电感三点式正弦波振荡器的设计.

合集下载

LC三点式正弦波振荡器实验

LC三点式正弦波振荡器实验

4.回路Q值和IEQ对频率稳定度的影响
1)Q值变化时,对振荡频率稳定度的影响
,IEQ=2mA,CT=100pF, 分别改变R值,使其值分别为1KΩ、10KΩ、110KΩ, 记录电路的振荡频率, 注意观察频率显示后几位数 的跳动情况。填入表1-37中,并说明R取哪种值的情 况下稳定度最好。
C 100pF 测试条件: C ' 1200pF
图3-1:LC三点式振荡器基本组成形式
图1-83:LC三点式振荡器基本组成形式
本实验主要研究电容三点式振荡器, 电路如图1-84所示。
2. 基本工作原理:
电路采用串联式电容反馈三 点式振荡器的改进型电路,也称 克拉波电路。采用分压式电流负 反馈偏置电路,调整RP可获得合 适的静态工作点。C1,C2为交流 耦合电容,正反馈电压取自C,两 端,改变C和C,的比值,可以改 变反馈深度,以满足振荡的振幅 条件。 此电路的振荡频率为:
5.选做内容:石英晶体-振荡器
1)按要求连好电路
2)静态工作点测试,记录IEQmin、IEQmax; 3)测量当工作点在上述范围内(至少3个点) 的振荡频率及振荡幅度(RL取110KΩ); 4)RL分别取110K Ω ,10K Ω ,1K Ω时, 测出振荡频率f,并观察频率的稳定度。 (与LC三点式振荡器相比较)。
取:CT=100pF, C、C’分别为下列三组数据:
C=C3=100pF,C’=C4=1200pF; C=C5=120pF,C’=C6=680pF; C=C7=680pF,C’=C8=120pF 调节电位器Rp ,使IEQ(静态值,即断开C1后 调IEQ,调好后再接上C1),分别为0.5,0.8,2.0, 3.0,4.0所标各值,用示波器分别测出各个振荡幅 度(峰峰值)。将所得的值填入表1-36中。

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器(高频电子线路实验报告)摘要本实验采用三点式正弦波振荡器电路,通过实验验证了三点式正弦波振荡器的设计和实际应用,其中包括三点式正弦波振荡器的基本原理、电路结构和工作特性等。

实验结果表明,通过合理的电路设计和优化,可以得到高精度、稳定性好的正弦波振荡器,为工程应用提供了重要的参考。

关键词:三点式正弦波振荡器、电路结构、工作特性一、实验目的1.熟悉三点式正弦波振荡器的基本原理和电路结构;3.通过实验验证三点式正弦波振荡器的设计和实际应用。

二、实验原理三点式正弦波振荡器是一种常用的基本电路,它通过正反馈作用在电路中产生自激振荡现象,从而输出对称的正弦波信号。

其基本原理如下:当输出正弦信号幅度变动时,输入放大器的反相输出端和反馈电容之间的电压也会变化,导致反馈放大器的增益也会随之变化,最终导致输出正弦波的幅度稳定在一定的水平上。

同时,在电路中增加合理的RC网络,可以使三点式正弦波振荡器输出的波形更加准确、稳定。

其中,- OA1, OA2分别为运算放大器;- R1, R2, R3分别为电阻,C1, C2分别为电容,L为电感;- 输出信号可以从OA1反相输出端或者OA2非反相输出端输出。

三、实验过程本实验采用EDA软件进行电路仿真和搭建,整个实验过程分为以下几个步骤:1.根据电路原理图,使用EDAW工具将三点式正弦波振荡器的电路搭建出来;2.依据实验材料,按照电路图要求选择合适的R、C、L值;3.将搭建好的电路连接上电源(+12V),开启仿真。

4.在电路仿真过程中,通过示波器观察输出的正弦波形,并分析波形的稳定性和频率响应等特性;5.修改电路参数,观测输出波形的变化情况,并记录相应的数据;四、实验结果通过实验,在合适的电路参数和电源电压下,三点式正弦波振荡器的输出波形为一定幅值的正弦波。

图2 实验得到的三点式正弦波振荡器输出波形五、实验分析通过本实验,我们可以看出三点式正弦波振荡器具有以下特点:1.输出波形准确、稳定。

浅析电容三点式正弦波振荡器的设计

浅析电容三点式正弦波振荡器的设计

浅析电容三点式正弦波振荡器的设计电容三点式正弦波振荡器是一种常用的电子电路,用于产生稳定的正弦波信号。

它广泛应用于通信、测量和科学研究领域。

本文将对电容三点式正弦波振荡器的设计原理和关键要素进行浅析,以帮助读者更好地理解该电路的工作原理和设计方法。

一、电容三点式正弦波振荡器的基本原理电容三点式正弦波振荡器是一种基于频率选择性反馈的振荡器电路。

它由一个运放、几个电容和几个电阻组成。

其基本原理是利用电容和电阻的组合,将一部分信号反馈到输入端,从而使电路产生自激振荡。

当振荡器达到稳定状态时,输出波形将是一个稳定的正弦波信号。

1. 运放选择在电容三点式正弦波振荡器中,选择合适的运放对于振荡器的性能至关重要。

一般来说,采用增益高、输入阻抗大、输出阻抗小的运放能够提高振荡器的性能。

常用的运放有通用型运放、高速运放和运算放大器等。

2. 电容和电阻的选择电容和电阻的选择直接影响到振荡器的频率稳定性和波形失真程度。

在设计电容三点式正弦波振荡器时,需要根据所需的频率和波形要求选择合适的电容和电阻数值。

为了减小温度和供电波动对振荡器的影响,可采用温度补偿电容和电阻。

3. 反馈网络设计电容三点式正弦波振荡器的反馈网络决定了振荡器的频率特性和稳定性。

一般来说,采用RC网络作为反馈网络,可以实现较好的频率稳定性。

还可以根据具体应用需求选择适当的反馈网络结构,如Sallen-Key结构、MFB结构等。

4. 调节电路设计为了能够方便地调节振荡器的频率和幅度,通常需要设计调节电路。

常用的调节电路有变容二极管调谐电路、电位器调节电路等。

5. 输出波形整形电路振荡器产生的波形往往不够理想,需要经过整形电路进行处理。

常用的整形电路有限幅放大器、比较器、滤波器等。

1. 确定频率范围和波形要求在设计电容三点式正弦波振荡器时,首先需要确定所需的频率范围和波形要求。

根据具体的应用需求,选择合适的频率范围和波形要求。

根据所需的频率范围和波形要求,选择合适的运放、电容和电阻。

高频电感三点式正弦波振荡器

高频电感三点式正弦波振荡器

课程设计任务书学生姓名:青蛙哥专业班级:电子0803班指导教师:吴皓莹工作单位:信息工程学院题目:高频电感三点式正弦波振荡器初始条件:具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。

要求完成的主要任务:1.采用晶体三极管或集成电路,场效应管构成高频电感三点式正弦波振荡器;2.额定电源电压5.0V ,电流1~3mA; 输出频率 8 MHz(频率具较大的变化范围);3.通过跳线可构成发射极接地、基极接地及集电极接地振荡器4.有缓冲级,在100欧姆负载下,振荡器输出电压≥ 1 V (D-P);5.完成课程设计报告(应包含电路图,清单、调试及设计总结)。

时间安排:1.2011年6月3日分班集中,布置课程设计任务、选题;讲解课设具体实施计划与课程设计报告格式的要求;课设答疑事项。

2.2011年6月4日至2011年6月9日完成资料查阅、设计、制作与调试;完成课程设计报告撰写。

3. 2011年6月10日提交课程设计报告,进行课程设计验收和答辩。

指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (I)Abstract.............................................................................................................................................................. I I 1绪论. (1)2正弦波振荡器 (2)2.1 反馈振荡器产生振荡的原因及其工作原理 (2)2.2平衡条件 (3)2.3起振条件 (3)2.4稳定条件 (4)3 电感三点式振荡器 (5)3.1三点式振荡器的组成原则 (5)3.2电感三点式振荡器 (5)3.3 振荡器设计的模块分析 (6)3.4 射极跟随器模块分析 (9)4 仿真软件Multisim11.0 简介 (10)4.1 Multisim 基本概念 (10)4.2 Multisim 软件启动界面 (10)4.3 Multisim 仿真软件的特点 (11)5 仿真与制作 (15)5.1仿真 (15)5.2分析调试 (16)6 心得体会 (18)参考文献 (19)附录:元件清单 (20)摘要反馈振荡器是一种常用的正弦波振荡器,主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成。

电感三点式振荡器设计剖析

电感三点式振荡器设计剖析

电感三点式振荡器设计剖析目录引言 (1)1设计要求 (1)2设计构思及理论 (1)2.1设计思路 (1)2.2设计构思的理论依据 (3)3系统电路的设计及原理说明 (4)3.1系统框图及说明 (4)3.2电路设计说明 (5)3.3关键元器件的介绍 (5)4仿真验证叙述及效果分析 (5)4.1仿真电路 (5)4.2仿真运行结果 (6)5工程设计 (6)6制作(特点)叙述 (7)7调试测试分析 (7)8结束语 (7)谢辞 (9)参考文献 (10)附图 (11)引言三点式振荡电路是指电容或电感(反馈部分)的3个段分别接晶体管的三个极,故称为三点式振荡电路。

目前三点式振荡电路主要分为电感三点式和电容三点式振荡电路。

电感三点式振荡电路是指原边线圈的3个段分别接在晶体管的3个极。

又称为电感反馈式振荡电路或哈特莱振荡电路。

本次试验采用共基放大电路与电感三点式震荡回路结合成基本振荡器,再在后级加个共基放大电路来带动负载,并利用电容和电感的特性来改善输出波形。

其特点是:1.易起振。

2.调节频率方便。

采用可变电容可获得较宽的频率调节范围,一般用于产生几十兆赫兹以下的正弦波。

3.输出波形较差。

1 设计要求(1)要实现的功能:设计一个电感三点式振荡器,产生10MHz 的震荡频率,并能带动620欧的负载。

(2)要求达到的技术指标:振荡频率f0=10MHz,输出频率电压U≥0.5Vpp/620欧;输出波形为正弦波(无明显失真);供电电压Vcc=12V。

(3)完成要求:设计与制作可供实际检测的实物样品,并且按要求完成课程设计报告。

2 设计构思及理论2.1 设计思路要设计一个电感三点式振荡电路,可以有几个电容和电感还有一个三极管和一个后级放大电路来达到要求。

用改变电容的方法来调整震荡频率,方便调试而不会影响反馈系数,可以是波形输出更加稳定而没有明显的失真现象。

但是为了达到输出频率电压技术指标,加一个共基放大电路,提高输出电压幅度。

实验四 三点式正弦波振荡器

实验四 三点式正弦波振荡器

实验四 三点式正弦波振荡器一、实验目的1.掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。

2.通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。

3.研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。

二、实验内容1.熟悉振荡器模块元件及其作用。

2.进行LC 振荡器波段工作研究。

3.研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。

4.测试LC 振荡器的频率稳定度。

三、基本原理图6-1 正弦波振荡器(4.5MHz )将开关S2的1拨下2拨上,S1全部断开,由晶体管3Q 和13C 、20C 、10C 、CC1、2L 构成电容反馈三点式振荡器的改进型振荡器—─西勒振荡器,电容CC1可用来改变振荡频率。

)1(211020CC C L f +=π振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数12.04701001613≈==C C F振荡器输出通过耦合电容3C (10P )加到由2Q 组成的射极跟随器的输入端,因3C 容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。

射随器输出信号1Q 调谐放大,再经变压器耦合从J1输出。

R5510C20.1uC810PC310PC7100PR14510R110KR610KC927P1243S1R910K R133.3KR710K W120KC121000PC1047PR118.2KR410KC140.1uC16470P R101K C10.1uR310KQ23DG130DJ21TH2C110.1uR83.3K R22KW25KQ13DG130DJ11TH1C6330PC40.1uT1T601C170.01uC151000PL122uH1243S2CC13-25PL222uHCRY14.1943M Q33DG130DC13100PRA1100KE1100u/16VC180.1u+12VC50.1u +12VR122KLED1LED(R)POWER1+12V_INTP1TP2TP3TP6TP7TP4TP5D2BB149D1BB149+12V音频输入输出频率幅度1TH3CON11TH4CON1四、实验步骤1.根据图6-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。

浅析电容三点式正弦波振荡器的设计

浅析电容三点式正弦波振荡器的设计

浅析电容三点式正弦波振荡器的设计
电容三点式正弦波振荡器是一种常见的振荡器电路。

它的基本原理是利用电容和电感的相互耦合,通过频率选择网络来实现正弦波的振荡输出。

电容三点式正弦波振荡器的设计涉及到以下几个关键因素:频率选择网络、幅度稳定电路、负反馈电路以及输出电路。

首先是频率选择网络的设计。

频率选择网络是决定振荡器振荡频率的关键部分,也是整个振荡器的起振条件。

常见的频率选择网络有LC谐振电路和RC谐振电路。

对于电容三点式振荡器,一般选择RC谐振网络。

RC谐振网络由一个固定的电阻和一个可变的电容组成,可以通过调节电容的大小来改变振荡频率。

其次是幅度稳定电路的设计。

由于振荡器是一个自激振荡的系统,输出的振荡幅度可能会受到电源波动的影响而不稳定。

为了保持幅度的稳定,需要设计一个幅度稳定电路。

常见的幅度稳定电路包括电流源和反馈电路。

电流源可以提供稳定的电流,保证振荡器在工作时有足够的驱动能力;反馈电路可以实现负反馈调节,使得输出信号的幅度能够稳定在设定值。

最后是输出电路的设计。

输出电路负责将振荡器的输出信号转换为可用的电压或电流信号。

常见的输出电路包括基准电路和放大电路。

基准电路用于提供稳定的基准电压或电流,以供振荡器输出信号参考;放大电路可以将输出信号放大到足够的幅度,以便于后续的使用或传输。

三点式正弦波振荡器实验报告数据

三点式正弦波振荡器实验报告数据

三点式正弦波振荡器实验报告数据一、实验目的1、掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。

2、通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。

3、研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。

二、实验内容1、熟悉振荡器模块各元件及其作用。

2、进行LC振荡器波段工作研究。

3、研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。

4、测试LC振荡器的频率稳定度。

三、实验仪器1、模块3 1块2、频率计模块1块3、双踪示波器1台4、万用表1块四、基本原理将开关S1 的1 拨下2 拨上,S2 全部断开,由晶体管N1 和C3、C10、C11、C4、CC1、L1 构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。

振荡器的频率约为4.5MHz (计算振荡频率可调范围)振荡电路反馈系数振荡器输出通过耦合电容C5(10P)加到由N2 组成的射极跟随器的输入端,因C5 容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。

射随器输出信号经N3 调谐放大,再经变压器耦合从P1 输出。

五、实验步骤1、根据图5-1 在实验板上找到振荡器各零件的位置并熟悉各元件的作用。

2、研究振荡器静态工作点对振荡幅度的影响。

1)将开关S1 拨为“01”,S2 拨为“00”,构成LC 振荡器。

2)改变上偏置电位器W1,记下N1 发射极电流(将万用表红表笔接TP2,黑表笔接地测量VE),并用示波测量对应点TP4 的振荡幅度VP-P,填于表5-1 中,分析输出振荡电压和振荡管静态工作点的关系。

11 RVe分析思路:静态电流ICQ 会影响晶体管跨导gm,而放大倍数和gm 是有关系的。

在饱和状态下(ICQ 过大),管子电压增益AV 会下降,一般取ICQ=(1~5mA)为宜。

3、测量振荡器输出频率范围将频率计接于P1 处,改变CC1,用示波器从TP8 观察波形及输出频率的变化情况,记录最高频率和最低频率填于5-2 表中。

改进型三点式lc正弦波震荡电路设计说明

改进型三点式lc正弦波震荡电路设计说明

改进型三点式LC正弦波震荡电路设计姓名班级学号指导教师摘要:振荡器的种类很多,适用的范围也不相同,但它们的基本原理都是相同的,都由放大器和选频网络组成,都要满足起振,平衡和稳定条件。

本次课程设计要求振荡器的输出频率为10Mh z,属于高频范围。

所以选择L C振荡器作为参考对象,再考虑输出频率和振幅的稳定性,最终选择了克拉泼振荡器。

通过OR C A D的设计与仿真,Pr o t e l绘制PC B版图,得到了与理论值比较相近的结果,这表明电路的原理设计是比较成功的,本次课程设计也是比较成功的。

关键词:平衡条件;克拉泼振荡器;OR C AD;P r o t e l;仿真1基本原理电路1.1振荡器的概述在电子线路中,除了要有对各种电信号进行放大的电子线路外,还需要有在没有激励信号的情况下产生周期性振荡信号的电子线路,这种电子线路就是振荡器。

振荡器是一种能量转换器,它不需要外部激励就能自动地将直流电源共给的功率转换为制定频率和振幅的交流信号功率输出。

振荡器一般由晶体管等有源器件和某种具有选频能力的无源网络组成。

振荡器的种类很多,根据工作原理可分为反馈型振荡器和负阻型振荡器,根据所产生的波形可分为正弦波振荡器和非正弦波振荡器;根据选频网络可分为L C 振荡器﹑晶体振荡器﹑RC 振荡器等1.2振荡器组成原则三点震荡器一般形式振荡器的三极分别与回路的三点相连接,故称三点式振荡器。

1.3振荡器构成参数设:be Z ?、ce Z ?、bcZ ?为纯电抗元件f V ?=be V ?=-ebV ?v F ?=ce beV V ??=-ce eb V V ??=-ceX eb X ??负号表示产生180o 相移,与V b e 和V c e 间的180o 相移合成为360o 相移,满足正反馈条件。

为此,X c e 与X e b 必为同名电抗,而X c b 须是X c e 与X e b 的异名电抗。

2改进型原理电路2.1串联改进型电容三点式振荡器(克拉泼电路)克拉泼电路其中:0f =LC21C=1C 串2C 串3C ,123C C C 、时:3021LC f 即:调整3C 不影响0f ,起振条件与考毕兹相同。

浅析电容三点式正弦波振荡器的设计

浅析电容三点式正弦波振荡器的设计

浅析电容三点式正弦波振荡器的设计
电容三点式正弦波振荡器是一种常用的电子电路,用于产生稳定的正弦波信号。

其设计原理是利用电容充放电过程的特性来实现振荡器的正弦波输出。

三点式正弦波振荡器的核心元件是一个集成运放和若干个电容。

其基本工作原理是通过正反馈机制不断放大波形,使之达到正弦波的形状。

首先是选择适当的运放。

运放是振荡器的核心部件,需要根据设计要求选择合适的类型和参数的运放。

常用的运放有通用型的741、精密型的TL071等。

其次是确定合适的电容值。

电容的选择决定了振荡器的频率范围,通常选择电容值较大的电容,使振荡器的频率较低。

频率的计算公式为f=1/(2πRC),其中f为输出信号的频率,R为电阻的阻值,C为电容的容值。

然后确定适当的反馈网络。

反馈网络是振荡器的另一个重要组成部分,通过反馈网络将一部分输出信号反馈给输入端,从而形成正反馈。

一般采用RC反馈网络来实现反馈。

最后是稳压电源的设计。

正弦波振荡器需要一个稳定的电源电压作为供电,以确保输出信号的稳定性。

可以采用稳压芯片或者稳压电路来实现稳定电源。

电容三点式正弦波振荡器的设计需要考虑运放的选取、电容的选择、反馈网络的设计以及稳压电源的设计。

在设计过程中,需要综合考虑电路的可靠性、稳定性和性能要求,通过合理的设计参数选择和电路布局,可以实现稳定输出的正弦波信号。

浅析电容三点式正弦波振荡器的设计

浅析电容三点式正弦波振荡器的设计

浅析电容三点式正弦波振荡器的设计电容三点式正弦波振荡器是一种常用的电子电路,用于产生稳定的正弦波信号。

本文将从原理、电路设计和调试三个方面对电容三点式正弦波振荡器进行浅析。

一、原理电容三点式正弦波振荡器的原理是利用RC电路的充放电过程产生正弦波信号。

其电路由一个放大器、两个电容和四个电阻组成。

二、电路设计1. 放大器设计放大器部分通常采用运放作为放大器,通过选择合适的运放电路配置来实现放大器的设计。

根据具体要求选择合适的运放型号以及工作电压,同时要注意运放的输入偏置电流、增益带宽乘积等参数。

2. 电容配置电容是决定振荡频率的关键元件。

在电容三点式正弦波振荡器中,通常采用串联或并联电容的方式来决定振荡频率。

如果选择串联电容,需要注意电容的耐压和容值;如果选择并联电容,要注意电容的阻抗和容值。

3. 电阻选择电阻是为了限制电流流过电容,并且影响振荡的稳定性。

根据具体要求来选择合适的电阻值,通常在几千欧姆至几十千欧姆之间。

三、调试电容三点式正弦波振荡器的调试主要包括调整电容和电阻的数值以及运放的工作点等。

具体步骤如下:1. 先选择一个合适的放大器供电电压,一般选择正负12V或正负15V。

2. 根据要求选择合适的运放型号,放入电路中。

3. 根据振荡频率的要求选择合适的电容,并在电路中连接好。

4. 根据需要选择合适的电阻,并与电容一起连接在电路中。

5. 连接好电路后,接入电源进行调试。

可以通过示波器观察输出波形,根据需要调整电阻和电容的数值,直到得到满意的正弦波输出。

总结:电容三点式正弦波振荡器是一种常用的电子电路,通过RC电路的充放电过程产生正弦波信号。

在设计和调试过程中需要注意选择合适的放大器、电容和电阻,并根据实际要求进行调整,以获得稳定的正弦波输出。

浅析电容三点式正弦波振荡器的设计

浅析电容三点式正弦波振荡器的设计

浅析电容三点式正弦波振荡器的设计电容三点式正弦波振荡器是一种常见的电路设计,用于产生正弦波信号。

它由几个关键的元件组成,包括电容器、电阻和放大器。

在本文中,我们将浅析电容三点式正弦波振荡器的设计原理和关键要点。

一、电容三点式正弦波振荡器的基本原理电容三点式正弦波振荡器的基本原理是利用正反馈和负反馈的相互作用,使得电路中的电压和电流产生周期性的变化,从而产生正弦波信号。

它的基本电路图如下图所示:在这个电路中,电容C和电阻R1构成了反馈回路,而放大器的输出端与反馈回路连接,形成了一个反馈环。

当电路处于稳定工作状态时,输出端将会产生一个频率稳定的正弦波信号。

1. 选择合适的放大器放大器是电容三点式正弦波振荡器中的核心元件,它负责放大反馈回路中的信号,并使电路产生振荡。

常用的放大器类型包括晶体管放大器、运放放大器等。

在选择放大器时,需要考虑其增益、频率响应和功率等参数,以确保电路的稳定工作。

2. 确定反馈回路的参数反馈回路中的电容和电阻参数直接影响着电路的振荡频率和稳定性。

通常情况下,我们可以根据振荡频率的需求来选择合适的电容和电阻数值。

也需要注意电容的漏电流和电阻的温度漂移等因素,以确保电路性能的稳定性。

3. 考虑电源和地的影响电容三点式正弦波振荡器的稳定性也受到电源和地的影响。

在设计电路时,需要充分考虑电源的稳定性和地线的布局,以减小电路受到干扰的可能性。

4. 进行仿真和调试在进行实际的电路设计和制作之前,通常会先进行仿真和调试。

通过仿真软件,可以快速地验证电路设计的正确性,并进行参数调整和优化。

在实际制作电路时,也需要进行严密的调试工作,以确保电路能够正常工作。

电容三点式正弦波振荡器在电子领域有着广泛的应用。

它主要用于产生频率稳定的正弦波信号,可以作为测量仪器的驱动源,也可以用于音频信号发生器、通信设备、调频电路等领域。

在实际应用中,电容三点式正弦波振荡器的性能稳定性和频率稳定性至关重要。

对于其设计和制作来说,需要特别注意电路的参数选择、电源和地的布局等关键要点,以确保电路的性能和可靠性。

三点式正弦波振荡器实验数据

三点式正弦波振荡器实验数据

三点式正弦波振荡器实验数据引言三点式正弦波振荡器实验是电子工程学中的一项基础实验,用于研究电路中的振荡现象。

本文将详细介绍该实验的原理、实验装置、实验过程和实验数据分析,并对实验结果进行深入探讨。

一、实验原理正弦波振荡器是一种能够产生稳定频率和振幅的信号源。

它由三个主要部分组成:放大器、反馈网络和频率稳定电路。

1.1 放大器在正弦波振荡器中,放大器起到放大信号的作用。

放大器通常采用共射放大器或共基放大器的形式,工作在其放大区间。

1.2 反馈网络反馈网络是正弦波振荡器中的关键组成部分,它将部分输出信号反馈到放大器的输入端,从而形成正反馈回路,使得系统产生振荡。

1.3 频率稳定电路频率稳定电路用于保持振荡器的输出频率稳定。

最常见的频率稳定电路是RC网络,通过调节电容或电阻的值可以改变振荡器的频率。

二、实验装置本实验使用的实验装置主要包括示波器、信号发生器和三点式正弦波振荡器电路。

2.1 示波器示波器用于显示电路的波形,是本实验中不可缺少的仪器之一。

示波器可以测量电压和时间的关系,并以波形的形式显示出来。

2.2 信号发生器信号发生器用于产生稳定的正弦波信号,作为振荡器电路的输入信号。

信号发生器具有可调节频率和振幅的功能,可以为实验提供所需的输入信号。

2.3 三点式正弦波振荡器电路三点式正弦波振荡器电路是本实验的核心部分。

它由放大器、反馈网络和频率稳定电路组成,可以产生稳定的正弦波信号。

三、实验过程3.1 实验准备首先,将示波器和信号发生器连接起来,并根据实验要求设置信号发生器的输出频率和振幅。

3.2 搭建电路根据实验指导书提供的电路图,搭建三点式正弦波振荡器电路。

确保电路连接正确并牢固。

3.3 调节电路打开示波器和信号发生器,逐步调节电路,使得示波器上显示出稳定的正弦波波形。

根据实验指导书中给出的方法,调节放大器、反馈网络和频率稳定电路的参数。

3.4 记录实验数据在调节电路的过程中,用示波器测量和记录各部分电路的电压和频率值。

电感三点式振荡器设计剖析

电感三点式振荡器设计剖析

目录引言 (1)1设计要求 (1)2设计构思及理论 (1)2.1设计思路 (1)2.2设计构思的理论依据 (3)3系统电路的设计及原理说明 (4)3.1系统框图及说明 (4)3.2电路设计说明 (5)3.3关键元器件的介绍 (5)4仿真验证叙述及效果分析 (5)4.1仿真电路 (5)4.2仿真运行结果 (6)5工程设计 (6)6制作(特点)叙述 (7)7调试测试分析 (7)8结束语 (7)谢辞 (9)参考文献 (10)附图 (11)引言三点式振荡电路是指电容或电感(反馈部分)的3个段分别接晶体管的三个极,故称为三点式振荡电路。

目前三点式振荡电路主要分为电感三点式和电容三点式振荡电路。

电感三点式振荡电路是指原边线圈的3个段分别接在晶体管的3个极。

又称为电感反馈式振荡电路或哈特莱振荡电路。

本次试验采用共基放大电路与电感三点式震荡回路结合成基本振荡器,再在后级加个共基放大电路来带动负载,并利用电容和电感的特性来改善输出波形。

其特点是:1.易起振。

2.调节频率方便。

采用可变电容可获得较宽的频率调节范围,一般用于产生几十兆赫兹以下的正弦波。

3.输出波形较差。

1 设计要求(1)要实现的功能:设计一个电感三点式振荡器,产生10MHz的震荡频率,并能带动620欧的负载。

(2)要求达到的技术指标:振荡频率f0=10MHz,输出频率电压U≥0.5Vpp/620欧;输出波形为正弦波(无明显失真);供电电压Vcc=12V。

(3)完成要求:设计与制作可供实际检测的实物样品,并且按要求完成课程设计报告。

2 设计构思及理论2.1 设计思路要设计一个电感三点式振荡电路,可以有几个电容和电感还有一个三极管和一个后级放大电路来达到要求。

用改变电容的方法来调整震荡频率,方便调试而不会影响反馈系数,可以是波形输出更加稳定而没有明显的失真现象。

但是为了达到输出频率电压技术指标,加一个共基放大电路,提高输出电压幅度。

1.电路组成如图所示为电感三点式振荡电路的原理图。

电感三点式正弦波振荡器的设计讲解

电感三点式正弦波振荡器的设计讲解

《高频电子线路》任务书课题名称电感三点式正弦波振荡器的设计指导教师(职称)冯锁(讲师)执行时间2012~ 2013 学年第一学期第16周学生姓名学号承担任务电路设计及电路的仿真资料整理及原理分析电路图制作资料整理及参数计算10 参数计算及器件选择1 原理图绘制设计目的1. 培养较为扎实的电子电路的理论知识及较强的实践能力。

2. 加深对电路器件的选型及电路形式的选择的了解。

3. 提高高频电子电路的基本设计能力及基本调试能力。

设计要求1. 从理论上分析振荡器的各个参数及起振条件。

2. 设计高频振荡器,选取电路各元件参数,使其满足起振条件及振幅条件。

3. 电源电压12V,工作频率16MHz,输出电压1V,频率稳定度高振荡器(英文:oscillator)是用来产生重复电子讯号(通常是正弦波或方波)的电子元件。

其构成的电路叫振荡电路,能将直流信号转换为具有一定频率的交流电信号输出。

振荡器的种类很多,按振荡激励方式可分为自激振荡器、他激振荡器;按电路结构可分为阻容振荡器、电感电容振荡器、晶体振荡器、音叉振荡器等;按输出波形可分为正弦波、方波、锯齿波等振荡器。

广泛用于电子工业、医疗、科学研究等方面。

三点式振荡器是指LC回路的三个端点与晶体管的三个电极分别连接而组成的一种振荡器。

三点式振荡器电路用电容耦合或自耦变压器耦合代替互感耦合, 可以克服互感耦合振荡器振荡频率低的缺点, 是一种广泛应用的振荡电路, 其工作频率可达到几百兆赫。

本文将围绕高频电感三点式正弦波振荡器进行具有具体功能的振荡器的理论分析与设计。

关键词:高频;电感三点式;正弦波;振荡器;缓冲级摘要 (1)目录 (2)第一章正弦波振荡器 (3)1.1反馈振荡器产生振荡的原因及其工作原理 (3)1.2平衡条件 (4)1.3起振条件 (4)1.4稳定条件 (4)第二章硬件电路设计 (5)2.1三点式振荡器的组成原则 (5)2.2电感三点式振荡器 (5)2.3 振荡器设计的模块分析 (5)第三章仿真软件Multisim11.0 简介 (7)3.1 Multisim 基本概念 (9)3.2 Multisim 软件启动界面 (9)3.3 Multisim 仿真软件的特点 (9)第四章仿真与调试 (12)4.1 仿真 (12)4.2 分析调试 (15)第五章心得体会 (16)参考文献 (16)附录一:元件清单 (18)附录二:总电路 (19)答辩记录及评分表 (20)第一章正弦波振荡器振荡器是一种能自动地将直流电源能量转换为一定波形的交变振荡信号能量的转换电路。

5.2.3 电感三点式振荡器

5.2.3 电感三点式振荡器

先求 和 ,再根据
求出相关参数。
Y参数等效电路
5.2.3 电感三点式振荡器(哈特莱振荡器) (3)起振条件
简化后的等效电路
5.2.3 电感三点式振荡器(哈特莱振荡器) (4)振荡频率
当忽略互感 时,则有
晶体管的输入、输出电容与 、 并联,限制谐振频率的提高。 (5)电路特点
① 有互感存在,易起振,且输出电压幅度大。 ② 调节电容 时,反馈系数不变,调频方便。 ③ 反馈电压取自电感,高次谐波分量大,输出波形较差。
第5章 正弦波振荡器 5.2 LC正弦波振荡器
5.2.3 电感三点式振荡器(哈特莱振荡器) (1)电路组成
ቤተ መጻሕፍቲ ባይዱ
(2)相位平衡条件 用“瞬时极性法”判断 图(a): 图(b):
下端为 上端为
两端的反馈电压 为 两端的反馈电压 为
5.2.3 电感三点式振荡器(哈特莱振荡器) (3)起振条件
共射组态
简化后的等效电路

电容三点式正弦波振荡器的设计

电容三点式正弦波振荡器的设计

2011~2012 学年第二学期《高频电子技术》课程设计报告题目:电容三点式正弦波振荡器的设计专业:电子信息工程班级:10信息1班姓名:王高登何庆林刘慧平指导教师:**电气工程系2012年12月20日任务书摘要在社会信息化程度越来越高的背景下,通讯工具在我们的生活中扮演了越来越重要的角色。

高频信号发生器主要用来向各种电子设备和电路提供高频能量或高频标准信号,以便测试各种电子设备和电路的电气特性。

高频信号发生器主要是产生高频正弦振荡波,故电路主要是由高频振荡电路构成。

振荡器的功能是产生标准的信号源,广泛应用于各类电子设备中。

所以,振荡器是电子技术领域中最基本的电子线路,也是从事电子技术工作人员必须要熟练掌握的基本电路。

本次课设要求制作高频电容三点式正选拨振荡器,采用晶体三极管或集成电路,场效应管构成正弦波振荡器,达到任务书所要求的目标。

并介绍了设计步骤,比较了各种设计方法的优缺点,总结了不同振荡器的性能特征。

使用实验要求的电源和频率计进行验证,实现了设计目标。

关键字:高频信号,电容,正弦波,振荡器目录第一章绪论----------------------------------------------------------------5第二章电路设计及原理分析--------------------------------------------------62.1 电路的设计---------------------------------------------------------62.2 电路原理及分析-----------------------------------------------------62.3 改进电容式三点电路-------------------------------------------------9 第三章电路元件和参数的确定-----------------------------------------------12 第四章实验仿真及结果误差分析---------------------------------------------13 4.1 电路原理图--------------------------------------------------------13 4.2 实验仿真----------------------------------------------------------13 4.3 实验结果及误差分析------------------------------------------------14 第五章结束语-------------------------------------------------------------15参考文献------------------------------------------------------------------16 附录:元器件列表----------------------------------------------------------17第一章绪论在模拟电子电路中,常常需要各种各样波形的信号,如正弦波,矩形波,三角波和锯齿波等。

规范三点式LC正弦波振荡器

规范三点式LC正弦波振荡器

(规范)三点式LC正弦波振荡器三点式LC正弦波振荡器高频电子线路课程设计报告设计题目:三点式LC正弦波振荡器系部:学生姓名:20__年月“高频电子线路”课程设计任务书1.时间:20__年06月6日~20__年06月10日2.课程设计单位:学校3.课程设计目的:掌握“高频电子线路”课程的基本概念、基本原理,加深对高频电子系统的工作原理和电路调试方法的理解。

4.课程设计任务:①了解电路图绘制软件的相关常识及其特点;②熟悉电路图绘制软件的使用方法;③理解高频电子系统的布局布线规则;④作好实习笔记,对自己所发现的疑难问题及时请教解决;⑤联系自己专业知识,熟练设计高频电子线路的,总结自己的心得体会;⑥参考相关的的书籍、资料,认真完成实训报告。

⑦作好笔记,对自己所发现的疑难问题及时请教解决;⑧联系自己所学知识,总结本次设计经验;⑨认真完成课程设计报告。

高频课程设计报告振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。

凡是可以完成这一目的的装置都可以作为振荡器。

一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。

放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。

正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。

选频网络则只允许某个特定频率f0能通过,使振荡器产生单一频率的输出。

振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压Uf和输入电压Ui要相等,这是振幅平衡条件。

二是Uf和Ui必须相位相同,这是相位平衡条件,也就是说必须保证是正反馈。

一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。

振荡器的用途十分广泛,它是无线电发送设备的心脏部分,也是超外差式接收机的主要部分各种电子测试仪器如信号发生器、数字式频率计等,其核心部分都离不开正弦波振荡器。

功率振荡器在工业方面(例如感应加热、介质加热等)的用途也日益广阔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

振荡器(英文:oscillator)是用来产生重复电子讯号(通常是正弦波或方波)的电子元件。

其构成的电路叫振荡电路,能将直流信号转换为具有一定频率的交流电信号输出。

振荡器的种类很多,按振荡激励方式可分为自激振荡器、他激振荡器;按电路结构可分为阻容振荡器、电感电容振荡器、晶体振荡器、音叉振荡器等;按输出波形可分为正弦波、方波、锯齿波等振荡器。

广泛用于电子工业、医疗、科学研究等方面。

三点式振荡器是指LC回路的三个端点与晶体管的三个电极分别连接而组成的一种振荡器。

三点式振荡器电路用电容耦合或自耦变压器耦合代替互感耦合, 可以克服互感耦合振荡器振荡频率低的缺点, 是一种广泛应用的振荡电路, 其工作频率可达到几百兆赫。

本文将围绕高频电感三点式正弦波振荡器进行具有具体功能的振荡器的理论分析与设计。

关键词:高频;电感三点式;正弦波;振荡器;缓冲级摘要 (1)目录 (2)第一章正弦波振荡器 (3)1.1反馈振荡器产生振荡的原因及其工作原理 (3)1.2平衡条件 (4)1.3起振条件 (4)1.4稳定条件 (4)第二章硬件电路设计 (5)2.1三点式振荡器的组成原则 (5)2.2电感三点式振荡器 (5)2.3 振荡器设计的模块分析 (5)第三章仿真软件Multisim11.0 简介 (7)3.1 Multisim 基本概念 (9)3.2 Multisim 软件启动界面 (9)3.3 Multisim 仿真软件的特点 (9)第四章仿真与调试 (12)4.1 仿真 (12)4.2 分析调试 (15)第五章心得体会 (16)参考文献 (16)附录一:元件清单 (18)附录二:总电路 (19)答辩记录及评分表 (20)第一章正弦波振荡器振荡器是一种能自动地将直流电源能量转换为一定波形的交变振荡信号能量的转换电路。

与放大器的区别:无需外加激励信号,就能产生具有一定频率、波形和振幅的交流信号。

由晶体管等有源器件和具有某种选频能力的无源网络组成。

正弦波振荡器按工作原理可分为反馈式振荡器与负阻式振荡器两大类。

反馈式振荡器是在放大器电路中加入正反馈,当正反馈足够大时,放大器产生振荡,变成振荡器。

所谓产生振荡是指这时放大器不需要外加激励信号,而是由本身的正反馈信号来代替外加激励信号的作用。

负阻式振荡器则是将一个呈现负阻特性的有源器件直接与谐振电路相接,产生振荡。

1.1 反馈振荡器产生振荡的原因及其工作原理反馈型振荡器是通过正反馈联接方式实现等幅正弦振荡的电路。

这种电路由两部分组成,一是放大电路,二是反馈网络。

图1.1所示为反馈振荡器构成方框图及相应电路。

由图可知,当开关S在 1 的位置,放大器的输入端外加一定频率和幅度的正弦波信号Ui,这一信号经放大器放大后,在输出端产生输出信号UO,若UO经反馈网络并在反馈网络输出端得到的反馈信号Uf与Ui不仅大小相等,而且相位也相同,即实现了正反馈。

若此时除去外加信号,将开关由 1 端转接到 2 端,使放大器和反馈网络构成一个闭环系统,那么,在没有外加信号的情况下,输出端仍可维持一定幅度的电压UO输出,从而实现了自激振荡的目的。

图1.1 反馈振荡器的结构网络图为了使振荡器的输出U O为一个固定频率的正弦波,图1.1 所示的闭合环路内必须含有选频网络,使得只有选频网络中心频率的信号满足U f与U i相同的条件而产生自激振荡,对其他频率的信号不满足U f与U i相同的条件而不产生振荡。

选频网络可与放大器相结合构成选频放大器,也可与选频网络相结合构成选频反馈网络。

1.2平衡条件振荡器的平衡条件即为1)()()(==ωωωj F j K j T也可以表示为()1T j KF ω==20,1,2T K F n n φφφπ=+==⋅⋅⋅即为振幅平衡条件和相位平衡条件。

平衡状态下,电源供给的能量正好抵消整个环路损耗的能量,平衡时输出幅度将不在变化:振幅平衡条件决定了振荡器输出信号振幅的大小;环路只有在某一特定的频率上才能满足相位平衡条件:相位平衡条件决定了振荡器输出信号频率的大小。

1.3起振条件振荡器在实际应用时不应有外加信号,而应是一加上电后即产生输出;振荡的最初来源是振荡器在接通电源时不可避免地存在的电冲击及各种热噪声。

振荡开始时激励信号很弱,为使振荡过程中输出幅度不断增加,应使反馈回来的信号比输入到放大器的信号大,即振荡开始时应为增幅振荡。

由()()()1i i T j U j U j ωωω'>>,可知,1)(>ωj T 称为自激振荡的起振条件,也可写为()1f L T j Y R F ω'=>20,1,2,T f L F n n φφφφπ'=++==⋅⋅⋅分别称为起振的振幅条件和相位条件,其中起振的相位条件即为正反馈条件。

1.4稳定条件振荡器的稳定条件分为振幅稳定条件和相位稳定条件。

(1)振幅稳定条件要使振幅稳定,振荡器在其平衡点必须具有阻止振幅变化的能力。

具体来说,0i iA U U i KU =∂<∂就是在平衡点附近,当不稳定因素使振幅增大时,环路增益将减小,从而使振幅减小。

(2)相位稳定条件振荡器的相位平衡条件是φT (ω0)=2nπ。

在振荡器工作时, 某些不稳定因素可能破坏这一平衡条件。

如电源电压的波动或工作点的变化可能使晶体管内部电容参数发生变化, 从而造成相位的变化, 产生一个偏移量Δφ。

由于瞬时角频率是瞬时相位的导数, 所以瞬时角频率也将随着发生变化。

为了保证相位稳定, 要求振荡器的相频特性φT (ω)在振荡频率点应具有阻止相位变化的能力。

具体来说, 在平衡点ω=ω0附近, 当不稳定因素使瞬时角频率ω增大时, 相频特性φT (ω0)应产生一个-Δφ, 从而产生一个-Δω, 使瞬时角频率ω减小。

第二章硬件电路设计2.1三点式振荡器的组成原则基本电路就是通常所说的三端式(又称三点式)的振荡器,即LC回路的三个端点与晶体管的三个电极分别连接而成的电路,如图2.1所示。

X1、X2、X3三个电抗元件构成了决定振荡频率的并联谐振回路,同时也构成了正反馈所需的反馈网络。

根据谐振回路的性质,谐振时回路应呈纯电阻性,因而有1230X X X++=三个电抗元件不能同时为感抗或容抗,必须由两种不同性质的电抗元件组成。

图2.1 反馈网络三端式振荡器能否振荡的原则:(1)X1和X2的电抗性质相同;(2)X3与X1、X2的电抗性质相反。

即射同余异,源同余异。

2.2电感三点式振荡器X1和X2为感性,X3为容性,满足三端式振荡器的组成原则,反馈网络是由电感元件完成的,称为电感反馈振荡器,也称为哈特莱(Hartley)振荡器。

(a) 电容反馈振荡器(b) 电感反馈振荡器图 2.2 两种基本的三端式振荡器(a) 实际电路 (b) 交流等效电路(c) 高频等效电路图2.3 电感反馈振荡器电路电感反馈振荡器中,电感通常是绕在同一带磁芯的骨架上,它们之间存在互感,用M 表示。

同电容反馈振荡器的分析一样,振荡器的振荡频率可以用回路的谐振频率近似表示,即101LCωω≈=L 为回路的总电感,122L L L M =++ 由相位平衡条件分析,振荡器的振荡频率表达式为12121()()ie oe L LC g g g L L M ω='++-式中的Lg '与电容反馈振荡器相同,表示除晶体管以外的电路中所有电导折算到CE 两端后的总电导。

振荡频率近似用回路的谐振频率表示时其偏差较小,而且线圈耦合越紧,偏差越小。

电感反馈式三端振荡器优点(1)容易起振 (2)调整频率方便,变电容而不影响反馈系数。

缺点(1) 振荡波形不够好,高次谐波反馈较强,波形失真较大。

(2) 不适于很高频率工作。

2.3 振荡器设计的模块分析如图2.4所示即为设计的第一个模块,也是此次设计的主要模块——振荡电路模块。

图2.4 振荡电路模块原理图与前面的对振荡器电路的分析一样,图2.4中的R1、R2和R3均为电路的偏置电阻,C1、C2分别为旁路电容和隔直流电容,而C1、L1和L2的连接方式也符合电感三点式振荡器的原则,因此整个电路就构成了设计所需要的振荡电路。

由振荡器的原理可以看出,振荡器实际上是一个具有反馈的非线性系统,精确计算是很困难的,而且也是不必要的。

因此,振荡器的设计通常是进行一些设计考虑和近似估算,选择合理的线路和工作点,确定元件的参数值,而工作状态和元件的准确数值需要在调试中最后确定。

设计时一般都要考虑一下一些问题:(1)晶体管的选择从稳频的角度出发,应选择T f 较高的晶体管,这样的晶体管内部相移较小。

通常选择T 1max (310)f f >。

同时希望电流放大系数β大些,这既容易振荡,也便于减小晶体管和回路之间的耦合。

虽然不要求振荡器中的晶体管输出多大的功率,但考虑到稳频等因素,晶体管的额定功率也应有足够的余量。

因此,在本次设计中将会 选取BC107BP 作为振荡电路的三极管。

该三极管的集电极电流最大值为800mA ,在25℃时其功率可达到0.5W ,最大集电极电压可达30V ,足够满足此次设计的各方面要求。

(2)直流馈电线路的选择为保证振荡器起振的振幅条件,起振工作点应设置在线性放大区;从稳频出发,稳定状态应该在截至区,而不应在饱和区,否则回路的有载品质因数QL 将降低。

所以,通常应将晶体管的静态偏置点设置在小电流区,电路应采用自偏压。

对于小功率晶体管,集电极电流约为1-4mA 。

(3)振荡回路元件的选择从稳频出发,振荡回路中电容C 应尽可能大,但C 过大,不利于波段工作,因此,前页图2.4中各电容均选为100nF 已经可以满足电路的设计要求。

而电感L 原本也应尽可能大,但L 大后,体积大,分布电容大,L 过小,回路的品质因数过小,因此应该合理选择L 的大小。

根据此次设计的要求,输出频率为8MHz ,由计 算公式(式中L=L1+L2+2M,M 为L1和L2之间的互感)以及反馈系数220.1~0.511L M L F L M L +=≈=+的要求,按照图2.4中所示选取L1=5mH,L2=100uH 应该能够满足设计的要求。

第三章仿真软件Multisim11.0 简介3.1 Multisim 基本概念Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。

它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。

工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。

Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。

相关文档
最新文档