(完整版)高次方程及解法
高次方程分式方程无理方程的解法教程
高次方程分式方程无理方程的解法教程高次方程的解法教程:高次方程是指方程中的最高次项的指数大于1的方程。
一般来说,高次方程的解法相对比较复杂,需要通过一定的代数运算和分解因式的方法逐步求解。
以下是一个示例来说明解高次方程的步骤:假设我们要解方程:x^3-5x^2+6x=0第一步:因式分解观察方程,我们可以发现x是公因子,所以我们可以将方程进行因式分解,得到:x(x^2-5x+6)=0第二步:化简因式继续观察因式(x^2-5x+6),我们可以发现它可以被进一步分解成(x-2)(x-3),所以方程可以进一步化简为:x(x-2)(x-3)=0第三步:等式成立条件我们知道,一个数的乘积等于0的时候,其中至少有一个因子等于0。
所以我们得到以下三个解:x=0,x-2=0,x-3=0解得:x=0,x=2,x=3因此,方程的解是x=0,x=2,x=3分式方程的解法教程:分式方程是指方程中含有分式的方程,需要通过合理的方法消去分式并求出方程的解。
以下是一个示例来说明解分式方程的步骤:假设我们要解方程:2/(x-1)+3/(x+2)=1第一步:通分观察方程,我们可以发现,左边的两个分式的分母互为相反数,所以我们可以通过通分来消去分母。
将方程两边乘以(x-1)(x+2),得到:2(x+2)+3(x-1)=(x-1)(x+2)第二步:化简将方程进行化简,得到:2x+4+3x-3=x^2+x-2第三步:整理将方程整理为标准形式,得到:x^2-x-3=0第四步:因式分解或使用求根公式我们可以尝试将方程进行因式分解或使用求根公式来求解。
这里我们使用求根公式来求解。
根据求根公式 x = (-b ± √(b^2 - 4ac))/(2a),我们可以得到:x=(1±√(1+12))/2计算得到:x=(1±√13)/2因此,方程的解是x=(1+√13)/2,x=(1-√13)/2无理方程的解法教程:无理方程是指方程中含有无理数的方程,需要通过合理的方法化简方程并求出方程的解。
高次方程及解法
高次方程及解法 江苏省通州高级中学 徐嘉伟 一般地,我们把次数大于2的整式方程,叫做高次方程。
由两个或两个以上高次方程组成的方程组,叫做高次方程组。
对于一元五次以上的高次方程,是不能用简单的算术方法来求解的。
对于一元五次以下的高次方程,也只能对其中的一些特殊形式的方程,采用“±1判根法”、“常数项约数法”、“倒数方程求根法”、“双二次方程及推广形式求解法”等方法,将一元五次以下的高次方程消元、换元、降次,转化成一次或二次方程求解。
一、±1判根法在一个一元高次方程中,如果各项系数之和等于零,则1是方程的根;如果偶次项系数之和等于奇次项系数之和,则-1是方程的根。
求出方程的±1的根后,将原高次方程用长除法或因式分解法分别除以(x-1)或者(x+1),降低方程次数后依次求根。
“±1判根法”是解一元高次方程最简捷、最快速的重要方法,一定要熟练掌握运用。
例1解方程x4+2x3-9x2-2x+8=0解:观察方程,因为各项系数之和为:1+2-9-2+8=0(注意:一定把常数项算在偶数项系数当中),根据歌诀“系和零,+1根”,即原方程中可分解出因式(x-1),(x4+2x3-9x2-2x+8)÷(x-1)= x3+3x2-6x-8观察方程x3+3x2-6x-8=0,偶次项系数之和为:3-8=-5;奇次项系数之和为:1-6=-5,根据歌诀“偶等奇,根-1”,即方程中含有因式(x+1),∴(x3+3x2-6x-8)÷(x+1)=x2+2x-8,对一元二次方程x2+2x-8=0有(x+4)(x-2)=0, ∴原高次方程x4+2x3-9x2-2x+8=0可分解因式为:(x-1) (x+1)(x-2)(x+4)=0,即:当(x-1)=0时,有x1=1;当(x+1)=0时,有x2= -1;当(x-2) =0时,有x3=2; 当(x+4)=0时,有x4=-4点拨提醒:在运用“±1判根法”解高次方程时,一定注意把“常数项”作为“偶次项”系数计算。
高次方程及其解法
高次方程及其解法2009-12—06 11:35:27|分类:学生园地| 标签:|字号大中小订阅1.一元n次方程:(1)标准形式: a0x n+a1x n—1+a2x n-2+…+a n—1x+a n=0(a0≠0),当n≥3时叫做高次方程.(2)解法思想:高次方程解法的基本思想是降次,降次的方法有因式分解法和换元法.2。
高次方程根的存在定理设多项式f(x)=a0x n+a1x n—1+a2x n-2+…+a n—1x+a n(a0≠0)(1)因式定理:多项式f(x)含有因式x—a的充要条件是f(a)=0。
(2)实系数方程虚根成对定理:如果方程f(x)=0的系数都是实数,且方程有一个虚根a+bi(a,b∈R且≠0),那么它必定还有另一个根a—bi.(3)有理系数方程无理根或虚根存在定理:如果方程f(x)=0的系数都是有理数,①若a+√b是方程的根,那么a—√b 必也是它的根(其中,a是有理数、√b是无理数);②若√a+√b是方程的根,那么√a—√b,—√a+√b,—√a-√b必也是它的根(其中,√a、√b都是无数);③若方程有一个虚根√a+√bi(a,b∈R且b≠0),那么√a—bi,—√a+√bi,—√a-√bi必也是它的根(其中,√a、√b都是无理数).(4)整系数方程有理根存在定理:①如果方程f(x)=0的系数都是整数,那么方程有理根仅能是这样的分数p/q,其分子p是方程常数项的约数,分母q是方程最高次项的约数;②在整系数方程f(x)=0中,如果α是方程的整数根,那么二比值f(1)/(α—1)和f(-1)/(α+1)都是整数;③在整系数方程f(x)=0中,如果f(0)与f(1)都是奇数,那么该方程无整数根;④最高次项的系数为1的整系数方程f(x)=0的有理根都是整数。
如果方程没有整数根,那么它也没有有理根。
3。
一元n次方程的解法:(1)一元n次方程a0x n+a1x n-1+a2x n—2+…+a n—1x+a n=0(a0≠0)的解法通常用验根法、因式分解法和换元法。
高次方程的解法与应用知识点总结
高次方程的解法与应用知识点总结高次方程,也称多项式方程,是一种含有高次幂的方程。
解决高次方程是数学中的重要内容之一,它具有广泛的应用背景。
本文将对高次方程的解法和应用知识点进行总结。
一、高次方程的解法1. 因式分解法高次方程的因式分解法是根据高次方程的特殊形式来求解的。
如果方程能够分解成两个或多个较低次数的因式相乘的形式,就可以借助因式分解的方法求解。
例如:x^2 - 4 = 0,可以通过因式分解(x + 2)(x - 2) = 0求得解x =2和x = -2。
2. 配方法配方法是解决一些二次方程的常用方法,通过选择适当的变量替换和配方,将高次方程转化为较低次数的方程来求解。
例如:x^2 + 6x + 9 = 0,可以通过配方法将其转化为(x + 3)^2 = 0,从而解得x = -3。
3. 求根公式求根公式是解决二次、三次、四次方程的常用方法,它将高次方程的解与方程的系数之间建立了一种关系,通过求解这些关系式可以得到高次方程的解。
例如:对于一元二次方程ax^2 + bx + c = 0,其根的求解公式为x= (-b ± √(b^2 - 4ac))/(2a)。
4. 奇偶对称性对于某些高次方程,可以利用奇偶对称性来简化解法。
通过观察方程中各项的奇偶性,可以减少计算量,并找到方程的一些特殊解。
例如:x^5 - x^3 + x = 0,通过观察可以发现x = 0是方程的解,这是因为x^5和x都是奇次幂,而-x^3是偶次幂。
5. 数值逼近法对于一些无法用以上方法求解的高次方程,可以借助数值逼近法求解。
数值逼近法是通过不断逼近方程解的数值来求解方程的近似解。
例如:牛顿迭代法、二分法等。
二、高次方程的应用知识点1. 几何应用高次方程在几何学中有着广泛的应用。
例如,二次方程可以用来描述抛物线的形状和轨迹;三次方程可以用来描述三维空间中的曲线;四次方程可以用来描述圆锥曲线等。
2. 物理应用高次方程在物理学中也有着重要的应用。
高次方程的求解方法
高次方程的求解方法在数学中,高次方程是指其最高次数大于等于2的多项式方程。
对于高次方程的求解是数学中的重要课题之一。
本文将介绍几种常见的高次方程求解方法。
一、一元高次方程的求解方法一元高次方程是指只含有一个未知数的高次方程。
下面将介绍二次方程和三次方程的求解方法。
1. 二次方程的求解方法二次方程是指最高次数为2的一元方程。
一般形式为:ax^2 + bx + c = 0,其中a、b、c为已知常数,而x为未知数。
求解二次方程的一种常见方法是使用求根公式。
根据二次方程的解法,可以得到求根公式为:x = (-b ± √(b^2-4ac))/(2a)。
当求根公式中的判别式(b^2-4ac)大于零时,方程有两个不相等的实数根;当判别式等于零时,方程有两个相等的实数根;当判别式小于零时,方程有两个共轭复数根。
2. 三次方程的求解方法三次方程是指最高次数为3的一元方程。
一般形式为:ax^3 + bx^2 + cx + d = 0。
求解三次方程的一种常见方法是使用牛顿迭代法。
该方法通过不断逼近,寻找多项式的根。
牛顿迭代法的迭代公式为:x(n+1) = x(n) - f(x(n))/f'(x(n)),其中x(n+1)为下一个近似解,x(n)为当前的近似解,f(x(n))为方程的多项式函数值,f'(x(n))为多项式函数的导数值。
二、多元高次方程的求解方法多元高次方程是指含有多个未知数的高次方程。
下面将介绍二元高次方程和三元高次方程的求解方法。
1. 二元高次方程的求解方法二元高次方程是指含有两个未知数的高次方程。
一般形式为:f(x, y) = 0。
求解二元高次方程可以采用消元法或者代入法。
消元法是通过将一个未知数用另一个未知数表示,从而减少方程的未知数个数。
代入法是将一个未知数的表达式代入到另一个方程中,从而求解方程的解。
2. 三元高次方程的求解方法三元高次方程是指含有三个未知数的高次方程。
高次方程的解法
高次方程的解法高次方程是指次数大于等于2的方程,例如二次方程、三次方程、四次方程等。
解高次方程是数学中的基本技能之一,能够帮助我们研究各种实际问题。
本文将介绍几种解高次方程的方法,包括因式分解、配方法、提取公因式和根的公式等。
一、因式分解法当高次方程可因式分解时,我们可以通过因式分解的方式求解方程。
举个例子,考虑解二次方程x^2 - 5x + 6 = 0。
首先,我们观察方程中的常数项6,寻找其因数。
可以得知6的因数有1、2、3和6。
然后我们将这些因数带入方程,并观察是否能够满足等式。
不难发现,当将2和3带入方程时,等式成立。
因此,我们可以得出以下因式分解形式:(x - 2)(x - 3) = 0。
由因式分解的性质可知,当一个方程的乘积等于0时,其中一个因式等于0。
因此,我们可以得到两个解:x - 2 = 0 和 x - 3 = 0。
进一步求解可得x的值,即x = 2和x = 3。
因此,原方程的解为x = 2和x = 3。
二、配方法对于一些特殊的高次方程,我们可以通过配方法来求解。
配方法适用于二次方程以及一些特殊的三次方程,例如x^2 + bx + c = 0。
我们仍以二次方程为例进行讲解。
考虑解方程x^2 - 8x + 12 = 0。
首先,我们观察方程中的系数,将常数项12分解为两个数的乘积,这里可以分解为2和6。
然后我们观察方程中的一次项系数-8,将其写成-2和-6之和。
然后将方程重新写成完全平方的形式:(x - 2)(x - 6) = 0。
继续通过因式分解的性质可以得到x的两个解:x - 2 = 0 和 x - 6 = 0。
求解可得x = 2和x = 6。
因此,原方程的解为x = 2和x = 6。
三、提取公因式法当高次方程中存在公因式时,我们可以通过提取公因式的方式简化方程,并进一步求解。
举个例子,考虑解方程x^3 - 4x^2 + 4x = 0。
首先,我们观察方程中的每一项,可以发现每一项都含有x。
高次方程解法[整理版]
高次方程解法1.高次方程的定义整式方程未知数次数最高项次数高于2次的方程,称为高次方程。
2.高次方程的一般形式高次方程的一般形式为anx^n+an-1x^n-1+-------+a1x+a0=0等式两边同时除以最高项系数,得:anx^n/an+an-1x^n-1/an+--------+a1x/an+a0/an=0所以高次方程一般形式又可写为x^n+bnx^n-1+-------b1x+b0=03.高次方程解法思想通过适当的方法,把高次方程化为次数较低的方程求解4.高次方程根与系数的关系按这个高次方程的形式x^n+bn-1x^n-1+-------b1x+b0=0,那么有所有根相加等于系数bn-1的相反数所有根两两相乘再相加等于系数bn-2所有根三三相乘再相加等于系数bn-3的相反数依次类推,直到所有根相乘,等于(-1)^nb05.阿贝尔定理对于5次及以上的一元高次方程没有通用的代数解法和求根公式(即通过各项系数经过有限次四则运算和乘方和开方运算无法求解),这称为阿贝尔定理。
换句话说,只有三次和四次的高次方程可解.下面介绍三次和四次方程的解法。
6.四次方程解法卡尔丹公式诞生后,卡尔丹的学生费拉里便发明了一元四次方程的求根公式。
【费拉里公式】一元四次方程aX^4+bX^3+cX^2+dX+e=0,(a,b,c,d,e∈R,且a≠0)。
令a=1,则X^4+bX^3+cX^2+dX+e=0,此方程是以下两个一元二次方程的解。
2X^2+(b+M)X+2(y+N/M)=0;2X^2+(b—M)X+2(y—N/M)=0。
其中M=√(8y+b^2—4c);N=by—d,(M≠0)。
y是一元三次方程8y^3—4cy^2—(8e—2bd)y—e(b^2—4c)—d^2=0的任一实根。
7.三次方程解法一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如aX^3+bX^2+cX+d=0的标准型一元三次方程形式化为X^3+pX+q=0的特殊型。
一元高次方程解法
公式法
总结词
通过使用一元高次方程解的公式直接求解方 程。
详细描述
公式法是一元高次方程解法中的一种简便方 法。它通过使用一元高次方程解的公式,可 以直接求解出方程的解。公式法适用于所有 一元高次方程,但需要注意的是,在使用公 式法时需要先判断一元高次方程是否有实数 解,并且对于某些特殊类型的一元高次方程
古希腊数学家欧几里得和阿拉伯数学家穆罕默德·伊本·穆萨·花 拉子密等都对一元高次方程的解法进行了研究。
文艺复兴时期
意大利数学家莱昂纳多·斐波那契和法国数学家弗朗索瓦·韦达 等人在文艺复兴时期开始系统研究一元高次方程的解法。
一元高次方程解法的进展
代数方法
随着代数学的发展,一元高次方程的解 法逐渐完善,出现了多种代数方法,如 因式分解法、配方法、二次公式法等。
在航空航天工程中,一元高次方程可以用于描述飞行 器的运动轨迹、气动性能等问题。
机械工程
在机械工程中,一元高次方程可以用于描述机械的运 动、振动等问题。
电子信息工程
在电子信息工程中,一元高次方程可以用于描述电路 的分析、信号处理等问题。
04 一元高次方程的解法的历 史发展
一元高次方程解法的起源
古代数学家
VS
符号计算
19世纪中叶,随着符号计算的发展,一 元高次方程的解法得到了更加精确和系统 的研究。
一元高次方程解法的现状与未来发展
数值解法
随着计算机技术的发展,一元高次方程的数 值解法得到了广泛应用,如牛顿迭代法、二 分法等。
符号解法
尽管数值解法在很多情况下已经足够,但对 于一些特殊的一元高次方程,符号解法仍然 具有重要意义。未来,符号解法的研究将更 加深入,并与其他数学领域进行交叉融合。
高次方程的解法知识点总结
高次方程的解法知识点总结高次方程是指阶数大于一的方程,其一般形式为:\[a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0 = 0 \]其中,\(a_n, a_{n-1}, \ldots, a_2, a_1, a_0\) 是已知的系数,且\(a_n\neq 0\), \(n\) 是方程的阶数。
解高次方程是数学中的关键问题之一,有多种方法可以用来求解高次方程的根。
本文将对这些解法进行总结和介绍。
一、因式分解法当高次方程可以通过因式分解的方式简化时,我们可以直接得到方程的解。
例如,对于二次方程 \(x^2 - 5x + 6 = 0\),可以因式分解为\((x-2)(x-3) = 0\),从而得到两个根:\(x = 2\) 和 \(x = 3\)。
二、求根公式法对于二次方程 \(ax^2 + bx + c = 0\),我们可以使用求根公式来求解。
求根公式为:\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]其中,\(\pm\) 表示取两个相反的值。
如果判别式 \(b^2 - 4ac\) 大于零,方程有两个不同的实根;如果判别式等于零,方程有两个相同的实根;如果判别式小于零,方程没有实根,但有两个共轭复根。
三、配方法对于形如 \(ax^2 + bx + c = 0\) 的二次方程,可以使用配方法将其化简为完全平方的形式。
具体步骤如下:1. 将方程两边同时减去常数项 \(c\),得到 \(ax^2 + bx = -c\);2. 将方程两边同时除以系数 \(a\),得到 \(x^2 + \frac{b}{a} x = -\frac{c}{a}\);3. 左边加上一项使其变为完全平方,右边做同样的变换。
设常数项为 \(\frac{b^2}{4a^2}\),得到 \(x^2 + \frac{b}{a} x + \frac{b^2}{4a^2} = -\frac{c}{a} + \frac{b^2}{4a^2}\);4. 左边因式分解为 \((x + \frac{b}{2a})^2\),右边化简为 \(-\frac{4ac - b^2}{4a^2}\),得到 \((x + \frac{b}{2a})^2 = \frac{b^2 - 4ac}{4a^2}\);5. 对方程两边同时开平方根,并化简,得到 \(x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a}\);6. 最后整理,得到二次方程的解:\[x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}\]。
高次方程的解法
高次方程的解法高次方程是指次数大于或等于2的方程。
解高次方程是数学中一项重要的技巧和方法,它在各个领域中都有广泛的应用。
本文将介绍几种常见的高次方程解法,包括因式分解、配方法、代数求解和数值近似等方法。
一、因式分解法因式分解法是解高次方程的一种常见且直接的方法。
当高次方程具有可因式分解的特点时,我们可以通过因式分解将方程化简为一系列一次或二次方程,进而求解。
例如,我们考虑解方程x^2 + 5x + 6 = 0。
我们尝试将其因式分解为(x + 2)(x + 3) = 0。
由此可得x = -2和x = -3,这两个值即为方程的解。
二、配方法配方法是一种常用的解二次方程的方法,但在一些高次方程中同样适用。
配方法的基本思想是通过变量代换和配方,将高次方程转化为一次或二次方程,进而求解。
例如,我们考虑解方程2x^2 + 7x + 3 = 0。
我们可以通过配方法将其转化为(2x + 1)(x + 3) = 0。
由此可得x = -1/2和x = -3,这两个值即为方程的解。
三、代数求解对于一些特定的高次方程,可以通过代数求解的方法来确定其解。
代数求解常用于解三次方程和四次方程等高次方程。
例如,我们考虑解方程x^3 - 3x^2 + x - 3 = 0。
通过代数求解的方法,我们可以得到方程的一个解x = 1。
然后,我们可以通过带入的方式或使用“辗转相除法”等方法继续求解得到方程的其他解。
四、数值近似对于一些高次方程,特别是次数较高,无法直接求解的情况,我们可以使用数值近似的方法来求解。
数值近似方法可以通过迭代计算和数值逼近等技巧,得到方程的近似解。
例如,我们考虑解方程x^5 + 2x^3 - x - 1 = 0。
由于此方程的次数较高,无法通过常规的代数方法求解。
我们可以通过使用牛顿法或二分法等数值方法,逐步逼近解的数值。
通过多次迭代计算,我们可以得到方程的近似解。
综上所述,高次方程的解法可以通过因式分解、配方法、代数求解和数值近似等多种方法来实现。
如何求解高次方程和分式方程
如何求解高次方程和分式方程在数学中,高次方程和分式方程是常见且重要的问题。
本文将介绍如何求解高次方程和分式方程,并提供相应的解题方法和步骤。
一、高次方程的求解方法高次方程是指包含以上两次方或更高次方的方程。
常见的高次方程类型包括一元高次方程和多元高次方程。
在求解高次方程时,可以采用以下方法:1. 因式分解法:对一元高次方程进行因式分解,将方程转化为二次方程、三次方程或低次方程,从而求得方程的解。
2. 公式法:对一元高次方程可以使用一些经典公式进行求解,例如二次方程的求根公式、三次方程的求根公式等。
3. 代换法:对于一元高次方程,可以尝试将其转化为一个新变量的较低次方程,通过代换求解。
4. 迭代法:对于一些无法通过传统方法求解的高次方程,可以使用迭代法逼近方程的解。
二、分式方程的求解方法分式方程是指方程中包含有分式的方程。
在求解分式方程时,可以采用以下方法:1. 通分法:对于分式方程中的分式,可以通过通分的方法,将方程转化为等价的含有相同分母的方程,从而求解。
2. 消元法:对于包含多个分式的方程,可以通过消去分母的方式,将方程转化为一个多项式方程或低次方程,从而进行求解。
3. 假设法:对于一些特殊的分式方程,可以通过假设一个未知数的值,将方程转化为一个等式,从而求解。
4. 代换法:对于较为复杂的分式方程,可以尝试通过代换的方法,将方程转化为一个简化的方程,从而进行求解。
三、高次方程和分式方程的例题解析为了更好地理解高次方程和分式方程的求解方法,以下举例说明:【例题1】解一元高次方程:$x^3-9x^2+26x-24=0$。
解法:观察方程,发现$x=1$是方程的根。
通过除以$x-1$得到$x^2-8x+24=0$,再应用一元二次方程求根公式,可以求得方程的另外两个根为$x=4$和$x=6$。
【例题2】解分式方程:$\frac{x+1}{x}+\frac{x-1}{x+1}=\frac{6}{5}$。
高次方程的基本概念与解法
高次方程的基本概念与解法高次方程是指次数大于等于2的多项式方程,也可以称为代数方程。
在数学中,高次方程的解法一直是一个重要且具有挑战性的问题。
本文将介绍高次方程的基本概念以及一些常见的解法。
一、高次方程的基本概念1. 高次方程的定义高次方程是指形如ax^n + bx^(n-1) + cx^(n-2) + ... + k = 0的方程,其中a、b、c、...、k为实数或复数系数,n为整数,且n≥2。
其中,a、b、c、...、k的取值可以使实数或复数。
2. 高次方程的次数高次方程中,最高次项的指数称为方程的次数。
例如,对于方程2x^3 + 3x^2 - 4x + 1 = 0,它的次数为3。
3. 高次方程的根高次方程的根是使得方程成立的数值。
对于一元高次方程,其根通常表示为x1, x2, x3, ...,其中i表示根的序号。
根可以是实数或复数。
二、高次方程的解法1. 一次方程与二次方程的求解一次方程的一般形式为ax + b = 0,其中a和b为常数,且a≠0。
一次方程的解可以通过简单的移项和除法得到。
例如,对于方程3x + 4 =0,我们可以先将4移到右边,得到3x = -4,然后将等式两边都除以3,得到x = -4/3,即方程的解为x = -4/3。
二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c为常数,且a≠0。
二次方程的求解可以通过求根公式或配方法。
求根公式是指根据公式x = (-b ± √(b^2 - 4ac))/(2a)来求解方程的根。
例如,对于方程x^2 -2x - 3 = 0,我们可以直接根据求根公式计算得到x = (-(-2) ± √((-2)^2 -4(1)(-3)))/(2(1)),即x = (2 ± √16)/2,化简得到x = 3或x = -1,即方程的解为x = 3或x = -1。
配方法是指将二次方程转化为完全平方的形式来求解。
解一元高次方程
解一元高次方程高次方程是指次数大于等于2的代数方程,解一元高次方程是数学中常见的问题。
通过求解一元高次方程,可以找到方程的根或解,进而揭示方程的性质和特点。
本文将介绍解一元高次方程的方法和步骤。
一、二次方程的解法二次方程是一元高次方程中最简单常见的形式,其一般表达式为ax^2+bx+c=0,其中a、b、c为已知常数,且a≠0。
解二次方程的方法主要有两种:公式法和配方法。
1. 公式法根据二次方程的定义,可以使用求根公式来求解。
二次方程的求根公式为:x = (-b±√(b^2-4ac))/(2a)根据公式,首先计算出判别式D = b^2 - 4ac的值。
若D>0,则方程有两个不相等的实根;若D=0,则方程有两个相等的实根;若D<0,则方程无实根。
以方程2x^2+x-1=0为例,将其代入公式,可以得到:x = (-1±√(1+4*2))/4计算出√(1+4*2) = √(1+8) = √9 = 3,代入公式可以得到:x = (-1±3)/4计算出x的两个值分别为-1和1/2,即方程2x^2+x-1=0的根为x=-1和x=1/2。
2. 配方法对于无法直接使用公式法求解的二次方程,可以通过配方法将其转化为可以使用公式法求解的形式。
以方程x^2+4x+4=0为例,将其通过配方法进行转化。
首先,观察方程形式,确定配方的常数:a = 1b = 4c = 4接下来,根据配方法,添加一个用于配方的常数d,即d^2。
x^2 + 4x + 4 + d^2 - d^2 = 0根据配方法的原则,添加的常数d满足2ad=b,即2*1*d=4,解得d=2。
将d代入方程,得到:x^2 + 4x + 4 + 4 - 4 = 0化简之后,可以得到:(x+2)^2 = 0此时,方程已转化为(x+2)^2=0的形式,可以直接使用公式法求解。
根据公式,可以得到:x + 2 = 0解得x=-2,即方程x^2+4x+4=0的根为x=-2。
高次方程的解法与应用案例
高次方程的解法与应用案例高次方程是数学中一类重要的方程,其形式为ax^n + bx^(n-1) + ... + cx + d = 0,其中a、b、c、d为常数,n为正整数,且n≥2。
解高次方程是数学研究和实际应用中的重要课题。
本文将介绍高次方程的解法及其应用案例。
一、高次方程的解法1. 一次方程的解法当n=1时,高次方程即为一次方程。
一次方程的解法相对简单,可以通过移项、合并同类项等基本代数运算求解。
例如,对于方程2x + 3 = 0,可以将3移到等号右边,得到2x = -3,再除以2,即可求得x的解为x = -3/2。
2. 二次方程的解法当n=2时,高次方程即为二次方程。
二次方程的解法有多种,常用的有因式分解法、配方法、求根公式等。
例如,对于方程x^2 - 5x + 6 = 0,可以通过因式分解的方法将其写成(x - 2)(x - 3) = 0,从而得到x的解为x = 2或x = 3。
3. 三次方程的解法当n=3时,高次方程即为三次方程。
三次方程的解法相对复杂,常用的方法有因式分解法、换元法、求根公式等。
例如,对于方程x^3 - 6x^2 + 11x - 6 = 0,可以通过因式分解的方法将其写成(x - 1)(x - 2)(x - 3) = 0,从而得到x的解为x = 1或x= 2或x = 3。
4. 高次方程的数值解法对于高次方程,除了上述的解析解法外,还可以使用数值解法求解。
常用的数值解法有牛顿法、二分法、迭代法等。
这些数值解法通过逐步逼近方程的解,可以得到近似解。
数值解法在实际应用中具有广泛的应用,尤其是对于无法通过解析解法求解的高次方程。
二、高次方程的应用案例1. 物理学中的运动方程在物理学中,运动方程往往可以表示为高次方程的形式。
例如,自由落体运动的位移方程可以表示为s = ut + 1/2gt^2,其中s为位移,u为初速度,g为重力加速度,t为时间。
这是一个二次方程,通过解方程可以求解自由落体运动的位移。
高次方程、分式方程、无理方程的解法
通过换元可将原方程化为关于 t的一元二次方程.
方
法
1. 移项,平方可把无理方程化为有理方程
提 炼
2.换元可以使解方程的过程变得简便
3.解无理方程时应注意检验
一化二解三检验
课 堂 小
1.三种方程高次、分式、无理方程的解法 结 2.一个方法——换元 3.一个思想——等价转化的数学思想
典 型
x1x2 2xa 的解为负数
x2 x1 (x2)x (1)
例 题
求实数 a的范围.
解: 左边通分
4x5 2xa (x2)x (1) (x2)x (1)
所以 4 x 5 2 x a,2x5a
所以 x 5 a 0 且 5 a 1
2
2
解得 a5且 a7
方
1.在分式方程两边同乘以最简公分母,
典
例6(1)解方程 x7x1
型
例
x 7 (x 1)2 *
解: x 7 0
x 1 0
题
为什么会产 生增根?
解得 x2 ( x3为增根 )
此题也可先解出方程*的根, 再代回原方程检验.
典
例6(2)解方程 2x2x15
型
例
解:移项, 2x12x5
题
两边平方,化简得 2 x 2 1x 1 1 2 0
典 型 例
解:令
x2 2 2x2 1
t
原方程可化为
t 3 2 t
题
即 t22t30
解得 t13,t21
所以
x2 2 2x2 1
3
或
x2 2 2x2 1
1
典
即 7x210或 x230
型 例
题
解得 x17 7,x27 7,x33,x43
数学高次方程与解法
数学高次方程与解法数学高次方程是数学中的一个重要概念,它在各个领域中都有广泛的应用。
高次方程的解法是数学研究的重要内容之一,它们的解法涉及到了许多数学方法和技巧。
在本文中,我们将探讨数学高次方程的一些常见解法,并通过实例来说明这些解法的应用。
一、一元高次方程的解法一元高次方程是指只含有一个未知数的高次方程。
在解一元高次方程时,我们常用的方法有因式分解法、配方法、综合除法法等。
1. 因式分解法因式分解法是解一元高次方程的常用方法之一。
对于一元高次方程ax^n +bx^{n-1} + ... + cx + d = 0,我们可以先尝试将其因式分解,然后再求解因式的根。
例如,对于方程x^2 - 5x + 6 = 0,我们可以将其分解为(x - 2)(x - 3) = 0,然后解得x = 2或x = 3。
这样,我们就得到了方程的解。
2. 配方法配方法是另一种解一元高次方程的常用方法。
对于一元高次方程ax^2 + bx + c = 0,我们可以通过配方法将其转化为完全平方形式。
例如,对于方程x^2 + 6x + 9 = 0,我们可以将其写成(x + 3)^2 = 0的形式,然后解得x = -3。
这样,我们就得到了方程的解。
3. 综合除法法综合除法法是解一元高次方程的另一种常用方法。
对于一元高次方程ax^n + bx^{n-1} + ... + cx + d = 0,我们可以通过综合除法将其转化为低次方程。
例如,对于方程x^3 + 3x^2 + 3x + 1 = 0,我们可以通过综合除法将其转化为(x + 1)^3 = 0的形式,然后解得x = -1。
这样,我们就得到了方程的解。
二、多元高次方程的解法多元高次方程是指含有多个未知数的高次方程。
在解多元高次方程时,我们常用的方法有消元法、代入法、高斯消元法等。
1. 消元法消元法是解多元高次方程的常用方法之一。
对于多元高次方程,我们可以通过消去其中的某些未知数,将其转化为低次方程。
(word完整版)高次不等式的解法
高次不等式的解法 ---穿根法一.方法 :先因式分解 ,再使用穿根法 .注意 :因式分解后 ,整理成每个因式中未知数的系数为正.使用方法 :①在数轴上标出化简后各因式的根,使等号建立的根 ,标为实点 ,等号不建立的根要标虚点 .②自右向左自上而下穿线 ,遇偶次重根不穿透 ,遇奇次重根要穿透 (叫奇穿偶不穿 ).③数轴上方曲线对应地区使“>”建立 , 下方曲线对应地区使“ <”建立 .例 1:解不等式(1)(x+4)(x+5) 2(2-x)3<0(2)x2-4x+1≤ 1 3x2-7x+2解:(1)原不等式等价于 (x+4)(x+5) 2(x-2)3>0 依据穿根法如图不等式解集为 {x ∣ x>2 或 x<-4 且 x≠5}. -5 -42(2)变形为(2x-1)(x-1)≥0 (3x-1)(x-2)依据穿根法如图不等式解集为11{x x< 3或2≤x≤1 或 x>2}.1112 32【例 2】解不等式:(1)2x3-x2-15x>0;(2)(x+4)(x+5)2(2-x) 3< 0.【剖析】假如多项式 f(x) 可分解为 n 个一次式的积,则一元高次不等式 f(x) >0( 或 f(x) <0) 可用“穿根法”求解,但要注意办理好有重根的状况.解: (1) 原不等式可化为x(2x+5)(x-3)>0顺轴.而后从右上开始画曲线按序经过三个根,其解集如图 (5 - 1) 的暗影部分.(2)原不等式等价于(x+4)(x+5)2(x-2) 3>0∴原不等式解集为{ x|x <-5 或-5 < x< -4 或 x>2}.【说明】用“穿根法”解不等式时应注意:①各一次项中.....................的x..系数必为正;②关于偶次或奇次重根可参照...................(2) 的解法转变为不含重............根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿” .其法..............................(5 2)如图.......-..数轴标根法”又称“数轴穿根法”第一步:经过不等式的诸多性质对不等式进行移项,使得右边为0。
高次方程的解法和因式分解
高次方程的解法和因式分解高次方程是指次数大于等于2的方程。
解高次方程的方法有多种,其中两种常见的方法是因式分解和求根公式。
一、因式分解因式分解是将一个多项式拆分成多个乘积的过程。
对于高次方程,如果能够将其因式分解,就可以得到方程的解。
下面以一元高次方程为例进行讲解。
1. 确定方程的次数首先,我们需要确定方程的次数。
例如,对于一个二次方程,其形式为ax^2 + bx + c = 0,其中a、b、c为已知系数。
2. 判断是否可因式分解接下来,我们需要判断方程是否可以因式分解。
对于低次方程(次数小于等于4),可以通过观察系数是否有共同因子或使用配方法进行因式分解。
对于高次方程,则可能需要使用其他方法求解。
3. 使用求根公式如果方程无法直接因式分解,我们可以通过求根公式来解方程。
对于二次方程ax^2 + bx + c = 0,求根公式为:x = (-b ± √(b^2 - 4ac)) / 2a其中,±表示取正负两个解。
对于三次方程ax^3 + bx^2 + cx + d = 0,求根公式比较复杂,可以通过将方程转化为标准形式(取代变量)后,再使用求根公式求解。
对于四次方程ax^4 + bx^3 + cx^2 + dx + e = 0,其求根公式比较繁琐,可以通过先将方程转化为标准形式,再使用求根公式求解。
4. 通过因式分解求解高次方程对于高次方程,如果无法直接使用求根公式求解,我们可以尝试通过因式分解将方程拆解成低次方程。
例如,对于二次方程,我们可以将其因式分解为(x - p)(x - q) = 0的形式,从而得到解x = p和x = q。
二、求根公式求根公式是一种通过特定的公式来求解高次方程的方法。
在前面的讲解中,已经提到了二次方程、三次方程和四次方程的求根公式。
对于高次方程,一般情况下,没有通用的求根公式。
因此,对于高次方程,我们需要根据具体的情况,根据该方程的特点和形式来选择适合的求解方法。
(完整版)特殊的高次方程的解法
特殊的高次方程的解法教学目标1.根据方程的特征,运用适当的因式分解法求解一元高次方程. 2.通过学习增强分析问题和解决问题的能力.教学重点及难点用因式分解法求解一元高次方程.教学流程设计复习引入例题分析巩固练习布置作业课堂小结教学过程设计一、情景引入1.复习(1)将下列各式在实数范围内分解因式:①x2-4x+3;② x4-4;③x3-2x2-15x;④ x4-6x2+5;⑤(x2-x)2-4(x2-x)-12.教师指出:在分解④、⑤题时,应利用换元的思想,分别把x2和x2-x看成y,于是就有y2-6y+5和y2-4y-12.从而把四次多项式转化为二次三项式,使问题易于解决.(2)提问:①解二项方程的基本方法是什么?(开方)②解双二次方程的基本方法是什么?(换元)分析:不管是开方还是换元都是通过“降次”达到化归目的. 2.观察:(1)若令①x2-4x+3;② x4-4;③x3-2x2-15x;④ x4-6x2+5;⑤(x2-x)2-4(x2-x)-12的右边都为0,请指出哪些是高次方程?(2)这些高次方程如何求解?分析:后面四个都是高次方程,②x4-4=0是二项方程,利用开方法求解;④、⑤都可以利用换元法把它转化为一元二次方程;而③x3-2x2-15x=0则是利用因式分解法降次.所以,这节课我们一起来学习用因式分解法把一元高次方程转化成一元一次方程或一元二次方程.二、学习新课1.例题分析例6 解下列方程(1)5x 3=4x 2; (2)2x 3+x 2-6x=0.[说明] 只有方程整理成一边为零时,才能用因式分解法解方程. 例7 解下列方程(1)x 3-5x 2+x-5=0; (2)x 3-6=x-6x 2.2.问题拓展(1)解方程x 3-2x 2-4x +8=0.解 原方程可变形为x 2(x-2)-4(x-2)=0,(x-2)(x 2-4)=0,(x-2)2(x+2)=0.所以x 1=x 2=2,x 3=-2.(2)归纳:当ad=bc≠0时,形如ax 3+bx 2+cx +d=0的方程可这样解决: 令0≠==k dc b a,则a=bk,c=dk,于是方程ax 3+bx 2+cx+d=0 可化为bkx 3+bx 2+dkx+d=0,即 (kx+1)(bx 2+d)=0.三、巩固练习1.直接写出方程x(x+5)(x-4)=0的根,它们是__________________.2.解下列方程:(1)3x3-2x=0 ; (2)y3-6y2+5y=0.3.解下列方程:(1)2x3+7x2-4x=0; (2)x3-2x2+x-2=04.拓展:(1)(x2-x-6)(x2-x+2)=0,(2)(x-3)(x+2)(x2-x+2)=0.分析:在具体操作过程中,把x2-x当作一个“整体”,可直接利用十字相乘法分解,这样省略了许多代换程序.(3)解方程(x-2)(x+1)(x+4)(x+7)=19.解把方程左边第一个因式与第四个因式相乘,第二个因式与第三个因式相乘,得(x2+5x-14)(x2+5x+4)=19.设则(y-9)(y+9)=19,即y2-81=19.[说明] 在解此题时,仔细观察方程中系数之间的特殊关系,则可用换元法解之.在换元时也可以令y= x2+5x,因为换元的目的是为了降次.拓展部分是学有余力的学生选做,教师可根据学生的实际进行选择.四、课堂小结(学生总结,教师归纳)1.解一元高次方程的基本方法是什么?2.我们现在学习了哪些方法能把高次方程“降次”?3.用因式分解法解高次方程时要注意些什么?五、作业布置1.练习册:习题21.2(3)2.选做题:解下列方程:(1)x3+3x2+3x+1=0(2)(x+1)(x+2)(x+3)(x+4) =24(3)x(x+1)(x-3) =x+1(4)(x+5)2+(2x-1)2=(x+5)(2x-1)+67教学设计说明1.本节课学习的是用因式分解法求解一元高次方程,所以在情景引入部分复习了实数范围内的因式分解,为后面的新授课做准备.并在此环节中还复习了二项方程和双二次方程的解法,由此自然地过渡到本节课的内容:用因式分解法求解一元高次方程.2.新授课中的问题拓展是对常见的能用因式分解法求解的一元三次方程做了一个简单的归纳.使学生感知从具体到抽象、从特殊到一般的事物发展规律,提高他们自己解决问题的能力.3.在巩固练习部分,增加了一些用因式分解解一元高次方程的特殊类型,是对书本例题的一个补充和提高,同时也是课堂分层教学的需要.4.作业同样采取了分层设计,尽可能使所有学生都能通过作业巩固新知.选做题的类型与难度相当于巩固练习中的四星级和五星级,是针对一些学有余力的同学设计,帮助他们进一步巩固提高.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高次方程及解法 江苏省通州高级中学 徐嘉伟 一般地,我们把次数大于2的整式方程,叫做高次方程。
由两个或两个以上高次方程组成的方程组,叫做高次方程组。
对于一元五次以上的高次方程,是不能用简单的算术方法来求解的。
对于一元五次以下的高次方程,也只能对其中的一些特殊形式的方程,采用“±1判根法”、“常数项约数法”、“倒数方程求根法”、“双二次方程及推广形式求解法”等方法,将一元五次以下的高次方程消元、换元、降次,转化成一次或二次方程求解。
一、±1判根法在一个一元高次方程中,如果各项系数之和等于零,则1是方程的根;如果偶次项系数之和等于奇次项系数之和,则-1是方程的根。
求出方程的±1的根后,将原高次方程用长除法或因式分解法分别除以(x-1)或者(x+1),降低方程次数后依次求根。
“±1判根法”是解一元高次方程最简捷、最快速的重要方法,一定要熟练掌握运用。
例1解方程x4+2x3-9x2-2x+8=0解:观察方程,因为各项系数之和为:1+2-9-2+8=0(注意:一定把常数项算在偶数项系数当中),根据歌诀“系和零,+1根”,即原方程中可分解出因式(x-1),Θ(x4+2x3-9x2-2x+8)÷(x-1)= x3+3x2-6x-8观察方程x3+3x2-6x-8=0,偶次项系数之和为:3-8=-5;奇次项系数之和为:1-6=-5,根据歌诀“偶等奇,根-1”,即方程中含有因式(x+1),∴(x3+3x2-6x-8)÷(x+1)=x2+2x-8,对一元二次方程x2+2x-8=0有(x+4)(x-2)=0, ∴原高次方程x4+2x3-9x2-2x+8=0可分解因式为:(x-1) (x+1)(x-2)(x+4)=0,即:当(x-1)=0时,有x1=1;当(x+1)=0时,有x2= -1;当(x-2) =0时,有x3=2; 当(x+4)=0时,有x4=-4点拨提醒:在运用“±1判根法”解高次方程时,一定注意把“常数项”作为“偶次项”系数计算。
二、常数项约数求根法根据定理:“如果整系数多项式a n x n +a n-1x n-1+K +a 1x+a 0可分解出因式P x-Q ,即方程a n x n +a n-1x n-1+K +a 1x+a 0=0有有理数根PQ(P、Q 是互质整数),那么,P一定是首项系数a n 的约数,Q 一定是常数项 a 0的约数”,我们用“常数项约数”很快找到求解方程的简捷方法。
“常数项约数求根法”分为两种类型:第一种类型:首项系数为1。
对首项(最高次数项)系数为1的高次方程,直接列出常数项所有约数,代入原方程逐一验算,使方程值为零的约数,就是方程的根。
依次用原方程除以带根的因式,逐次降次,直至将高次方程降为二次或一次方程求解。
例1 解方程x 4+2x 3-4x 2-5x-6=0解:第一步:首先列出“常数项”-6的所有约数±1、±2、±3、±6第二步:将这些约数逐一代入原方程验算,确定原方程中所含的“带根”因式。
根据各项系数和不为零和奇数项系数和不等于偶数项系数和,排除±1根, f(2)=16+16-16-10-6=0 f(-3)=81-54-36+15-6=0,所以原方程中含有因式(x-2)(x+3)第三步:用长除法将原方程降次。
(x 4+2x 3-4x 2-5x-6)÷(x-2) (x+3)= x 2+x+1第四步:解一元二次方程x 2+x+1=0 x=a ac b b 242-±-=2312114112i ±-=⨯⨯-±- ∴x 1=,231i +- x 2=,231i -- x 3=2 x 4= -3 第二种类型,首项系数不为1 。
对首项系数不为1的高次方程,首先以首项系数为“公因数”提取到小括号外,然后对小括号内的方程的常数项列出公约数。
特别注意此时代入方程验算的值一定是PQ 而不是Q,因为此时原方程的因式是(Px -Q),其余的解法步骤同首项系数为1的解法步骤相同。
例2 解方程3x 3-2x 2+9x -6=0解:将原方程化为 3(x 3-32x 2+3x -2)=0 此时,“常数项”为-2,它的约数为 ±1,2± ,根据“±1判根法”排除±1,这时,代人原方程验算的只能是P Q =32,或PQ = -32 f (32)=3⨯=⎥⎥⎦⎤⎢⎢⎣⎡-⨯+⎪⎭⎫ ⎝⎛⨯-⎪⎭⎫ ⎝⎛3232332323223⎪⎭⎫ ⎝⎛-+-22278278=3⨯0=0 所以原方程中有因式(3 X -2)。
(3x 3-2x 2+9x -6)÷(3x -2)= x 2+3解方程式x 2+3=0 x=23i ±, x 1=23i ,x 2=-23i ∴原方程的解为x 1=23i ,x 2= 23i -,x 3=32 三、倒数方程求根法1、定义:系数成首尾等距离的对称形式的方程,叫做倒数方程。
如a x 4+bx 3+cx 2+dx+e=0,其中,,e a =d b =或者a= -e,b= -d2、性质:倒数方程有三条重要性质:(1)倒数方程没有零根;(2)如果a 是方程的根,则a1也是方程的根;(3)奇数次倒数方程必有一个根是-1或者1,分解出因式(x+1) 或(x-1) 后降低一个次数后的方程仍是倒数方程。
3、倒数方程求解方法:如果a x 4+bx 3+cx 2+dx+e=0是倒数方程,由于倒数方程没有零根,即x ≠0,所以,方程两边同除以x 2得:a(x 2+21x )+b(x+x 1)+e=0,令x+x 1=y, x 2+21x =y 2-2,即原方程变为: ay 2+by+(e-2a)=0, 解得y 值,再由x+x 1=y ,解得x 的值。
例1 解方程2 x 4+3x 3-16x 2+3x+2=0解:Θ x 2 ≠ 0 ∴ 方程两边同除以 x 2 得:2x 2+3x-16+x 3+22x =0,即2(x 2+21x)+3(x+x 1)-16=0, 2[(x+x1)2-2]+3(x+x 1)-16=0, 令x+x 1=y, 代入方程整理得:2y 2+3y-20=0, 解之得:y 1= -4, y 2=25 即x+x 1= -4, x 2+1= -4x, x 2+4x+1=0, x=a ac b b 242-±-=2114442⨯⨯-±-=2124±-=2324±-=-2±3, x 1= -2+3, x 2= -2 -3又Θ x+x 1=25 2x 2+2=5x, 2x 2-5x+2=0(2x-1)(x-2)=0 ∴x 3=21, x 4=2 经检验知x 1= -2+3, x 2= -2-3,x 3=21, x 4=2都是原方程的根。
例2 解方程6x 5 - 4 x 4 -3x 3+3x 2 -4x -6=0解:观察该方程首尾等距离对应项系数互为相反数,且最高次幂项数是奇数,有根x=1,方程两边同除以因式(x-1)得:6x 4+10x 3+7x 2+10x+6=0, 方程两边同除以x 2并整理得:6⎪⎭⎫ ⎝⎛+221x x +10071=+⎪⎭⎫ ⎝⎛+x x , 令y=x x +1得051062=-+y y ,65551+-=y =2y 6555-- 方程x+65551+-=x 无实数解:65551--=+x x 得:x ()126455105553,2-±+-= 经检验知:12645510555,121⎪⎭⎫ ⎝⎛-±+-==x x 是原方程的实数根。
点评讲析:例1、例2这些倒数方程的特征是首尾等距离对应项系数相等,用一般表达式表述为ax 4+bx 3+cx 2+dx+e=0,其中a=e,b=d,或者a= -e,b= -d 对首尾对应项系数相等的方程,我们一眼就能发现是“倒数方程”,两边同除以x 2,化成可用“换元法”替解的一元二次方程求解。
但有些方程,首尾等距离对应项系数不相等,但这些系数又有这样的规律:如ax 4+bx 3+cx 2+k 02=•+•a k bx (a 0≠)即常数项可以分解成同四次项系数相同的数字“a ”和另一个因数“k 2”的乘积,一次项系数可分解出同三次项系数相同的数字b 和与常数项2k 相同的数字k 的乘积,凡是具有这样规律特征的方程,也可以用“倒数方程求根法”来解答。
例3:x 4+5x 3+2x 2+20x+16=0解:a k e •=⨯==221416Θ , d=20=4b k •=⨯5属于倒数方程的“特例形式”,可用“倒数方程求根法”求解。
原方程两边同除以x 2 得: x 2+5x+2+016202=+x x , 02451622=+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+x x x x 设y=x+x 4,则81622-=+y x x 即:y 2+5y-6=0 y= -6或1,当y= -6时,x+53,64±-=-=x x当 y=1时,x+14=x (无实数根) ∴531+-=x , 532--=x四、双二次方程及推广形式求根法双二次方程有四种形式:第一种是标准式,如:ax 4+bx 2+c=0 ,此时设y=x 2 原方程化为含y 的一元二次方程ay 2+by+c=0,求出y 值在代入x 2之值,从而求出x 之值。
第二种形式双二次方程的推广形式。
如:(ax 2+bx+c )2+m(ax 2+bx+c)+d=0 ,此时设y=(ax 2+bx+c),也可转化为含y 的一元二次方程y 2+my+d=0,解出y 值代入ax 2+bx+c=y从而求出原方程的根x 之值。
第三种形式是(x+a)(x+b)(x+c)(x+d)+m=0,此时,方程左边按照“创造相同的多项式,换元替换”的要求,将(x+a )(x+c); (x+b)(x+d)结合(一般是最小数与最大数,中间数与中间数组合),展开相乘,创造相同的多项式(ax 2+bx+c )或成比例的多项式m(ax 2+bx+c),然后设y=ax 2+bx+c,将原方程转化为含y 的一元二次方程y 2+my+e=0,求出y 值,将y 值代入ax 2+bx+c=y 求x 之值。
第四种形式是(x-a )4+(x-b) 4=c 的形式,此时,将“-a ”换成“+b ”或将“-b ”换成“+a ”,利用y=x+()()2b a -+-,消去x 的三次项和一次项,变成双二次方程42⎪⎭⎫ ⎝⎛++b a y +42⎪⎭⎫ ⎝⎛--b a y 的形式求解。
例1 解方程x 4+3x 2-10=0解:本例属于双二次方程标准式ax 4+bx 2+c=0的形式,直接设y=x 2,则原方程化为:y 2+3y-10=0 (y+5)(y+2)=0 y= -5或者y=2 52-=∴x (舍去),x 2=2,x 1=2,22-=x例2 解方程(x 2-3x+2)2=9x-3x 2-2解:本例属于双二次标准方程ax 4+bx 2+c=0推广形式的第二种类型(ax 2+bx+c )2+m(ax 2+bx+c)+d=0,因为括号内的二次三项式和括号外的二次三项式经过整理,对应项系数成比例,即:(x 2-3x+2)2+3(x 2-3x+2)-4=0设y=x 2-3x+2,则原方程转化为y 2 +3y -4=0 4-=y ,或者 y=1 x 2-3x+2=-4 ,x 2-3x+6=0 0<∆ 无实数根, x 2-3x+2=1,x 2-3x+1=0 x=253± ∴原方程的根x 1=,253+ x 2=253- 例3 解方程(x+2)(x+3)(x+8)(x+12)=4x 2解:本例题属于双二次标准方程ax 4+bx 2+c=0推广形式的第三种类型(x+a )(x+b)(x+c)(x+d)+m=0,这种方程解答的核心要领是“创造可供设y 换元的相同多项式”。