -5u 10n 0 0).op.tran 0.5n 300n.print v(3).MODEL nmos NMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=500,VMAX=2.0E5,PHI=0.6,GAMMA=0.5,+NSUB=2.5E16,VTO=0.7,NFS=8.2E11,CGSO=2.5E-10,+CGBO=2.5E-10,CJSW=2.5E-10,CGDO=2.5E-10,MJ=0.5,+CJ=2.5E-4,PB=0.9,IS=1.0E-16,JS=1.0E-4+KF=600E-27 AF=0.8 NLEV=2 RS=600+RD=600 ETA=0.05 KAPPA=0.007 THETA=0.06+ACM=2 XJ=2.7E-7 DELTA=0.7.MODEL pmos PMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=165,VMAX=2.7E5,PHI=0.80,GAMMA=0.75,+NSUB=5.5E16,VTO=-0.7,NFS=7.6E11,CGSO=2.5E-10,+CGBO=2.75E-10,CJSW=3.4E-10,CGDO=2.5E-10,MJ=0.5,+CJ=3.7E-4,PB=0.8,IS=1.0E-16,JS=1.0E-4+KF=400E-27 AF=1.0 NLEV=2 RS=1200+RD=1200 ETA=0.12 KAPPA=1.5 THETA=0.135+ACM=2 XJ=2.3E-7 DELTA=0.3.end仿真过程源极跟随器的阶跃响应没有补偿.title source follower frequency test.option post=2 numdgt=7 tnom=27Vdd 1 0 dc 5Vss 2 0 dc -5Ibias 3 2 dc 100uRin 4 0 180kCin 4 0 30fCL 3 0 10pM1 1 4 3 2 nmos w=100u l=1.6uIin 4 0 dc 0 ac 1.op.ac dec 20 1k 1GEG.print vdb(3).MODEL nmos NMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=500,VMAX=2.0E5,PHI=0.6,GAMMA=0.5,+NSUB=2.5E16,VTO=0.7,NFS=8.2E11,CGSO=2.5E-10,+CGBO=2.5E-10,CJSW=2.5E-10,CGDO=2.5E-10,MJ=0.5,+CJ=2.5E-4,PB=0.9,IS=1.0E-16,JS=1.0E-4+KF=600E-27 AF=0.8 NLEV=2 RS=600+RD=600 ETA=0.05 KAPPA=0.007 THETA=0.06+ACM=2 XJ=2.7E-7 DELTA=0.7.MODEL pmos PMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=165,VMAX=2.7E5,PHI=0.80,GAMMA=0.75,+NSUB=5.5E16,VTO=-0.7,NFS=7.6E11,CGSO=2.5E-10,+CGBO=2.75E-10,CJSW=3.4E-10,CGDO=2.5E-10,MJ=0.5,+CJ=3.7E-4,PB=0.8,IS=1.0E-16,JS=1.0E-4+KF=400E-27 AF=1.0 NLEV=2 RS=1200+RD=1200 ETA=0.12 KAPPA=1.5 THETA=0.135+ACM=2 XJ=2.3E-7 DELTA=0.3.end仿真过程源极跟随器的电压增益曲线b) 加补偿后源极跟随器HSPICE频率分析.title source follower frequency test.option post=2 numdgt=7 tnom=27Vdd 1 0 dc 5Vss 2 0 dc -5Ibias 3 2 dc 100uRin 4 0 180kCin 4 0 30fCL 3 0 10pM1 1 4 3 2 nmos w=100u l=1.6uIin 4 0 dc 0 ac 1C1 4 5 0.17pR1 5 0 49.3k.op.ac dec 20 1k 1GEG.print vdb(3).MODEL nmos NMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=500,VMAX=2.0E5,PHI=0.6,GAMMA=0.5,+NSUB=2.5E16,VTO=0.7,NFS=8.2E11,CGSO=2.5E-10,+CGBO=2.5E-10,CJSW=2.5E-10,CGDO=2.5E-10,MJ=0.5,+CJ=2.5E-4,PB=0.9,IS=1.0E-16,JS=1.0E-4+KF=600E-27 AF=0.8 NLEV=2 RS=600+RD=600 ETA=0.05 KAPPA=0.007 THETA=0.06+ACM=2 XJ=2.7E-7 DELTA=0.7.MODEL pmos PMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=165,VMAX=2.7E5,PHI=0.80,GAMMA=0.75,+NSUB=5.5E16,VTO=-0.7,NFS=7.6E11,CGSO=2.5E-10,+CGBO=2.75E-10,CJSW=3.4E-10,CGDO=2.5E-10,MJ=0.5,+CJ=3.7E-4,PB=0.8,IS=1.0E-16,JS=1.0E-4+KF=400E-27 AF=1.0 NLEV=2 RS=1200+RD=1200 ETA=0.12 KAPPA=1.5 THETA=0.135+ACM=2 XJ=2.3E-7 DELTA=0.3.end仿真过程源极跟随器的电压增益曲线(3) 共源共栅增益级a) Hspice仿真.title Cascode AMP frequency test.option post=2 numdgt=7 tnom=27Vdd 1 0 dc 5Ibias 6 0 dc 100uM4 6 6 7 1 pmos w=390u l=2uM5 7 7 1 1 pmos w=390u l=2uM6 8 7 1 1 pmos w=390u l=2uM3 2 6 8 1 pmos w=390u l=2uM2 2 3 4 0 nmos w=100u l=1.6uM1 4 5 0 0 nmos w=100u l=1.6uCl 2 0 0.3pVbias 3 0 dc 2.5Vin 5 0 dc 0.8425 ac 1.op.ac dec 10 0.1 1000Meg.print vdb(2).MODEL nmos NMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=500,VMAX=2.0E5,PHI=0.6,GAMMA=0.5,+NSUB=2.5E16,VTO=0.7,NFS=8.2E11,CGSO=2.5E-10,+CGBO=2.5E-10,CJSW=2.5E-10,CGDO=2.5E-10,MJ=0.5,+CJ=2.5E-4,PB=0.9,IS=1.0E-16,JS=1.0E-4+KF=600E-27 AF=0.8 NLEV=2 RS=600+RD=600 ETA=0.05 KAPPA=0.007 THETA=0.06+ACM=2 XJ=2.7E-7 DELTA=0.7.MODEL pmos PMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=165,VMAX=2.7E5,PHI=0.80,GAMMA=0.75,+NSUB=5.5E16,VTO=-0.7,NFS=7.6E11,CGSO=2.5E-10,+CGBO=2.75E-10,CJSW=3.4E-10,CGDO=2.5E-10,MJ=0.5,+CJ=3.7E-4,PB=0.8,IS=1.0E-16,JS=1.0E-4+KF=400E-27 AF=1.0 NLEV=2 RS=1200+RD=1200 ETA=0.12 KAPPA=1.5 THETA=0.135+ACM=2 XJ=2.3E-7 DELTA=0.3.end仿真过程共源共栅增益级的电压增益曲线。

(仅供参考)放大电路实验操作和multisim仿真

(仅供参考)放大电路实验操作和multisim仿真
图 3 三极管放大电路截止失真时的输出电压波形 再通过对电路图进行直流分析,可得图 4 中的数据。
图 4 三极管放大电路饱和失真时的静态工作点值 此时静态工作点为 Ib=947.55nA、Ic=208.40uA、Vce=10.84V。 3)观察不失真并测定参数 无需改变设计图中的任何参数。观察波形,发现输出电压波形出现了较为对称的波形(图 5)。
Av
=
vo vi
=
65.42
图 19 电压增益的测试电路
图 20 输出电压和输出电压的读数 6.电路的频率响应曲线和 fL、fH 值 1)电路的频率响应曲线 对电路进行交流分析,幅频,相频特性曲线如图 21 所示。
图 21 频率特性曲线 2) fL、fH 值的测定
通过软件得到幅频最大的值后,再通过三分贝点得到 fL、fH 值,从而得到通频带宽。 fL、fH 值的测定可通过图 22 得到。fL=69.21HZ、fH=27.13MHZ。
图 9 测试输入特性曲线的实验图
图 10 输入特性曲线
通过静态时的 Ib 找到 Q 点,在 Q 点附近取两个点,斜率的倒数即为 rbe。求 rbe 值的过
程如图 11 所示。r = Nhomakorabeax = 6K
be dy

图 11 通过输入特性曲线得到 rbe 3)测试三极管的输出特性曲线 图 12 为测试输出特性曲线的实验图,使得 IB=IBQ,使用直流扫描,可得输出特性曲线 如图 13 所示。
E=
be真 −
| be = 7.7%
rbe真
3)
R
i
=
R1||R
||r
2
be
=
5.11K
,则误差为
R R |

实验四 两级放大电路实验报告

实验四   两级放大电路实验报告

实验四 两级放大电路一、实验目的l 、掌握如何合理设置静态工作点。

2、学会放大器频率特性测试方法。

3、了解放大器的失真及消除方法。

二、实验原理1、对于二极放大电路,习惯上规定第一级是从信号源到第二个晶体管BG2的基极,第二级是从第二个晶体管的基极到负载,这样两极放大器的电压总增益Av 为:2V 1V 1i 1O 2i 2O 1i 2O ,i 2O S 2O V A A V V V V V V V V V V A •=•====式中电压均为有效值,且2i 1O V V =,由此可见,两级放大器电压总增益是单级电压增益的乘积,由结论可推广到多级放大器。

当忽略信号源内阻R S 和偏流电阻R b 的影响,放大器的中频电压增益为:1be 2be 1C 1be 1L 11i 1O S 1O 1V r r //R 1r R V V V V A β-='β-=== 2be L2C 22be 2L 21O 2O 1i 2O 2V r R //R r R V V V V A β-='β-=== 2be L2C 21be 2be 1C 12V 1V V r R //R r r //R A A A β•β=•= 必须要注意的是A V1、A V2都是考虑了下一级输入电阻(或负载)的影响,所以第一级的输出电压即为第二级的输入电压,而不是第一级的开路输出电压,当第一级增益已计入下级输入电阻的影响后,在计算第二级增益时,就不必再考虑前级的输出阻抗,否则计算就重复了。

2、在两极放大器中β和I E 的提高,必须全面考虑,是前后级相互影响的关系。

3、对两级电路参数相同的放大器其单级通频带相同,而总的通频带将变窄。

)dB (A log 20G 式中G G G V u o2u o 1u uo =+=三、实验仪器l 、双踪示波器。

2、数字万用表。

3、信号发生器。

4、毫伏表 5、分立元件放大电路模块 四、实验内容1、实验电路见图4-1RL 3K图4-1两级交流放大电路2、设置静态工作点(l)按图接线,注意接线尽可能短。

【实验报告】频率响应测试

【实验报告】频率响应测试

实验名称:频率响应测试课程名称:自动控制原理实验目录(一)实验目的3(二)实验内容3(三)实验设备3(四)实验原理4(五)K=2频率特性试验结果4(六)K=2频率特性试验数据记录及分析7(七)K=5频率特性试验结果9(八)K=5频率特性试验数据记录及分析12(九)实验总结及感想错误!未定义书签。

图片目录图片1 系统结构图3图片2 系统模拟电路3图片3 K=2仿真对数幅相特性曲线4图片4 K=5仿真对数幅相特性曲线4图片5 f=0.7时输出波形及李沙育图形5图片6 f=1.4时输出波形及李沙育图形5图片7 f=2.1时输出波形及李沙育图形5图片8 f=2.8时输出波形及李沙育图形5图片9 f=3.5时输出波形及李沙育图形6图片10 f=4.2时输出波形及李沙育图形6图片11 f=4.9时输出波形及李沙育图形6图片12 f=5.6时输出波形及李沙育图形6图片13 f=6.3时输出波形及李沙育图形7图片14 f=7.0时输出波形及李沙育图形7图片15 k=2拟合频率特性曲线9图片16 f=0.9波形及李沙育图形9图片17 f=1.8波形及李沙育图形10图片18 f=2.7波形及李沙育图形10图片19 f=3.6波形及李沙育图形10图片20 f=4.5波形及李沙育图形10图片21 f=5.4波形及李沙育图形11图片22 f=6.3波形及李沙育图形11图片23 f=7.2形及李沙育图形11图片24 f=8.1波形及李沙育图形11图片25 f=9.0波形及李沙育图形12图片26 k=2拟合相频特性曲线14图表目录表格1 K=2电路元件参数7表格2 K=2实测电路数据处理7表格3 K=5电路元件参数12表格4 K=5实测电路数据处理12频率响应测试(一) 实验目的1. 掌握频率特性的测试原理及方法。

2. 学习根据所测定出的系统的频率特性,确定系统传递函数的方法。

(二) 实验内容测定给定环节的的频率特性,系统模拟电路、结构图分别如下所示:图片1系统结构图由图可知,系统的传递函数为:2100()10100k G s s s k =++,其中1Rk R =,实验中R 的取值分别为200k Ω,500k Ω,且1R 始终为100k Ω。

放大电路仿真实验

放大电路仿真实验

课程名称:高频电路原理实验名称:放大电路仿真实验一、实验目的:1.能对单调谐放大电路,双调谐放大电路的放大倍数,幅频特性和相频特性进行分析。

2.能对高频功率放大电路进行分析其参数。

3.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算。

4.利用Multisim进行仿真使我们更加进一步的了解各个电路的特性。

二、实验内容:1.单调谐放大器电路的仿真及分析。

2.双调谐放大器电路的仿真及分析。

3.高频功率放大器电路的仿真及分析。

三、实验结果仿真结果以及说明:一:单调谐放大电路设置一个高频小信号单谐振放大电路1结果显示及分析显示结果分析通道A是输出的波形,幅值为1v*1.6=1.6v,通道B是输入波形,幅值为10mv*2=20mv。

由此可以得出电压放大的增益Au=1.6/0.02=80(2)波特图示仪上的显示幅频特性显示结果分析如下信号源的谐振频率为f=11.087MHz,放大的增益为Au=38.416dB,放大倍数折算后约为80倍。

相频特性显示结果分析如下谐振频率为f=10.763MHz,相位角为-137.387°二:双调谐放大器电路设置一个高频小信号双谐振放大电路示波器上的显示如下显示结果分析通道A是输出的波形,幅值为1v*2.2=2.2v,通道B是输入波形,幅值为100mv*2=200mv。

由此可以得出电压放大的增益Au=2.2/0.2=11波特图示仪上的显示幅频特性显示结果分析如下信号源的谐振频率为f=5.446MHz,放大的增益为Au=19.681dB,放大倍数折算后约为11倍。

结果分析如下信号源的谐振频率为f=11.26MHz,放大的增益为Au=22.866dB,放大倍数折算后约为11倍。

相频特性显示结果分析如下谐振频率为f=10.789MHz,相位角为-112.929°三:高频功率放大器电路设置一个高频高频功率放大器二.结果显示及分析示波器上的显示如下四、实验总结:过本次高频仿真实验课,我对高频小信号放大器的电路及其一些参数有了进一步了解。

模电第三章之 放大电路的频率响应

模电第三章之 放大电路的频率响应

C1 + +
+
+
3.3.1 混合 型等效电路
一、混合 型等效电路cBiblioteka brbcrbb
+
b
Ib U be rb b
b
C bc
Ic c
+
gmU be
b
rbe
U be
rbe
C be
e
U ce
(a)三极管结构示意图
e
(b)等效电路
特点:(1)体现了三极管的电容效应 . .
10 f
f
图 3.2.1 的波特图
3.2.1 共射截止频率 f
值下降到 0.707 (即 1 0 )时的频率。 0 2
当 f = f 时,
1 0 0.707 0 2
20 lg 20 lg 0 - 20 lg 2 20 lg 0 - 3(dB )
对数幅频特性:
20 lg Au / dB
实际幅频特性曲线:
0.1 fL fL 10 fL f
0 3dB -20
高通特性:
-20dB/十倍频
-40
当 f ≥ fL(高频),
幅频特性
Au 1
图 3.1.4(a)
当 f < fL (低频), Au 1
且频率愈低,Au 的值愈小,
最大误差为 3 dB, 发生在 f = fL处
2
-20 lg 1 f L 20 lg Au f
2
则有:
当 f f L 时, Au 0 dB 20lg
f f 当 f f L 时, lg Au -20 lg L 20 lg 20 f fL

放大电路的实验实训报告

放大电路的实验实训报告

一、实验目的1. 熟悉放大电路的基本组成和原理。

2. 掌握放大电路静态工作点的调试方法。

3. 学习放大电路动态性能的测试方法。

4. 了解放大电路频率响应的特性。

5. 熟悉常用电子仪器的使用方法。

二、实验原理放大电路是模拟电子技术中的基础,它通过三极管等电子器件对输入信号进行放大,输出一个与输入信号相位相反、幅度放大的信号。

本实验主要研究共射极放大电路,其基本原理如下:1. 共射极放大电路:输入信号加在基极与发射极之间,输出信号从集电极取出。

2. 静态工作点:放大电路在没有输入信号时的工作状态,通常通过调整偏置电阻来设置。

3. 动态性能:放大电路在有输入信号时的性能,包括电压放大倍数、输入电阻、输出电阻等。

4. 频率响应:放大电路对不同频率信号的放大能力,受电路元件和三极管频率特性的影响。

三、实验仪器与材料1. 模拟电路实验箱2. 函数信号发生器3. 双踪示波器4. 交流毫伏表5. 万用电表6. 连接线若干四、实验内容与步骤1. 搭建共射极放大电路:根据实验原理图,搭建共射极放大电路,包括三极管、电阻、电容等元件。

2. 调试静态工作点:调整偏置电阻,使放大电路达到合适的静态工作点,通常通过观察集电极电流和集电极电压的变化来实现。

3. 测试动态性能:- 输入不同频率和幅度的信号,观察输出信号的幅度和相位变化。

- 测量电压放大倍数、输入电阻、输出电阻等参数。

4. 测试频率响应:- 改变输入信号的频率,观察输出信号的幅度变化。

- 绘制频率响应曲线。

五、实验结果与分析1. 静态工作点调试:通过调整偏置电阻,使放大电路达到合适的静态工作点,集电极电流和集电极电压满足设计要求。

2. 动态性能测试:- 电压放大倍数:根据输入信号和输出信号的幅度比值计算得出,符合理论预期。

- 输入电阻:根据输入信号和基极电流的比值计算得出,符合理论预期。

- 输出电阻:根据输出信号和集电极电流的比值计算得出,符合理论预期。

3. 频率响应测试:- 频率响应曲线:随着输入信号频率的增加,输出信号的幅度逐渐减小,符合理论预期。

放大电路的频率响应和噪声演示文档

放大电路的频率响应和噪声演示文档






二、 特征频率fT
|β (j f )| β0 0.707β 0
1 0

(jf )
0
1( f )2 f
o
1
1 ( fT )2
f
fT
f
fT
o
f
1
2πreCbe
三、共基电流放大系数α(jf )及fα
(jf) (jf) 0 1(jf) 1j f
f
f(10)f, 01 0 0
f fT f


j1 C M U I •b 1 e(U •b eU U •o b )ej(C b c)(1U ••o1 )j(C b c)(1A •u)1j(C b c)


Au
Uo

gmRL
Ube
U b e

C M C b c(1 A u ) C b c(1 g m R L )
r
b
bb ′
4.3 晶体管放大电路的频率响应
4.3.1共射放大电路的频率响应 一、共射放大电路的高频响应
1.高频小信号等效电路及其简化模型
UCC
RB1
RC + C2
C1 +

Rs
.
+ RB2
RE
Us

RL .

Uo
C3 -
图4.3.1 (a)共射放大器电路
b rbb′
I1
I2
b′
Cbc′
Rs
R L′ c +
b . Ib
rbb′ rb′e
b′
Cb′c . Cb′e Ub′e
. Ic
c
gmUb′e

放大电路的频率响应

放大电路的频率响应

第五章放大电路的频率响应在实际应用中,电子电路所处理的信号,如语音信号、电视信号等都不是简单的单一频率信号,它们都是由幅度及相位都有固定比例关系的多频率分量组合而成的复杂信号,即具有一定的频谱。

如音频信号的频率范围从20Hz到20Hz,而视频信号从直流到几十兆赫。

由于放大电路中存在电抗元件(如管子的极间电容,电路的负载电容、分布电容、耦合电容、射极旁路电容等),使得放大器可能对不同频率信号分量的放大倍数和相移不同。

如放大电路对不同频率信号的幅值放大不同,就会引起幅度失真。

如放大电路对不同频率信号产生的相移不同就会引起相位失真。

幅度失真和相位失真总称为频率失真,由于此失真是由电路的线性电抗元件(电阻、电容、电感等)引起的,故不称为线性失真。

为实现信号不失真放大所以要需研究放大器的频率响应。

5.1频率失真与非线性失真频率失真和非线性同样都是使输出信号产生畸变,但两者在实质上是不同的。

具体体现以下两点:1. 起因不同:频率失真是由电路中的线性电抗元件对不同信号频率的响应不同而引起,非线性失真由电路的非线性元件(如BJT、FET的特性曲线性等)引起的。

2. 结果不同:频率失真只会使各频率分量信号的比例关系和时间关系发生变化,或滤掉某些频率分量信号。

但非线失真,会将正弦波变为非正弦波,它不仅包含输入信号的频率成分(基波),而且还产生许多新的谐波成分。

5.1.1 时间常数RC电路的频率响应放大电路频率响应的基本概念1. 放大电路的频率响应频率响应表达式表示电压放大倍数的模与频率的关系,称为幅频响应。

表示放大器输出电压与输入电压之间的相位差与频率的关系,称为相频响应。

2. RC耦合放大器的幅频特性RC耦合放大器的幅频特性曲线如图所示。

中频区:在一个较宽的频率范围内,曲线是平坦的。

即放大倍数不随信号频率而变。

(在此频率范围内,耦合电容、射极旁路电容视为短路,极间电容视为开路)。

高频区(高于f H的频率范围):当信号频率升高时,放大倍数随频率的升高而减少。

仿真实验四共射极放大电路分析

仿真实验四共射极放大电路分析

仿真实验四共射极放大电路分析共射极放大电路是一种常见的放大电路,它具有输出电压幅度大,输入电阻低等特点,适用于低电压信号的放大。

下面将对共射极放大电路进行详细的分析。

共射极放大电路由三个主要部分组成:输入电容、晶体管和输出负载。

晶体管是共射极的,因此输入信号通过输入电容进入晶体管的基极,输出信号从晶体管的集电极输出到负载电阻。

首先,我们来分析直流电路部分。

在直流电路中,输入电容对直流信号具有短路的作用,因此输入信号不会影响到直流偏置电压。

假设晶体管的发射极电阻为RE,基极电位为VBE,集电极电阻为RC。

根据基本电路分析的方法,可以得到以下公式:1.确定直流工作点:IC = Vcc / (RC + RE)VC = Vcc - IC * RCVE=VCC-IC*(RC+RE)VB=VE-VBE2.计算电流放大倍数:β=IC/IB其中,IB为基极电流。

接下来,我们来分析交流电路部分。

在交流电路中,输入信号会通过输入电容进入晶体管的基极。

输入电容对于低频信号而言,阻抗较高。

通过计算输入电容的阻抗,可以得到输入阻抗的大小。

3.计算输入阻抗:Zin = (Zb * β) / (1 + β)其中,Zb为输入电容的阻抗。

4.计算输出阻抗:Zout = RC5.计算电压放大倍数:Av=-β*RC/(RC+RE)6.计算输入电压与输出电压之间的相位差:φ = arctan (β * RC / (RC + RE))需要注意的是,上述分析是在假设输入信号为低频信号的情况下进行的。

在实际应用中,可能存在高频信号的干扰。

为了抑制高频干扰,可以通过加入频率补偿电路,使得放大器的频率响应更加平坦。

综上所述,共射极放大电路的分析涉及直流电路和交流电路两个方面。

通过对电路中各元件的参数和工作原理的分析,可以得到输入阻抗、输出阻抗、电流放大倍数、电压放大倍数和相位差等关键指标。

这些指标可以帮助我们更好地了解和设计共射极放大电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四放大电路电路频率响应分析和仿真实验1 实验要求与目的(1). 熟悉Hspice 编程语言和文件格式;(2). 通过实验掌握Hspice软件的基本用法;(3). 通过实验了解共源放大器、源极跟随器和共源共栅增益级放大电路频率响应分析和仿真。

2 实验原理(1). 共源放大器电路分析为了进行高频分析,图1中共源放大器的小信号等效电路如图2 所示。

这里,Cgs1 是M1 的栅极-源极电容。

注意,我们已经假设输入源极的输出电容可以忽略。

电容C2 由M1和M2 的漏极- 衬底电容与负载电容CL 的并联组成。

CL 一般占主导地位。

图1 电流源负载共源放大器图2 共源放大器高频分析的小信号模型(2). 源极跟随器放大器电路分析图4 源极跟随器频率响应的结构图5源极跟随器的一个等效小信号模型加补偿后源极跟随器(3) 共源共栅增益级3,实验步骤(1) 共源放大器a) Hspice仿真SP文件如下:.title Common-Source Amp Frequency Test.option post=2 numdgt=7 tnom=27Vdd 1 0 dc 5Ibias 2 0 dc 100uM3 2 2 1 1 pmos w=100u l=1.6uM2 3 2 1 1 pmos w=100u l=1.6uM1 3 4 0 0 nmos w=100u l=1.6uRin 5 4 180kVin 5 0 dc 0.849 ac 1Cl 3 0 0.3p.op.ac dec 20 1k 100Meg.print vdb(3).MODEL nmos NMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=500,VMAX=2.0E5,PHI=0.6,GAMMA=0.5,+NSUB=2.5E16,VTO=0.7,NFS=8.2E11,CGSO=2.5E-10,+CGBO=2.5E-10,CJSW=2.5E-10,CGDO=2.5E-10,MJ=0.5,+CJ=2.5E-4,PB=0.9,IS=1.0E-16,JS=1.0E-4+KF=600E-27 AF=0.8 NLEV=2 RS=600+RD=600 ETA=0.05 KAPPA=0.007 THETA=0.06+ACM=2 XJ=2.7E-7 DELTA=0.7.MODEL pmos PMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=165,VMAX=2.7E5,PHI=0.80,GAMMA=0.75,+NSUB=5.5E16,VTO=-0.7,NFS=7.6E11,CGSO=2.5E-10,+CGBO=2.75E-10,CJSW=3.4E-10,CGDO=2.5E-10,MJ=0.5,+CJ=3.7E-4,PB=0.8,IS=1.0E-16,JS=1.0E-4+KF=400E-27 AF=1.0 NLEV=2 RS=1200+RD=1200 ETA=0.12 KAPPA=1.5 THETA=0.135+ACM=2 XJ=2.3E-7 DELTA=0.3.end仿真过程增益随频率变化(2) 源极跟随器放大器a) 源极跟随器HSPICE 频率分析.title source follower frequency test.option post=2 numdgt=7 tnom=27Vdd 1 0 dc 5Vss 2 0 dc -5Ibias 3 2 dc 100uRin 4 0 180kCin 4 0 30fCl 3 0 10pM1 1 4 3 2 nmos w=100u l=1.6uIin 4 0 pulse(0 -5u 10n 0 0).op.tran 0.5n 300n.print v(3).MODEL nmos NMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=500,VMAX=2.0E5,PHI=0.6,GAMMA=0.5,+NSUB=2.5E16,VTO=0.7,NFS=8.2E11,CGSO=2.5E-10,+CGBO=2.5E-10,CJSW=2.5E-10,CGDO=2.5E-10,MJ=0.5,+CJ=2.5E-4,PB=0.9,IS=1.0E-16,JS=1.0E-4+KF=600E-27 AF=0.8 NLEV=2 RS=600+RD=600 ETA=0.05 KAPPA=0.007 THETA=0.06+ACM=2 XJ=2.7E-7 DELTA=0.7.MODEL pmos PMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=165,VMAX=2.7E5,PHI=0.80,GAMMA=0.75,+NSUB=5.5E16,VTO=-0.7,NFS=7.6E11,CGSO=2.5E-10,+CGBO=2.75E-10,CJSW=3.4E-10,CGDO=2.5E-10,MJ=0.5,+CJ=3.7E-4,PB=0.8,IS=1.0E-16,JS=1.0E-4+KF=400E-27 AF=1.0 NLEV=2 RS=1200+RD=1200 ETA=0.12 KAPPA=1.5 THETA=0.135+ACM=2 XJ=2.3E-7 DELTA=0.3.end仿真过程源极跟随器的阶跃响应没有补偿.title source follower frequency test.option post=2 numdgt=7 tnom=27Vdd 1 0 dc 5Vss 2 0 dc -5Ibias 3 2 dc 100uRin 4 0 180kCin 4 0 30fCL 3 0 10pM1 1 4 3 2 nmos w=100u l=1.6uIin 4 0 dc 0 ac 1.op.ac dec 20 1k 1GEG.print vdb(3).MODEL nmos NMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=500,VMAX=2.0E5,PHI=0.6,GAMMA=0.5,+NSUB=2.5E16,VTO=0.7,NFS=8.2E11,CGSO=2.5E-10,+CGBO=2.5E-10,CJSW=2.5E-10,CGDO=2.5E-10,MJ=0.5,+CJ=2.5E-4,PB=0.9,IS=1.0E-16,JS=1.0E-4+KF=600E-27 AF=0.8 NLEV=2 RS=600+RD=600 ETA=0.05 KAPPA=0.007 THETA=0.06+ACM=2 XJ=2.7E-7 DELTA=0.7.MODEL pmos PMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=165,VMAX=2.7E5,PHI=0.80,GAMMA=0.75,+NSUB=5.5E16,VTO=-0.7,NFS=7.6E11,CGSO=2.5E-10,+CGBO=2.75E-10,CJSW=3.4E-10,CGDO=2.5E-10,MJ=0.5,+CJ=3.7E-4,PB=0.8,IS=1.0E-16,JS=1.0E-4+KF=400E-27 AF=1.0 NLEV=2 RS=1200+RD=1200 ETA=0.12 KAPPA=1.5 THETA=0.135+ACM=2 XJ=2.3E-7 DELTA=0.3.end仿真过程源极跟随器的电压增益曲线b) 加补偿后源极跟随器HSPICE频率分析.title source follower frequency test.option post=2 numdgt=7 tnom=27Vdd 1 0 dc 5Vss 2 0 dc -5Ibias 3 2 dc 100uRin 4 0 180kCin 4 0 30fCL 3 0 10pM1 1 4 3 2 nmos w=100u l=1.6uIin 4 0 dc 0 ac 1C1 4 5 0.17pR1 5 0 49.3k.op.ac dec 20 1k 1GEG.print vdb(3).MODEL nmos NMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=500,VMAX=2.0E5,PHI=0.6,GAMMA=0.5,+NSUB=2.5E16,VTO=0.7,NFS=8.2E11,CGSO=2.5E-10,+CGBO=2.5E-10,CJSW=2.5E-10,CGDO=2.5E-10,MJ=0.5,+CJ=2.5E-4,PB=0.9,IS=1.0E-16,JS=1.0E-4+KF=600E-27 AF=0.8 NLEV=2 RS=600+RD=600 ETA=0.05 KAPPA=0.007 THETA=0.06+ACM=2 XJ=2.7E-7 DELTA=0.7.MODEL pmos PMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=165,VMAX=2.7E5,PHI=0.80,GAMMA=0.75,+NSUB=5.5E16,VTO=-0.7,NFS=7.6E11,CGSO=2.5E-10,+CGBO=2.75E-10,CJSW=3.4E-10,CGDO=2.5E-10,MJ=0.5,+CJ=3.7E-4,PB=0.8,IS=1.0E-16,JS=1.0E-4+KF=400E-27 AF=1.0 NLEV=2 RS=1200+RD=1200 ETA=0.12 KAPPA=1.5 THETA=0.135+ACM=2 XJ=2.3E-7 DELTA=0.3.end仿真过程源极跟随器的电压增益曲线(3) 共源共栅增益级a) Hspice仿真.title Cascode AMP frequency test.option post=2 numdgt=7 tnom=27Vdd 1 0 dc 5Ibias 6 0 dc 100uM4 6 6 7 1 pmos w=390u l=2uM5 7 7 1 1 pmos w=390u l=2uM6 8 7 1 1 pmos w=390u l=2uM3 2 6 8 1 pmos w=390u l=2uM2 2 3 4 0 nmos w=100u l=1.6uM1 4 5 0 0 nmos w=100u l=1.6uCl 2 0 0.3pVbias 3 0 dc 2.5Vin 5 0 dc 0.8425 ac 1.op.ac dec 10 0.1 1000Meg.print vdb(2).MODEL nmos NMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=500,VMAX=2.0E5,PHI=0.6,GAMMA=0.5,+NSUB=2.5E16,VTO=0.7,NFS=8.2E11,CGSO=2.5E-10,+CGBO=2.5E-10,CJSW=2.5E-10,CGDO=2.5E-10,MJ=0.5,+CJ=2.5E-4,PB=0.9,IS=1.0E-16,JS=1.0E-4+KF=600E-27 AF=0.8 NLEV=2 RS=600+RD=600 ETA=0.05 KAPPA=0.007 THETA=0.06+ACM=2 XJ=2.7E-7 DELTA=0.7.MODEL pmos PMOS LEVEL=3,TOX=1.8E-8,LD=0.08U,+UO=165,VMAX=2.7E5,PHI=0.80,GAMMA=0.75,+NSUB=5.5E16,VTO=-0.7,NFS=7.6E11,CGSO=2.5E-10,+CGBO=2.75E-10,CJSW=3.4E-10,CGDO=2.5E-10,MJ=0.5,+CJ=3.7E-4,PB=0.8,IS=1.0E-16,JS=1.0E-4+KF=400E-27 AF=1.0 NLEV=2 RS=1200+RD=1200 ETA=0.12 KAPPA=1.5 THETA=0.135+ACM=2 XJ=2.3E-7 DELTA=0.3.end仿真过程共源共栅增益级的电压增益曲线。

相关文档
最新文档