华东师大版八年级数学上册全册教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章数的开方
11.1平方根与立方根(1)
【教学目标】:以实际问题的需要出发,引出平方根的概念,理解平方根的意义,会求某些数的平方根。
【教学重、难点】:重点:了解平方根的概念,求某些非负数的平方根。
难点:平方根的意义
【教具应用】:老师:三角板、小黑板
学生:
【教学过程】:
一、提出问题,创设情境。
问题1、要剪出一块面积为25cm²的正方形纸片,纸片的边长应是多少?
问题2、已知圆的面积是16πcm²,求圆的半径长。
要想解决这些问题,就来学习本节内容
二、自学提纲:
1、你能解决上面两个问题吗?这两个问题的实质是什么?
2、看第2页,知道什么是一个数的平方根吗?
3、25的平方根只有5吗?为什么?
4、会求110的平方根吗?试一试
5、-4有平方根吗?为什么?
6、想一想,你是用什么运算来检验或寻找一个数的平方根?
7、根据平方根的定义你能指出正数、0、负数的平方根的特征吗?
8、什么叫开平方?
三、能力、知识、提高
同学们展示自学结果,老师点拔
①情境中的两个问题的实质是已知某数的平方,要求这个数。
②概括:如果一个数的平方等于a,那么这个数叫做a的平方根。
如5²=25,(-5)²=25 ∴25的平方根有两个:5和-5
③根据平方根的意义,可以利用平方来检验或寻找一个数的平方根。
④任何数的平方都不等于-4,所以-4没有平方根。
⑤0的平方等于0。所以0只有一个平方根为0。
⑥概括:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。
⑦求一个数a(a≥0)的平方根的运算,叫做开平方。
四、知识应用
1、求下列各数的平方根
①49 ②1.69 ③④(-0.2)²
2、将下列各数开平方
①1 ②0.09 ③(-)²
五、测评
1、说出下列各数的平方根
①81 ②0.25 ③
2、求未知数x的值
①(3x)²=16 ②(2x -1)²=9
六、小结:
1、什么叫做平方根?
2、一个正数的平方根有几个?零的平根有几个?负数的平方根呢?
3、平方和开平方运算有什么区别和联系?
区别:①平方运算中,已知的是底数和指数,求的是幂。而在开平方运算中,已知的是指数和幂,求的是底。
②平方运算中的底数可以是任意数,平方的结果是唯一的,在开平方运算中,开方的数的结果不一定是唯一的。
联系:二者互为逆运算。
七、布置作业
1、P第1题
2、(选做)已知:x是49的平方根,y是1的平方根,求:
①2x+1 ②(x+y)²
11.1 平方根与立方根(2)
【教学目标】:1、引导学生建立清晰的概念系统,在学生正确理解平方根概念的意义和平方根的表示方法基础上,讨论算术平方根的概念及其表示方法。
2、会用计算器求一个非负数的算术平方根
【教学重、难点】:重点:了解数的算术平方根的概念,会用“”表示一个数的平方根和算术平方根。
难点:对的理解。特别是a的取值的理解。
【教具应用】:教师:计算器、小黑板
学生:计算器
【教学过程】:
一、提出问题,创设情境
1、在(-5)²,-5²,5²中,哪个有平方根?平方根是多少?哪个没有平方根?为什么?
2、说出平方根的概念和性质。
3、0.49的平方根怎样用符号表示呢?又有新的命名吗?带着这些问题,走进我们今天的课堂。
二、自学提纲
1、9的平方根是,9的正的平方根是,=3表示的意义是什么?
2、什么样的数存在平方根?什么样的平方根是这个数的算术平方根?分别用什么符号表示?
3、“”存在的条件是什么?“”的结果是正数、0、还是负数?
4、=0正确吗?
5、有意义吗?呢?呢?
6、-的意义是什么?它等于什么
三、能力、知识、提高
同学们展示自学结果,教师点拔
1、概括:正数a的正的平方根叫做a的算术平方根,记为,读作“a的算术平方根”。另一个平方根是它的相反数,
即-。因此正数a的平方根可以记作±,a称为被开方数。
注意:①这里的不仅表示开平方运算,而且表示正值的平方根。
②这里“”中有双“正”字,即被开方数为正,结果的值为正。
2、0的平方根也叫0的算术平方根,因此0的算术平方根是0。即=0。从以上可知:当a是正数或0时,表示a的算术平方根,其结果为非负数。
3、总有意义,也总有意义,但存在有条件限制,即-a≥0,∴a≤0
四、知识应用
1、求110的算术平方根
2、求下列各数的平方根和算术平方根
①36 ②2.89 ③
3、求下列各式的值
①②±
4、用计算器求下列各数的算术平方根(看第4页的按键顺序)
①529 ②1125 ③44.81
五、测评问题
1、下列各式中叫些有意义?哪些无意义?
-
2、求下列各数的平方根和算术平方根
111 0.25 400
3、求下列各式的值,并说明它们各表示的意义
-±
5、用计算器计算
①②③(精确到0.01)
六、小结
①如何表示一个正数的平方根?举例说明
②什么叫做算术平方根?
③式子中的x应满足什么条件?
七、布置作业
1、P 3(1) 4
2、(选做)若某数的平方根为2a+3和a-15,求这个数。
3、若+=0,求(x-y)
11.1 平方根与立方根(3)
【教学目标】:1、了解立方根和开立方的概念。
2、会用根号表示一个数的立方根,掌握开立方运算。
3、培养学生用类比思想求立方根的运算能力。
4、会用计算器求一个数的立方根。
【教学重、难点】:重点:立方根的概念和性质
难点:会求一个数的立方根