第1课 数列的概念及其通项公式

合集下载

人教版必修5第二章数列第一节 数列的概念及通项公式

人教版必修5第二章数列第一节 数列的概念及通项公式

S
n
f (n), Sn
f (an ), an
f
(Sn )
注意: n 1 是一定要单独计算;有时求出的结果可以合并,有时只能分开。
【例】①已知数列{an}的前 n 项的和 Sn 2n2 3n ,则其通项公式 an =_______________
②数列{an}的前 n 项的和满足 Sn 4an 1,则其通项公式 an =______________
的最小值为________
6、已知数列{an}的首项 a1 2, 且 (n 1)an nan1 ,则 an ________
7、数列{an}满足 a1 2, an 4an1 3(n 2) ,则此数列的通项公式 an ________
8、已知数列{an}满足 a1
1,
an1
an an
2
, bn1
(n
)( 1 an
1), b1
(1)求证:数列{ 1 1} 是等比数列。 an
(2)若数列{bn} 是递增数列,求实数 的取值范围。
9.已知数列{an}的前 n 项和 Sn=2n-3,则数列{an}的通项公式是________.
10、已知数列{an}的前 n 项和 Sn=n2+2n+1,则 an=________;
【例】①已知 a1 2, an1 an 2n ,则 an =______________ ②数列{an}中, a1 1, an an1 3n1(n 2) ,求 an 。
第1页共6页
20 :叠乘法(又称累乘法)适用 an1 an f (n) ,类似等比数列。
【例】已知数列 {an } 中,
4、特殊数列求通项公式(学完等比与等差后掌握)
(1)观察法 【例】求 1 , 4 , 9 , 16 的通项公式 2 5 10 17

数列概念及其通项公式课件

数列概念及其通项公式课件

工具
第五章
数列
栏目导引
【变式训练】 公式:
1.根据数列的前几项,写出下列各数列的一个通项
(1)-1,7,-13,19,„ (2)0.8,0.88,0.888,„ 1 1 5 13 29 61 (3) , ,- , ,- , ,„ 2 4 8 16 32 64 (4)0,1,0,1,„
解析: (1)符号问题可通过(-1)n 表示,其各项的绝对值的排列规 律为: 后面的数的绝对值总比前面数的绝对值大 6, 故通项公式为 an=(- 1)n(6n-5). 8 8 8 (2)将数列变形为9(1-0.1),9(1-0.01),9(1-0.001),„, 1 8 ∴an= 1-10n. 9
工具
第五章
数列
栏目导引
第五章


工具
第五章
数列
栏目导引
工具
第五章
数列
栏目导引
1.数列的概念
按照一定次序 排列着的一列数叫做数列,一般用 {an} 表示.
2.数列的分类 分类原则 按项数分类 有穷数列 无穷数列 类型 满足条件 项数 有限 项数 无限
递增数列
按项与项 间的大小 关系分类 递减数列 常数列 摆动数列
工具
第五章
数列
栏目导引
写出下列各数列的一个通项公式: 1 3 7 15 31 (1)4,6,8,10,„;(2)2,4,8,16,32,„; 2 10 17 26 37 (3)3,-1, 7 ,- 9 , 11,-13,„; (4)3,33,333,3 333,„.
解析: (1)各项是从 4 开始的偶数, 所以 an=2n+2. (2)每一项分子比分母少 1,而分母可依次写为 21,22,23,24,25,„,故 2n-1 所求数列的一个通项公式可写为 an= 2n . (3)带有正负号,故每项中必须含有(-1)n+1 这个因式,而后去掉负 号,观察可得.

第一节 数列的概念及通项公式

第一节 数列的概念及通项公式

答案:an=2×3n
4.设数列{an}满足a1+3a2+…+(2n-1)an=2n,则an= ________.
解析:因为a1+3a2+…+(2n-1)an=2n, 故当n≥2时,a1+3a2+…+(2n-3)an-1=2(n-1). 两式相减得(2n-1)an=2,所以an=2n2-1(n≥2). 又由题设可得a1=2,满足上式, 从而{an}的通项公式为an=2n2-1(n∈N *). 答案:2n2-1(n∈N *)
以上各式累加得,an-a1=1×1 2+2×1 3+…+n-11n =1-12+12-13+…+n-1 1-n1=1-n1. ∴an+1=1-n1,∴an=-n1(n≥2). 又∵当n=1时,a1=-1,符合上式,∴an=-n1.
[解题方略] 对于形如 an+1-an=f(n)的递推关系的递推数列,即数列相 邻两项之差是一个关于 n 的函数式,可以直接对等式两边求和 进行解答,也可写为 an=(an-an-1)+(an-1-an-2)+…+(a2-a1) +a1 的形式进行迭代.
[一“点”就过] 已知Sn求an的3个步骤 (1)先利用a1=S1求出a1; (2)用n-1替换Sn中的n得到一个新的关系,利用an=Sn-Sn -1(n≥2)便可求出当n≥2时an的表达式; (3)对n=1时的结果进行检验,看是否符合n≥2时an的表达 式,如果符合,则可以把数列的通项公式合写;如果不符合, 则应该分n=1与n≥2两段来写.
所以数列{an}的通项公式是an=-2n+8(n∈N *). 答案:-2n+8
2.已知数列{an}的前n项和Sn=2n,则an=________.
解析:当n≥2时,Sn-1=2n-1,两式相减, 得an=2n-2n-1=2n-1.又当n=1时,a1=2, 不满足an=2n-1,所以an=22n,-1n,=n1≥,2. 答案:22n,-1n,=n1≥,2

第一课数列概念及通项公式1

第一课数列概念及通项公式1
2
= n2 n 4 .
2
(所 相2)乘a(方2=得法2aa11一2·,aa)3因3·=…为2a·22aan,n=a=42a=112a2ann33·2a11,22…, ·,…an·2a=nn2a11nn11
,
(所方以法ana二=n=2)1因aa2nan为11(n·a1aa)annnn1=12
352= 495=01225.
2
学例2 (2009·重庆卷)已知
a1=1,a2=4,an+2=4an+1+an,bn= (1)求b1,b2,b3的值;
an1 an
,n∈N*.
(2)设cn=bnbn+1,Sn为数列{cn}的前n项和,
求证Sn>17n;
(3)求证:|b2n-bn|<
1 64
·171n2
所以Sn=c1+c2+…+cn>17n.
(3)证明:当n=1时,结论|b2-b1|= 14<1674 成立.当
n≥2时,有|bn+1-bn|=|4+
1
-4-
bn
1
|
bn 1
=| bn bn1 |≤
bnbn1
117|bn-bn-1|≤
171|b2 n-1-bn-2|
1
≤…≤ 17n|b1 2-b1|=
例3 根据下列条件,写出数列的通项公式:
(1)a1=2,an+1=an+n; (2)a1=1,an-1=2n-1an.
分析(1)将递推关系写成n-1个等式累
加,即“累加法”. (2)将递推关系写成n-1个等式相乘,即
“累积法”或用逐项迭代法.
(1)(方法一)an+1=an+n,

初中数学知识归纳数列的概念与常见数列的计算

初中数学知识归纳数列的概念与常见数列的计算

初中数学知识归纳数列的概念与常见数列的计算数列是数学中非常重要的概念之一,它在初中数学中占有重要地位。

本文将对数列的概念进行归纳,并介绍一些常见数列的计算方法。

一、数列的概念数列是由一列有序的数按照一定规律排列而成的。

数列中的每一个数称为该数列的项,项的位置称为项号。

常用的表示数列的方法有两种:1. 通项公式:一般形式为an,表示第n项的值。

例如:an = 2n表示一个等差数列,首项为2,公差为2;2. 递推公式:一般形式为an+1 = an + d,表示第n项与第n+1项之间的关系。

例如:an+1 = an + 2表示一个等差数列,公差为2。

二、等差数列等差数列是最常见的数列之一,其中相邻两项之差都相等。

等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。

例如,考虑等差数列1, 3, 5, 7, 9,其中a1 = 1,d = 2。

根据通项公式可以计算出该数列的第n项的值。

三、等比数列等比数列是相邻两项之比都相等的数列。

等比数列的通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比。

例如,考虑等比数列1, 2, 4, 8, 16,其中a1 = 1,r = 2。

根据通项公式可以计算出该数列的第n项的值。

四、斐波那契数列斐波那契数列是数列中的一种特殊形式,每一项都是前两项的和。

即F(n) = F(n-1) + F(n-2),其中F(1) = F(2) = 1。

斐波那契数列的前几项为1,1,2,3,5,8,13,21...五、算术数列与等差数列的计算算术数列的计算主要涉及到等差数列的各种性质,如首项、公差、项数等。

可以利用下列公式进行计算:1. 首项a1 = an - (n-1)d;2. 项数n = (an - a1)/d + 1;3. 求和Sn = (a1 + an) * n / 2。

例如,对于等差数列1, 3, 5, 7, 9,可以计算出该数列的首项a1 = 1,公差d = 2,项数n = 5,和Sn = 25。

数列的递推公式和通项公式总结

数列的递推公式和通项公式总结

数列的递推公式和通项公式总结一、数列的概念1.数列:按照一定顺序排列的一列数。

2.项:数列中的每一个数。

3.项数:数列中数的个数。

4.首项:数列的第一项。

5.末项:数列的最后一项。

6.公差:等差数列中,相邻两项的差。

7.公比:等比数列中,相邻两项的比。

二、数列的递推公式1.等差数列的递推公式:an = a1 + (n-1)d–an:第n项–a1:首项2.等比数列的递推公式:an = a1 * q^(n-1)–an:第n项–a1:首项3.斐波那契数列的递推公式:an = an-1 + an-2–an:第n项–an-1:第n-1项–an-2:第n-2项三、数列的通项公式1.等差数列的通项公式:an = a1 + (n-1)d–an:第n项–a1:首项2.等比数列的通项公式:an = a1 * q^(n-1)–an:第n项–a1:首项3.斐波那契数列的通项公式:an = (1/√5) * [((1+√5)/2)^n - ((1-√5)/2)^n]–an:第n项四、数列的性质1.收敛性:数列的各项逐渐接近某个固定的数。

2.发散性:数列的各项无限增大或无限减小。

3.周期性:数列的各项按照一定周期重复出现。

五、数列的应用1.数学问题:求数列的前n项和、某项的值、数列的收敛性等。

2.实际问题:人口增长、贷款利息计算、等差数列的求和等。

六、数列的分类1.有限数列:项数有限的数列。

2.无限数列:项数无限的数列。

3.交错数列:正负交替出现的数列。

4.非交错数列:同号连续出现的数列。

5.常数数列:所有项都相等的数列。

6.非常数数列:各项不相等的数列。

综上所述,数列的递推公式和通项公式是数列学中的重要知识点,通过这些公式,我们可以求解数列的各种问题。

同时,了解数列的性质和分类,有助于我们更好地理解和应用数列。

习题及方法:1.习题一:已知等差数列的首项为3,公差为2,求第10项的值。

答案:a10 = 3 + (10-1) * 2 = 3 + 18 = 21解题思路:利用等差数列的递推公式an = a1 + (n-1)d,将给定的首项和公差代入公式,求得第10项的值。

第1课时 数列的概念及通项公式

第1课时 数列的概念及通项公式

《第1课时数列的概念及通项公式》一、学习目标1.理解数列的有关概念与数列的表示方法.2.掌握数列的分类,了解数列的单调性.3.理解数列的通项公式,并会用通项公式写出数列的任一项.4.能根据数列的前几项写出数列的一个通项公式.二、导学指导与检测课前预习课本(1-3)页知识点一数列及其有关概念1.一般地,我们把按照排列的一列数称为数列,数列中的每一个数叫做这个数列的项.数列的第一个位置上的数叫做这个数列的第项,常用符号a1表示,第二个位置上的数叫做这个数列的第2项,用a2表示……,第个位置上的数叫做这个数列的第项,用a n表示.其中第1项也叫做.2. 数列的一般形式可以写成a1,a2,a3,…,a n,…,简记为{ }.思考数列1,2,3与数列3,2,1是同一个数列吗?知识点二数列的分类分类标准名称含义按项的个数有穷数列项数的数列无穷数列项数的数列知识点三函数与数列的关系数列{a n}是从正整数集N*(或它的有限子集{1,2,…,n})到实数集R的函数,其自变量是序号n,对应的函数值是数列的第n项,记为a n=f(n).课前预习课本(4-5)页知识点四数列的单调性递增数列从第2项起,每一项都它的前一项的数列递减数列从第2项起,每一项都它的前一项的数列常数列各项都的数列知识点五通项公式1.如果数列{a n}的第n项a n与它的之间的对应关系可以用一个式子来表示,那么这个式子叫做这个数列的.2.通项公式就是数列的,以前我们学过的函数的自变量通常是连续变化的,而数列是自变量为离散的数的函数.思考既然数列是一类特殊的函数,那么表示数列除了用通项公式外,还可以用哪些方法?1.1,1,1,1是一个数列.()2.数列1,3,5,7可表示为{1,3,5,7}.()3.如果一个数列不是递增数列,那么它一定是递减数列.()4.a n与{a n}表达不同的含义.()课内探究一、数列的有关概念和分类例1下列数列哪些是有穷数列?哪些是无穷数列?哪些是递增数列?哪些是递减数列?哪些是常数列?(1)1,0.84,0.842,0.843,…;(2)2,4,6,8,10,…;(3)7,7,7,7,…;(4)13,19,127,181,…;(5)10,9,8,7,6,5,4,3,2,1;(6)0,-1,2,-3,4,-5,….反思感悟(1)判断数列是何种数列一定严格按照定义进行判断.(2)判断数列的单调性时一定要确保每一项均大于(或均小于)后一项,不能有例外.二、由数列的前几项写出数列的一个通项公式例2写出下列数列的一个通项公式,使它的前4项分别是下列各数:(1)-1,12,-13,14;(2)12,2,92,8;(3)0,1,0,1;(4)9,99,999,9 999.三、数列通项公式的简单应用三、巩固诊断1.(多选)下列说法正确的是()A.数列可以用图象来表示B.数列的通项公式不唯一C.数列中的项不能相等D.数列可以用一群孤立的点表示2.数列-1,3,-7,15,…的一个通项公式可以是()A.a n=(-1)n·(2n-1),n∈N* B.a n=(-1)n·(2n-1),n∈N*C.a n=(-1)n+1·(2n-1),n∈N* D.a n=(-1)n+1·(2n-1),n∈N*3.数列23,45,67,89,…的第10项是()A.1617 B.1819 C.2021 D.22234.设a n=1n+1n+1+1n+2+1n+3+…+1n2(n∈N*),则a2等于()A.14 B.12+13 C.12+13+14 D.12+13+14+155.323是数列{n(n+2)}的第________项.6.若数列{a n}的通项公式是a n=3-2n,n∈N*则a2n=________;a2a3=________.7.已知数列{a n}的通项公式为a n=2 020-3n,则使a n>0成立的正整数n的最大值为________.8.写出下列各数列的一个通项公式:(1)4,6,8,10,…;(2)12,34,78,1516,3132,…;(3)-1,85,-157,249,….9.在数列{a n}中,a1=2,a17=66,通项公式是关于n的一次函数.(1)求数列{a n}的通项公式;(2)求a2 020;(3)2 020是否为数列{a n}中的项?四、堂清、日清记录今日之事今日毕日积月累成大器。

必修五2-1第1课时数列的概念与通项公式

必修五2-1第1课时数列的概念与通项公式

课前探究学习
课堂讲练互动
活页规范训练
:1,2,3,4和1,2,3,4,…是相同的数列吗? 提示:不是.数列1,2,3,4表示有穷数列,而1,2,3,4,…表 示无穷数列.
课前探究学习
课堂讲练互动
活页规范训练
3. 数列的通项公式
序号n 之间的关系可以用一个式子来 如果数列{an}的第n项与______ 表示,那么这个公式叫做这个数列的通项公式. 另外,数列还可以用列表法、图象法、递推公式法等表示.
课前探究学习 课堂讲练互动 活页规范训练
题型一

数列的有关概念
【例1】 下列说法哪些是正确的?哪些是错误的?并说明理由. (1){0,1,2,3,4}是有穷数列; (2)所有自然数能构成数列; (3)-3,-1,1,x,5,7,y,11是一个项数为8的数列; (4)数列1,3,5,7,…,2n+1,…的通项公式是an=2n+1. [思路探索] 紧扣数列的有关概念完成判断.
课前探究学习
课堂讲练互动
活页规范训练
自学导引
1. 数列的概念 一定顺序 排列的一列数称为数列;数列的一般形 (1)数列:按照_________ 式可以写成a1,a2,a3,…,an,…,简记为{an}. 每一个数 叫做这个数列的项.排在第一位的数 (2)项:数列中的_________ 首项 ,排在第n位的数称为 称为这个数列的第1项(通常也叫做_____) 第n项 . 这个数列的_______
课前探究学习
课堂讲练互动
活页规范训练
(1)数列的项与项数 数列的项与项数是两个不同的概念,数列的项是指这个 数列中的某一个确定的数,它是一个函数值,即f(n); 而项数是指这个数在数列中的位置序号,它是函数值 f(n)对应的自变量的值,即n. (2)数列表示法的理解 数列{an}表示数列a1,a2,a3,…,an,…,不是表示一 个集合,只是借用了集合的表示形式,与集合表示有本 质的区别.

2.1.1 数列的概念与通项公式

2.1.1 数列的概念与通项公式

2.1 数列的概念与通项公式第1课时 数列的概念与通项公式人民币从小到大:0.1, 0.5, 1, 5, 10, 20, 50, 1000,1,2,3,…1,3,5,7,…2,4,6,8,…1,4,8,16,…21,41,81,… 1,1,1,1,…2,0,2,0,…一、数列的概念:二、数列的分类:三、数列的通项公式:1.数列的概念及分类例1.1.已知下列数列:(1) 0,0,0,0,0,0;(2) 0,-1,2,-3,4,-5,…;(3) 0,12,23,…,n -1n ,…;(4) 1,0.2,0.22,0.23,…;(5) 0,-1,0,…,cos n 2π,….其中,有穷数列是________,无穷数列是________,递增数列是________,递减数列是________,常数列是________,摆动数列是________(填序号).变式1.下列数列哪些是有穷数列?哪些是无穷数列?哪些是递增数列?哪些是递减数列?哪些是摆动数列?哪些是常数列?(1)1,12,13,…,1n,…;(2)1,3-1,3-2,…,3-63;(3)1,-0.1,0.12,…,(-0.1)n-1,…;(4)10,20,40,…,1 280;(5)-1,2,-1,2,…;(6)6,6,6,….2.根据数列的前几项写出通项公式例2.写出下列数列的一个通项公式:(链接教材P29-例1)(1)12,2,92,8,252,…;(2)9,99,999,9 999,…;(3)22-11,32-23,42-35,52-47,…;(4)-11×2,12×3,-13×4,14×5,….变式2.根据数列的前几项,写出下列各数列的一个通项公式.(1)-1,7,-13,19,…;(2)0.8,0.88,0.888,…;(3)12,14,-58,1316,-2932,6164,…;(4)32,1,710,917,….3.数列通项公式的应用例3.已知数列{a n}的通项公式是a n=n2n2+1.(1)写出该数列的第4项和第7项;(2)试判断910和110是否是该数列中的项?若是,求出它是第几项;若不是,说明理由.变式3.已知数列{a n }的通项公式是a n =n 2n 2+1. (1)写出该数列的第4项和第7项;(2)试判断 910 和 110 是否是该数列中的项?若是,求出它是第几项;若不是,说明理由.课堂练习:1.下列叙述正确的是( )A .数列1,3,5,7与7,5,3,1是相同的数列B .数列0,1,2,3,…可以表示为{n }C .数列0,1,0,1,…是常数列D .数列{n n +1}是递增数列 2.数列2,3,4,5,…的一个通项公式为( )A .a n =n ,n ∈N *B .a n =n +1,n ∈N *C .a n =n +2,n ∈N *D .a n =2n ,n ∈N *3.已知数列{a n }的通项公式a n =(-1)n -1·n 2n -1,n ∈N *,则a 1=________;1+n a =________.课后作业一、选择题1.已知数列{a n }的通项公式为a n =1+(-1)n +12,n ∈N *,则该数列的前4项依次为( ) A .1,0,1,0 B .0,1,0,1 C.12,0,12,0 D .2,0,2,02.已知数列{a n }的通项公式为a n =n 2-n -50,n ∈N *,则-8是该数列的( )A .第5项B .第6项C .第7项D .非任何一项3.数列1,3,6,10,…的一个通项公式是( )A .a n =n 2-n +1B .a n =n (n -1)2C .a n =n (n +1)2D .a n =n 2+14.数列23,45,67,89,…的第10项是()A.1617 B.1819 C.2021 D.22235.已知数列12,23,34,45,…,那么0.94,0.96,0.98,0.99中属于该数列中某一项值的应当有()A.1个B.2个C.3个D.4个6.如图1是第七届国际数学教育大会(简称ICME-7)的会徽图案,会徽的主体图案是由如图2的一连串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1,如果把图2中的直角三角形继续作下去,记OA1,OA2,…,OA n,…的长度构成数列{a n},则此数列的通项公式为().A.a n=n,n∈N*B.a n=n+1,n∈N*C.a n=n,n∈N*D.a n=n2,n∈N*7.设a n=1n+1+1n+2+1n+3+…+12n(n∈N*),那么an+1-a n等于()A.12n+1B.12n+2C.12n+1+12n+2D.12n+1-12n+2二、填空题8.观察数列的特点,用一个适当的数填空:1,3,5,7,________,11,…. 9.数列3,5,9,17,33,…的一个通项公式是________.10.323是数列{n(n+2)}的第________项.三、解答题11.根据数列的前几项,写出下列各数列的一个通项公式.(1)-1,7,-13,19,…;(2)0.8,0.88,0.888,…;(3)12,14,-58,1316,-2932,6164,…;(4)32,1,710,917,….12.在数列{a n }中,a 1=2,a 17=66,通项公式a n 是n 的一次函数.(1)求{a n }的通项公式;(2)判断88是不是数列{a n }中的项?13.已知数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫9n 2-9n +29n 2-1,n ∈N *. (1)求这个数列的第10项; (2)98101是不是该数列中的项,为什么?(3)求证:该数列是递增数列;(4)在区间⎝ ⎛⎭⎪⎫13,23内有无数列中的项?若有,有几项?若没有,请说明理由.。

数列的概念与通项公式

数列的概念与通项公式

数列的概念与通项公式数列的概念与通项公式【基本概念】1.数列、数列的项按照一定顺序排列着的一列数叫做数列,数列中的每个数叫做这个数列的项.2.数列的通项公式数列{a n}的第n项与序号n之间的关系可以用一个公式表示,这个公式叫做这个数列的通项公式.3.数列与函数的关系数列可以看作是一个定义域为正整数集N*或它的有限子集{1,2,3,…,n}的函数,当自变量从小到大依次取值时对应的一列函数值.4.数列可用图象来表示在直角坐标系中,以序号为横坐标来表示一个数列.图象是一些相应的项为纵坐标来描点画图孤立的点,它们位于第一象限、第四象限或x轴的正半轴.5.数列的递推公式如果已知数列{a n}的第1项(或前几项),且(4)1,-23,35,…,-1n -1·n 2n -1,…; (5)1,0,-1,…,sin nπ2,…. 其中,有穷数列是________,无穷数列是______,递增数列是_______,递减数列是________,摆动数列是_______,周期数列是________.(将合理的序号填在横线上)2.观察法求数列的通项公式例2 写出下面数列的一个通项公式,使它的前4项分别是下列各数: (1)11×2,-12×3,13×4,-14×5; (2) 22-12,32-13,42-14,52-15; (3)112,223,334,445; (4)9,99,999,9999.3.数列通项公式的应用例3 (1)已知数列{a n }的通项公式为a n =n 2n 2+1,试判断0.7是不是数列{a n }中的一项?若是,是第几项?(2)已知数列{a n }的通项公式为a n =3-2cos nπ2.求证:a m +4=a m . 4.根据数列的递推公式写出数列的前几项,并归纳通项公式例4 根据下列条件,写出数列的前四项,并归纳猜想它的通项公式.(1)a 1=0,a n +1=a n +2n -1 (n ∈N *)(2)a 1=1,a n +1=a n +a n n +1. (3)a 1=2,a 2=3,a n +2=3a n +1-2a n (n ∈N *)【总结提升】1.数列的通项公式如果数列的第n 项a n 与n 之间的关系可以用一个函数式a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.注意:数列的通项与通项公式是有区别的,前者是函数值,后者是一个函数的解析式.2.数列与函数的关系对任一数列{a n},每一项的序号n与这一项a n的对应关系,可以看成序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以(或它的有限子看成是一个定义域为正整数集N+集{1,2,3,…,n})的函数,即当自变量从小到大依次取值时对应的函数值(右图),而数列的通项公式也就是相应函数的解析式.反过来,对于函数y=f(x),如果f(i)(i =1,2,3,…,n,…)有意义,那么可以得到一个数列f(1),f(2),f(3),…,f(n),….3.数列的表示法从函数观点看,数列除了可以用通项公式表示外,还有如下表示方法:(1)列表法(又称列举法),即通过列举数列的前n项来表示数列的方法.(2)图象法,由于数列是定义在正整数集N+(或它的有限子集{1,2,3,…,n})上的函数,因此,数列的图象是相应的曲线(或直线)上横坐标为正整数的一些孤立的点.4.通项公式和递推公式的区别通项公式直接反映a n和n之间的关系,即a n是n的函数,知道任意一个具体的n值,通过通项公式就可以求出该项的值a n;而递推公式则是间接反映数列的式子,它是数列任意两个(或多个)相邻项之间的推导关系,不能由n直接得出a n.5.如何用递推公式给出一个数列用递推公式给出一个数列,必须给出①“基础”——数列{a n}的第1项或前几项;②递推关系——数列{a n}的任一项a n与它的前一项a n(或前几项)之间的关系,并且这个-1关系可以用一个公式来表示.。

4.2.1 第1课时 等差数列的概念及通项公式课件ppt

4.2.1 第1课时 等差数列的概念及通项公式课件ppt

变式训练 3已知数列{an}中,a1=a2=1,an=an-1+2(n≥3).
(1)判断数列{an}是不是等差数列,并说明理由;
(2)求{an}的通项公式.
解 (1)当n≥3时,an=an-1+2,即an-an-1=2,
而a2-a1=0不满足an-an-1=2,
∴{an}不是等差数列.
(2)由(1)得,当n≥2时,an是等差数列,公差为2,
是首项为2,公差为2的等差数列,
1
1
(n-1)=2n,故
2
1
2
2
an= .
a1=2,
素养形成
构造等差数列解题
中的任意两项,就可以求出其他的任意一项.
微练习
(1)等差数列{an}:5,0,-5,-10,…的通项公式是
.
(2)若等差数列{an}的通项公式是an=4n-1,则其公差d=
答案 (1)an=10-5n (2)4
解析 (1)易知首项a1=5,公差d=-5,所以an=5+(n-1)·(-5)=10-5n.
微练习
判断下列各组数列是不是等差数列.如果是,写出首项a1和公差d.
①1,3,5,7,9,…;
②9,6,3,0,-3,…;
③1,3,4,5,6,…;
④7,7,7,7,7,…;
1 1 1 1
⑤1, , , , ,….
2 3 4 5
解 ①是,a1=1,d=2;②是,a1=9,d=-3;③不是;④是,a1=7,d=0;⑤不是.
2
2
1
a=2,
所以这个等差数列的每一项均为 1.故选 B.
(2)因为 a,b,c 成等差数列, , , 也成等差数列,
2 = + ,

数列的数项公式和通项公式

数列的数项公式和通项公式

数列的数项公式和通项公式一、数列的定义及相关概念1.数列:按照一定的顺序排列的一列数。

2.项:数列中的每一个数称为项。

3.数列的表示方法:用大括号表示数列,例如{a1, a2, a3, …, an}。

4.数列的项数:数列中项的个数,用n表示。

5.数列的通项:数列中第n项的值,用an表示。

二、数列的数项公式1.等差数列的数项公式:an = a1 + (n-1)d–a1:首项2.等比数列的数项公式:an = a1 * q^(n-1)–a1:首项3.斐波那契数列的数项公式:an = (1/√5) * [(φ^n - (1-φ)^n) / √5]–φ:黄金分割比((1+√5)/2)三、数列的通项公式1.等差数列的通项公式:an = a1 + (n-1)d–a1:首项2.等比数列的通项公式:an = a1 * q^(n-1)–a1:首项3.斐波那契数列的通项公式:–公式一:an = (φ^n - (1-φ)^n) / √5–公式二:an = (φ^n - (-φ)^n) / √5–φ:黄金分割比((1+√5)/2)四、数列的性质与运算1.数列的求和公式:–等差数列求和公式:S = n/2 * (a1 + an)–等比数列求和公式:S = a1 * (1 - q^n) / (1 - q)2.数列的差:两个数列对应项的差形成一个新的数列。

3.数列的积:两个数列对应项的积形成一个新的数列。

4.数列的商:两个数列对应项的商形成一个新的数列。

五、数列的应用1.数列在数学分析中的应用:数列极限、级数等。

2.数列在数论中的应用:质数分布、整数分解等。

3.数列在物理学中的应用:振动、波动等。

4.数列在工程学中的应用:信号处理、数据分析等。

数列是数学中的一个基本概念,具有广泛的应用。

掌握数列的数项公式和通项公式,有助于解决实际问题中的数列问题。

通过学习数列的性质与运算,可以更深入地理解数列的本质,为后续学习数学分析、数论等学科打下基础。

数列的概念及通项公式

数列的概念及通项公式

数列的概念及通项公式数列是指按照一定规律排列的一系列数的集合。

它是数学中重要的基础概念之一,被广泛应用于各个领域。

数列的通项公式是指能够确定数列中第n项的公式。

通常使用字母an表示数列的第n项,使用n表示项数。

数列可以分为等差数列和等比数列两种常见类型。

一、等差数列等差数列是指数列中任意两个相邻项之差都相等的数列。

这个固定的差值称为公差,通常用d表示。

例如,1,4,7,10,13就是一个等差数列,公差为3等差数列的通项公式可以表示为an = a1 + (n-1)d其中a1为数列的首项,d为公差。

通过这个公式,我们可以根据已知条件计算出数列的任意一项。

等差数列的一些基本性质包括:1. 任意项和:等差数列的前n项和Sn可以表示为Sn = (a1+an)/2 * n,其中a1为首项,an为第n项,n为项数。

2. 项与项之和:等差数列中的每一项与它的对称项之和等于首项与末项之和。

即an + an-1 = a1 + an。

3. 对称性:等差数列中,关于中间项(an/2)对称的项相等。

二、等比数列等比数列是指数列中任意两个相邻项之比都相等的数列。

这个固定的比值称为公比,通常用q表示。

例如,1,2,4,8,16就是一个等比数列,公比为2等比数列的通项公式可以表示为an = a1 * q^(n-1)其中a1为数列的首项,q为公比。

通过这个公式,我们可以根据已知条件计算出数列的任意一项。

等比数列的一些基本性质包括:1.任意项和:等比数列的前n项和Sn可以表示为Sn=(a1(1-q^n))/(1-q),其中a1为首项,q为公比,n为项数。

2. 项与项之比:等比数列中的两个相邻项之比等于公比。

即an /an-1 = q。

3. 对称性:等比数列中,关于中间项(an/2)对称的项相等。

三、其他类型的数列除了等差数列和等比数列之外,还存在其他类型的数列。

1.斐波那契数列:斐波那契数列是一种特殊的数列,它的前两项为1,从第三项开始,每一项都是前两项的和。

第1课时 数列的概念与通项公式

第1课时 数列的概念与通项公式
就是说,当自变量从1开始,按照从小到大的顺序依次取值时,对应的一列函
数值f(1),f(2),…,f(n),…就是数列{an}.另一方面,对于函数y=f(x),如果
f(n)(n∈N*)有意义,那么f(1),f(2),…,f(n),…构成了一个数列{f(n)}.
与其他函数一样,数列也可以用表格和图象来表示.
数列的一个通项公式为 an= 3(2-1) = 6-3.
(3)原数列可变形为
1
an=1-10 .
1
1
1
1
1-10 ,1-102 ,1-103 ,1-104 ,…,故数列的一个通项公式为
(4)数列给出前 4 项,其中奇数项为 3,偶数项为 5,故通项公式的一种表示
3(为奇数),
方法为 an=
事物.
2.判断数列是哪一种类型的数列时要紧扣数列的概念及数列的特点.对
于递增数列、递减数列、常数列要从项的变化趋势来分析;而是有穷数列
还是无穷数列则看项的个数是有限还是无限.
【变式训练1】 下列说法哪些是正确的?哪些是错误的?并说明理由.
(1){0,1,2,3,4}是有穷数列;
(2)所有自然数能构成数列;
(2)上述数能交换次序排列吗?
提示:不能.
2.填空:
(1)数列
一般地,我们把按照确定的顺序排列的一列数称为数列.
(2)数列的项
数列中的每一个数叫做这个数列的项,数列的第一个位置上的数叫做这
个数列的第1项,常用符号 a1 表示,第二个位置上的数叫做这个数列的第2
项,用 a2 表示……第n个位置上的数叫做这个数列的第n项,用an表示.其中
物的规律,解决这类问题一定要注意观察项与项数的关系和相邻项间的关
系.具体可参考以下几个思路:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

听课随笔
听课随笔
【精典范例】
【例1】 已知数列的第n项a n 为2n-1,写出这个数列的首项、第2项和第3项. 【解】
首项为a1=2×1-1=1; 第2项为a2=2×2-1=3; 第3项为a3
=2×3-1=5
【例2】根据下面数列{}n a 的通项公式,写出它的前5项,并作出它的图象:
(1);(2)(1)1
n n n n
a a n n =
=-⋅+ 【解】(1)1,2,3,4,5.n =
1234512345;;;;;
23456
a a a a a ===== (2) 121
1,2,3,4,5.;2;2
n a a ===
3453;4;5;a a a =-==-
【例3】写出下面数列的一个通项公式,使它的前4项分别是下列各数: (1)
211⨯,-321⨯, 431⨯,-5
41
⨯.
(2)0, 2, 0, 2
分析:写出数列的通项公式,就是寻找n a 与项数n 的对应关系()n a f n =
【解】(1) 这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为正,偶数项为负,所以它的一个通项公式是:
1
1
(1)(1)
n n a n n +=-+
(2) 这个数列的奇数项为0,偶数项为2,所以它的一个通项公式是:1(1)n n a =+- 点评:(1)将数列的整数部分和分数部分进行分别处理,然后再整体合并;
(2) 将数列进行整体变形以便能呈现出与序号n 相关且便于表达的关系.
【追踪训练一】
1.下列解析式中不.是数列1,-1,1,-1,1,-1…,的通项公式的是 ( A ) A. (1)n n a =- B. 1(1)n n a +=- C.
1
(1)
n n a -=- D.
{
11n n a n =-,为奇数,为偶数
2
,的一个通项公
式是 ( B )
A. n a =
B. n a
C. n a =
D.
n a =3.数列
1524354863
,,,,,,25101726的一个
通项公式为1)
4)(2(2+++n n n .
【选修延伸】
【例3】在数列{a n }中,a 1=2,a 17=66,通项公式是项数n 的一次函数.
(1)求数列{a n } (2)88是否是数列{a n }中的项
. 【解】 (1)设a n =An +B ,由a 1=2,a 17=66 得⎩

⎧-==⎩⎨
⎧=+=+24
,66172B A B A B A 解得 ∴a n =4n -2
(2)令a n =88,即4n -2=88得n =
2
45
∉N * ∴88不是数列{a n }中的项. 思维点拔:已知数列的通项,怎样判断一个含有参数的代数式是否为数列中的项? 例如:已知数列{}n a 的通项为27n a n =-,判断27()m m N +∈是否为数列中的项? 提示:可把27()m m N +∈化成通项公式的形式,即272(7)7m m +=+-,因为
m N ∈,所以7m N +∈满足通项公式的意义,所以27m +是数列中的第7m +项. 【追踪训练二】
1.已知数列{}n a ,
1
()(2)
n a n N n n +=∈+,那么1120
是这个数列的第 ( B )项.
A. 9
B. 10
C. 11
D. 12 2.数列{}n a ,()n a f n =是一个函数,则
它的定义域为 ( ) A. 非负整数集 B. 正整数集 C. 正整数集或其子集
D. 正整数集或{}1,2,3,4,,n
3.已知数列{}n a ,85,11n a kn a =-=且,则17a = 29 .
听课随笔。

相关文档
最新文档