用matlab解决线性规划问题的几道题复习进程

合集下载

用Matlab解法求解线性规划问题

用Matlab解法求解线性规划问题
Matlab实验报告
实验目的:用Matlab解法求解线性规划问题
实验一:
题目:求解线性规划问题:
方法一:Matlab解法
算法设计:
1、先求Z的最小值,再取相反数即为所求的最大值。
2、将第一个约束条件改为 。以便与另外两个约束条件保持不等号方向的一致。
3、根据所给的约束条件,利用x=linprog(c,a,b)求解
求值程序:
c=[-3,-1];
a=[-1,1;1,-2;3,2];
b=[2;2;14];
[x,fval]=linprog(c,a,b)
运行结果:
x =
4.0000
1.0000
fval=-13.0000
结果处理及分析:当x1=4 , x2=1时,(-Z)取最小值-13,Z取最大值13.
方法二:图像法
程序代码:
b=[180;200];
aeq=[];
beq=[];
vlb=[0;0;0];
vub=[];
[x,fval]=linprog(c,a,b,aeq,beq,vlb,vub)
maxz=-fval
运行结果:
x =
34.0000
0.0000
44.0000
fval =
-584.0000
maxz =
584.0000
x=-4:1:4;
y1=x-2;
y2=2*x+2;
y3=1/3*(14-2*x);
y4=1/3*(13-x);
plot(x,y1,x,y2,x,y3,x,y4,’:’)
经过对直线的适度调整后,得到图像为:
结果处理及分析:根据约束条件,星型图案所在的闭合三角形为可行域,易知,蓝色虚线代表的目标函数过A(1,4)时,Z取最大值13。

用matlab求解线性规划问题

用matlab求解线性规划问题

用m a t l a b求解线性规划问题Company number:【0089WT-8898YT-W8CCB-BUUT-202108】实验四 用M A T L A B 求解线性规划问题一、实验目的: 了解Matlab 的优化工具箱,能利用Matlab 求解线性规划问题。

二、实验内容:线性规划的数学模型有各种不同的形式,其一般形式可以写为:目标函数: n n x f x f x f z +++= 2211m in约束条件: s n sn s s n n b x a x a x a b x a x a x a ≤+++≤+++221111212111这里nn x f x f x f z +++= 2211称为目标函数,j f 称为价值系数,T n f f f f ),,,(21 =称为价值向量,j x 为求解的变量,由系数ij a 组成的矩阵 称为不等式约束矩阵,由系数ij c 组成的矩阵 称为等式约束矩阵,列向量T n b b b b ),,,(21 =和T n d d d d ),,,(21 =为右端向量,条件0≥j x 称为非负约束。

一个向量Tn x x x x ),,,(21 =,满足约束条件,称为可行解或可行点,所有可行点的集合称为可行区域,达到目标函数值最大的可行解称为该线性规划的最优解,相应的目标函数值称为最优目标函数值,简称最优值。

我们这里介绍利用Matlab 来求解线性规划问题的求解。

在Matlab 中有一个专门的函数linprog()来解决这类问题,我们知道,极值有最大和最小两种,但求z 的极大就是求z -的极小,因此在Matlab 中以求极小为标准形式,函数linprog()的具体格式如下:X=linprog(f,A,b)[X,fval,exitflag,ouyput,lamnda]=linprog(f,A,b,Aeq,Beq,LB,UB,X0,options)这里X 是问题的解向量,f 是由目标函数的系数构成的向量,A 是一个矩阵,b 是一个向量,A ,b 和变量x={x1,x2,…,xn}一起,表示了线性规划中不等式约束条件,A ,b 是系数矩阵和右端向量。

线性规划模型及matlab程序求解

线性规划模型及matlab程序求解

§1 线性规划模‎型一、线性规划课‎题:实例1:生产计划问‎题假设某厂计‎划生产甲、乙两种产品‎,现库存主要‎材料有A类‎3600公‎斤,B类200‎0公斤,C类300‎0公斤。

每件甲产品‎需用材料A‎类9公斤,B类4公斤‎,C类3公斤‎。

每件乙产品‎,需用材料A‎类4公斤,B类5公斤‎,C类10公‎斤。

甲单位产品‎的利润70‎元,乙单位产品‎的利润12‎0元。

问如何安排‎生产,才能使该厂‎所获的利润‎最大。

建立数学模‎型:设x1、x2分别为‎生产甲、乙产品的件‎数。

f为该厂所‎获总润。

max f=70x1+120x2‎s.t 9x1+4x2≤36004x1+5x2≤20003x1+10x2≤3000x1,x2≥0归结出规划‎问题:目标函数和‎约束条件都‎是变量x的‎线性函数。

形如: (1) min f T Xs.t A X≤bAeq X =beqlb≤X≤ub其中X为n‎维未知向量‎,f T=[f1,f2,…f n]为目标函数‎系数向量,小于等于约‎束系数矩阵‎A为m×n矩阵,b 为其右端‎m维列向量‎,Aeq为等‎式约束系数‎矩阵,beq为等‎式约束右端‎常数列向量‎。

l b,ub为自变‎量取值上界‎与下界约束‎的n维常数‎向量。

二.线性规划问‎题求最优解‎函数:调用格式: x=linpr‎og(f,A,b)x=linpr‎o g(f,A,b,Aeq,beq)x=linpr‎o g(f,A,b,Aeq,beq,lb,ub)x=linpr‎o g(f,A,b,Aeq,beq,lb,ub,x0)x=linpr‎o g(f,A,b,Aeq,beq,lb,ub,x0,optio‎n s)[x,fval]=linpr‎o g(…)‎[x, fval, exitf‎l ag]=linpr‎o g(…)‎[x, fval, exitf‎l ag, outpu‎t]=linpr‎o g(…)‎[x, fval, exitf‎l ag, outpu‎t, lambd‎a]=linpr‎o g(…)‎说明:x=linpr‎o g(f,A,b)返回值x为‎最优解向量‎。

线性规划问题Matlab求解

线性规划问题Matlab求解

线性规划问题M a t l a b求解(总6页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除用MATLAB优化工具箱解线性规划命令:x=linprog(c,A,b)命令:x=linprog(c,A,b,Aeq,beq)注意:若没有不等式:存在,则令A=[ ],b=[ ]. 若没有等式约束, 则令Aeq=[ ], beq=[ ].命令:[1] x=linprog(c,A,b,Aeq,beq, VLB,VUB)[2] x=linprog(c,A,b,Aeq,beq, VLB,VUB, X0)注意:[1] 若没有等式约束, 则令Aeq=[ ], beq=[ ]. [2]其中X0表示初始点4、命令:[x,fval]=linprog(…)返回最优解x及x处的目标函数值fval.例1解编写M文件小如下:c=[ ];A=[ ; 0 0 0 0;0 0 0 0;0 0 0 0 ];b=[850;700;100;900];Aeq=[]; beq=[];vlb=[0;0;0;0;0;0]; vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)例2 解: 编写M文件如下:c=[6 3 4];A=[0 1 0];b=[50];Aeq=[1 1 1];beq=[120];vlb=[30,0,20];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub例3 (任务分配问题)某车间有甲、乙两台机床,可用于加工三种工件。

假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。

问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低解设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3,在乙车床上加工工件1、2、3的数量分别为x4、x5、x6。

利用Matlab求解线性规划问题

利用Matlab求解线性规划问题

§15. 利用Matlab求解线性规划问题线性规划是一种优化方法,Matlab优化工具箱中有现成函数linprog对如下式描述的LP问题求解:% min f'x% s.t .(约束条件):Ax<=b% (等式约束条件):Aeqx=beq% lb<=x<=ublinprog函数的调用格式如下:x=linprog(f,A,b)x=linprog(f,A,b,Aeq,beq)x=linprog(f,A,b,Aeq,beq,lb,ub)x=linprog(f,A,b,Aeq,beq,lb,ub,x0)x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options)[x,fval]=linprog(…)[x, fval, exitflag]=linprog(…)[x, fval, exitflag, output]=linprog(…)[x, fval, exitflag, output, lambda]=linprog(…)其中:x=linprog(f,A,b)返回值x为最优解向量。

x=linprog(f,A,b,Aeq,beq) 作有等式约束的问题。

若没有不等式约束,则令111A=[ ]、b=[ ] 。

x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options) 中lb ,ub为变量x的下界和上界,x0为初值点,options为指定优化参数进行最小化。

Options的参数描述:Display显示水平。

选择’off’ 不显示输出;选择’I ter’显示每一步迭代过程的输出;选择’final’ 显示最终结果。

MaxFunEvals 函数评价的最大允许次数Maxiter 最大允许迭代次数TolX x处的终止容限[x,fval]=linprog(…) 左端fval 返回解x处的目标函数值。

[x,fval,exitflag,output,lambda]=linprog(f,A,b, Aeq,beq,lb,ub,x0) 的输出部分:exitflag描述函数计算的退出条件:若为正值,表示目标函数收敛于解x 处;若为负值,表示目标函数不收敛;若为零值,表示已经达到函数评价或迭代的最大次数。

数学建模MATLAB之线性规划

数学建模MATLAB之线性规划
数学建模与数学实验
线性规划
实验目的
1. 了解线性规划的基本内容.
2. 掌握用数学软件包求解线性规划问题.
实验内容
1. 两个引例. 2. 用数学软件包MATLAB求解线性规划问题. 3. 用数学软件包LINDO、LINGO求解线性规划问题. 4. 建模案例:投资的收益与风险. 5. 实验作业.
两个引例 问题一 : 任务分配问题:某车间有甲、乙两台机床,可用
8 4 x1 8 3 x 2 32 x1 24 x 2 因检验员错检而造成的损失为:
( 8 25 2 % x1 8 15 5 % x 2 ) 2 8 x1 12 x 2
故目标函数为:
min z ( 32 x1 24 x 2 ) ( 8 x1 12 x 2 ) 40 x1 36 x 2
建立模型
决策变量 目标函数 x1桶牛奶生产A1 x2桶牛奶生产A2
获利 24×3x1 获利 16×4 x2 每天获利 m ax z 7 2 x1 6 4 x 2
原料供应
x 1 x 2 50
12 x 1 8 x 2 480
约束条件
劳动时间 加工能力 非负约束
Hale Waihona Puke 3 x 1 100 x1 , x 2 0

设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3, 在乙车床上加工工件1、2、3的数量分别为x4、x5、x6,可建立以 下线性规划模型:
min z 13 x 1 9 x 2 10 x 3 11 x 4 12 x 5 8 x 6
x 1 x4 400 x x5 6 0 0 2 x3 x6 5 0 0 s.t. 0 .4 x1 1 .1 x 2 x 3 8 0 0 0 .5 x 1 .2 x 1 .3 x 9 0 0 4 5 6 x i 0, i 1, 2, , 6

(完整word版)用matlab解决线性规划问题的几道题

(完整word版)用matlab解决线性规划问题的几道题

一、用MATLAB 求解线性规划问题(1)编写的M 文件为:f=[-1;-1]A=[1 -2;1 2]b=[4,8][x,feval]=linprog(f,A,b,[],[],zeros(2,1))所求解为:x 1=6,x 2=1;min f=-7(2) 编写的M 文件为:f=[-4;-3]A=[3 4;3 3;4 2]b=[12;10;8][x,feval]=linprog(f,A,b,[],[],zeros(1,2))所求得的解为:x 1=0.8,x 2=2.4;max f=10.4(3)(4) 编写的M 文件为:f=[-1;-3;3]Aeq=[1 1 2;-1 2 1]beq=[4;4][x,feval]=linprog(f,[],[],Aeq,beq,zeros(3,1))所求得的结果为:x 1=4/3,x 2=8/3,x 3=0;max f=28/3。

12121212min 24s.t.28,0f x x x x x x x x ì=--ïïïï-?镲íï+?ïïï³ïî121212121243max 3412..3310428,0f x x xx s t x x x x x x ì=+ïïïï+?ïïï+?íïïï+?ïïï³ïî12312312313min 3s.t.211423210(1,2,3)j f x x x x x xx xx x x x j =--ìïïïï-+?ïïïï-++?íïï-+=ïïïïï?ïî123123123max 3s.t.24240(1,2,3)j f x x x xx x x x x x j =+-ìïïïï++=ïïí-++=ïïïïï?ïî(5)(选做)先做如下转化:% x=u1-v1,,y=u2-v2,,z=u3-v3% min f=u1+u2+u3+v1+v2+v3% s.t. u1+u2-v1-v2<=1% 2*u1+u3-2*v1-v3=3则编写的M 文件为:f=[1;1;1;1;1;1]A=[1 1 0 -1 -1 0]b=1Aeq=[2 0 1 -2 0 -1]beq=3[x,feval]=linprog(f,A,b,Aeq,beq,zeros(6,1))所求得的结果为:u 1=1.0936,u 2=0,u 3=0.8192,v 1=0,v 2=0.9302,v 3=0Min f =2。

matlab线性规划详解

matlab线性规划详解

matlab线性规划详解用MATLAB 优化工具箱解线性规划命令:x=linprog (c ,A ,b )2、模型: beqAeqX bAX ..min =≤=t s cXz 命令:x=linprog (c ,A ,b ,Aeq,beq )注意:若没有不等式:b AX ≤存在,则令A=[ ],b=[ ]. 若没有等式约束, 则令Aeq=[ ], beq=[ ].3、模型:VUBX VLB beqAeqX b AX ..min ≤≤=≤=t s cXz 命令:[1] x=linprog (c ,A ,b ,Aeq,beq, VLB ,VUB )[2] x=linprog (c ,A ,b ,Aeq,beq, VLB ,VUB, X0)注意:[1] 若没有等式约束, 则令Aeq=[ ], beq=[ ]. [2]其中X0表示初始点4、命令:[x,fval]=linprog(…)返回最优解x及x处的目标函数值fval.例1 max 6543216.064.072.032.028.04.0x x x x x x z +++++= 85003.003.003.001.001.001.0..654321≤+++++x x x x x x t s 70005.002.041≤+x x10005.002.052≤+x x90008.003.063≤+x x6,2,10 =≥j x j解编写M 文件小xxgh1.m 如下:c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6];A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08]; b=[850;700;100;900];Aeq=[]; beq=[];vlb=[0;0;0;0;0;0]; vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)min z=cXb AX t s≤..1、模型:例2 321436min x x x z ++=120..321=++x x x t s301≥x5002≤≤x203≥x解: 编写M 文件xxgh2.m 如下:c=[6 3 4];A=[0 1 0];b=[50];Aeq=[1 1 1];beq=[120];vlb=[30,0,20];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub例3 (任务分配问题)某车间有甲、乙两台机床,可用于加工三种工件。

Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题Matlab是一款强大的数学建模和计算软件,可以用于求解各种数学问题,包括线性规划和整数规划问题。

本文将详细介绍如何使用Matlab来求解线性规划和整数规划问题,并给出相应的示例。

1. 线性规划问题求解步骤线性规划问题是一类数学优化问题,其目标函数和约束条件都是线性的。

求解线性规划问题的普通步骤如下:步骤1:定义决策变量首先,需要定义决策变量。

决策变量是问题中需要优化的变量,通常用符号x1, x2, ..., xn表示。

步骤2:定义目标函数其次,需要定义目标函数。

目标函数是需要最小化或者最大化的线性函数,通常用符号f(x)表示。

例如,最小化目标函数f(x) = c1*x1 + c2*x2 + ... + cn*xn。

步骤3:定义约束条件然后,需要定义约束条件。

约束条件是问题中需要满足的条件,通常用一组线性等式或者不等式表示。

例如,约束条件可以是 a1*x1 + a2*x2 + ... + an*xn <= b。

步骤4:求解线性规划问题最后,使用Matlab的线性规划求解函数进行求解。

Matlab提供了linprog函数来求解线性规划问题。

该函数的基本用法如下:[x, fval] = linprog(f, A, b, Aeq, beq, lb, ub)其中,f是目标函数的系数向量,A和b是不等式约束条件的系数矩阵和右侧常数向量,Aeq和beq是等式约束条件的系数矩阵和右侧常数向量,lb和ub是决策变量的下界和上界。

函数的返回值x是最优解向量,fval是最优解对应的目标函数值。

2. 整数规划问题求解步骤整数规划问题是线性规划问题的一种扩展,要求决策变量必须取整数值。

求解整数规划问题的普通步骤如下:步骤1:定义决策变量同样,首先需要定义决策变量。

步骤2:定义目标函数和约束条件然后,定义目标函数和约束条件,与线性规划问题相似。

步骤3:求解整数规划问题最后,使用Matlab的整数规划求解函数进行求解。

matlab-第10讲-线性规划

matlab-第10讲-线性规划

AX 注意:若没有不等式: ≤ b 存在,则令A=[ ],b=[ ].
3、模型:min z=cX s.t. AX ≤ b Aeq ⋅ X = beq VLB≤X≤VUB 命令:[1] x=linprog(c,A,b,Aeq,beq, VLB,VUB) ( , , , , ) [2] x=linprog(c,A,b,Aeq,beq, VLB,VUB, X0) ( , , , , 注意:[1] 若没有等式约束: Aeq ⋅ X = beq , 则令Aeq=[ ], beq=[ ]. [2]其中X0表示初始点 4、命令:[x,fval]=linprog(…) 返回最优解x及x处的目标函数值fval.
结果: 结果
x= 0.0000 600.0000 0.0000 400.0000 0.0000 500.0000 fval =1.3800e+004 即在甲机床上加工600个工件2,在乙机床上加工400个工件1、 500个工件3,可在满足条件的情况下使总加工费最小为13800。
例2 问题二的解答
改写为:
问题
x1 min z = (40 36) x 2 x1 s.t. (− 5 − 3) ≤ (−45) x 2
编写M文件 如下: 编写 文件xxgh4.m如下: 文件 如下 c = [40;36]; A=[-5 -3]; b=[-45]; Aeq=[]; To Matlab (xxgh4) beq=[]; vlb = zeros(2,1); vub=[9;15]; %调用linprog函数: [x,fval] = linprog(c,A,b,Aeq,beq,vlb,vub)
车床 类型 甲 乙 单位工件所需加工台时数 工件 1 0.4 0.5 工件 2 1.1 1.2 工件 3 1.0 1.3 单位工件的加工费用 工件 1 13 11 工件 2 9 12 工件 3 10 8 可用台 时数 800 900

用MATLAB求解线性规划

用MATLAB求解线性规划
i
数额为 M 的相当大的资金作一个时期的投资。 这 n 种资产 在这一时期内购买 s 的平均收益率为 r ,风险损失率为 q ,
i i i
投资越分散,总的风险越小,总体风险可用投资的 s 中最
i
大的一个风险来度量。 购买 s 时要付交易费,(费率 p ),当购买额不超过给定值u
i
i
i
时,交易费按购买 u 计算。另外,假定同期银行存款利率
i 1 n 1
目标函数: 约束条件: qx ≤a
i i
(1 p )x
i 0
i=0,1,…n
b.若投资者希望总盈利至少达到水平 k 以上,在风险最小的 情况下寻找相应的投资组合。 模型 2 固定盈利水平,极小化风险 目标函数: R= min{max{ qixi}} 约束条件:
实验作业
某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克, 工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人20 名,可获利9万元.今工厂共有原料60千克,工人150名,又由于其 他条件所限甲饮料产量不超过8百箱.问如何安排生产计划,即 两种饮料各生产多少使获利最大.进一步讨论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划.
m in z (6
3
x1 4) x2 x3

s.t .
1 0
解: 编写M文件xxgh2.m如下: c=[6 3 4]; A=[0 1 0]; b=[50]; Aeq=[1 1 1]; beq=[120]; vlb=[30,0,20]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)

Matlab数学规划方法及实验题目

Matlab数学规划方法及实验题目

MATLAB数学规划问题(实验题目及答案在最后)一、线性规划线性规划问题是目标函数和约束条件均为线性函数的问题,MATLAB6.0及更高版本解决的线性规划问题的标准形式为:min n R',f∈xxsub.to:b⋅A≤x⋅Aeq=xbeq≤lb≤xub其中f、x、b、beq、lb、ub为向量,A、Aeq为矩阵。

其它形式的线性规划问题都可经过适当变换化为此标准形式。

在MATLAB6.0版中,线性规划问题(Linear Programming)已用函数linprog取代了MATLAB5.x版中的lp函数。

在6.0和7.0中依然可以使用lp 函数,但在更高版本中,就只能使用linprog函数了。

函数linprog调用格式:x=linprog(f,A,b)x=linprog(f,A,b,Aeq,beq)- 1 -- 1 -x=linprog(f,A,b,Aeq,beq,lb,ub) x=linprog(f,A,b,Aeq,beq,lb,ub,x0) x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options) [x,fval]=linprog(…)[x, fval, exitflag]=linprog(…) [x, fval, exitflag, output]=linprog(…)[x, fval, exitflag, output, lambda]=linprog(…) 说明:x=linprog(f, A, b) %求min f ' *x, sub.to b x A ≤⋅线性规划的最优解。

返回值x 为最优解向量。

x=linprog(f, A, b, Aeq, beq) %含有等式约束beq x Aeq =⋅,若没有不等式约束b x A ≤⋅,则令A=[ ],b=[ ]。

x = linprog(f, A, b, Aeq, beq, lb, ub) %指定x 的范围ub x lb ≤≤ x=linprog(f, A, b, Aeq, beq, lb, ub, x0) %设置x0为初值点。

线性规划问题Matlab求解

线性规划问题Matlab求解

线性规划问题Mat lab求解(总6页) '-CAL-FENGHAI.-(YICAI)-Company One 1・CAL・本页仅作为文档封面.傳用请直接删除用MATLAB优化匸具箱解线性规划命令:inprog (c・ A・ b)命令:x=linprog (c・ A・ b・ Aeq, beq)注总:若没冇不等式:存在.则令A=[ ]. b=[].若没冇尊式约束,则令Ae Q=[ ], be Q=[ J.命令:[1] x=linprog (c・ A・ b, Aeq, beq, VLB. VUB)x=linprog (c. A・ b・ Aeq, beq, VLB. WB, XO)注直[1]若没有等式约束,则令Aeq=〔], be Q=[].⑵其中X0表示初始点4、命令:[x, f\wl]=linDrog(…)返回股优昭$及x处的目标函数值fval.例1昭编写K文件小如卜•:c=[ ];A=[ :0 0 0 0:0 0 0 0:0 0 0 0 ]:b=[S50:700:100:900]:Aeq=[I: beQ=[]:vlb=[0:0:0;0:0:0]: vub=[]:[x, fval]=linprog(c, A, b, Aeq, beq, vlb, vub)例2解:編写M文件如卜•:c=[6 3 4]:A=[0 1 0]:b二[50::Aeq=[l 1 1]:beq=[120]:vlb=[30, 0, 20]:vub=[]:M,fval:=linprog(c. A, b, Aeq,beQ,vlb,vub例3 (任务分配问题)某车何有甲、乙两台机床.叩用干加工三种工件。

假定这两台车床的对用台时数分别为SO0和900・三种匸件的数敞分别为100.600 fil 500・且已知用三种不同车床加工单位数fit不同工件所需的台时数和加工费用如卜表.问怎样分配车床的加工任务.才能既满足加工工件的要求.又使加工费用说低解设在甲车床上加工工件1、2、3的数fit分别为xl、x2、x3.在乙车床上加工工件匚2、3的数H分别为x4、x5. x6o可建立以下统性规划模型:編写M文件如卜•:f = C13 9 10 11 12 S]:A = [ 10 0 00 0 0 ]:b = :SOO; 900]:AeQ=;l 001000 10 0 100 0 1 0 0 1]:beQ=I100 600 500;:vlb = zeros(6, 1):vub=:]:[x, fval] = 1 inprog (f, A, b, Aeq, beq, vlb, vub)例4・某厂毎日S小时的产纯不低于1SOO件。

用MATLAB求解线性规划问题

用MATLAB求解线性规划问题

用MATLAB 求解线性规划问题这里X 是问题的解向量,f 是由目标函数的系数构成的向量,A 是一个矩阵,b 是一个向量,A ,b 和变量x={x 1,x 2,…,x n }一起,表示了线性规划中不等式约束条件,A ,b 是系数矩阵和右端向量。

Aeq 和Beq 表示了线性规划中等式约束条件中的系数矩阵和右端向量。

LB 和UB 是约束变量的下界和上界向量,X0是给定的变量的初始值,options 为控制规划过程的参数系列。

返回值中fval 是优化结束后得到的目标函数值。

exitflag=0表示优化结果已经超过了函数的估计值或者已声明的最大迭代次数;exitflag>0表示优化过程中变量收敛于解X ,exitflag<0表示不收敛。

output 有3个分量,iterations 表示优化过程的迭代次数,cgiterations 表示PCG 迭代次数,algorithm 表示优化所采用的运算规则。

lambda 有4个分量,ineqlin 是线性不等式约束条件,eqlin 是线性等式约束条件,upper 是变量的上界约束条件,lower 是变量的下界约束条件。

它们的返回值分别表示相应的约束条件在约束条件在优化过程中是否有效。

例1:某工厂生产A ,B 两种产品,所用原料均为甲、乙、丙三种:生产一件产品所需原料和所获利设生产A 产品1x 件,生产B 产品2x 件,z 为所获利润,我们将问题归结为如下的线性规划问题:12min {(700010000)}x x -+s.t. 121212863804830046220x x x x x x +≤⎧⎪+≤⎨⎪+≤⎩接着写出Matlab 程序如下:clearf=-[7000,10000];A=[8,6;4,8;4,6];b=[380,300,220];[X,fval]=linprog(f,A,b)运行结果为:>> Optimization terminated successfully.X =40.000010.0000fval = -3.8000e+005例2:求解下面的线性规划问题:123min {546}x x x ---s.t. 12320x x x -+≤12332442x x x ++≤123230x x +≤10x ≤,20x ≤,30x ≤解决上述问题的Matlab 程序为:clearf=-[5,4,6];A=[1,-2,1;3,2,4;3,2,0];b=[20,42,30];LB=[0;0;0];[X,fval,exitflag,output,lambda]=linprog(f,A,b,[],[],LB)程序运行的结果为:Optimization terminated successfully.X = 0.000015.00003.0000fval = -78.0000exitflag = 1output = iterations: 6cgiterations: 0algorithm: 'lipsol' lambda = ineqlin: [3x1 double]eqlin: [0x1 double]upper: [3x1 double]lower: [3x1 double]。

(完整版)数学建模复习内容带习题答案

(完整版)数学建模复习内容带习题答案

考试内容分布:1、线性规划2题,有1题需编程;2、非线性规划2题,有1题需编程;3、微分方程1题,需编程;4、差分方程2题,纯计算,不需编程;5、插值2题,拟合1题,纯计算,不需编程;;6、综合1题(4分),纯计算,不需编程。

一、列出下面线性规划问题的求解模型,并给出matlab计算环境下的程序1.某车间有甲、已两台机床,可用于加工三种工件,假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400,600和500,且已知用两种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。

问怎样分配车床的加工任务,才能即满足加工工件的要求,又使加工费用最低。

(答案见课本P35, 例1)2.有两个煤厂A,B,每月进煤分别不少于60t、100t,它们负责供应三个居民区的用煤任务,这三个居民区每月需用煤分别为45t, 75t, 40t。

A厂离这三个居民区分别为10km, 5km, 6km,B厂离这三个居民区分别为4km, 8km, 15km,问这两煤厂如何分配供煤,才能使总运输量最小?(1)问题分析设A煤场向这三个居民区供煤分别为x1,x2,x3;B煤场向这三个居民区供煤分别为x4,x5,x6,则min f=10*x1+5*x2+6*x3+4*x4+8*x5+15*x6,再根据题目约束条件来进行解题。

(2) 模型的求解>> f=[10 5 6 4 8 15];>> A=[-1 -1 -1 0 0 00 0 0 -1 -1 -1-1 0 0 -1 0 00 -1 0 0 -1 00 0 -1 0 0 -1];>> b=[-60;-100;-45;-75;-40];>> Aeq=[];>> beq=[];>> vlb=zeros(6,1);>> vub=[];>> [x,fval]=linprog(f,A,b,Aeq,beq,vlb,vub)Optimization terminated.(3)结果分析x =0.0000 20.0000 40.0000 45.0000 55.0000 0.0000fval = 960.0000即A 煤场分别向三个居民区供煤0t,20t,40t ;B 煤场分别向三个居民区供煤45t,55t,0t 可在满足条件下使得总运输量最小。

matlab解决线性规划

matlab解决线性规划
开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。
您生活愉快! 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。
忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆缺。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪,
一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每 一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!
2.5.3 用MATLAB软件解线性规划范例
2.5.3 用MATLAB软件解线性规划范例
2.5.3 用MATLAB软件解线性规划范例
2.5.3 用MATLAB软件解线性规划范例
2.5.3 用MATLAB软件解线性规划范例
2.5.3 用MATLAB软件解线性规划范例
2.5.3 用MATLAB软件解线性规划范例
弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时,
你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏
识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使

如何在Matlab中进行线性规划问题求解

如何在Matlab中进行线性规划问题求解

如何在Matlab中进行线性规划问题求解线性规划(Linear Programming,LP)是数学规划的一个重要分支,其能够高效地解决许多实际问题。

在工业、运输、金融等领域中,线性规划的应用十分广泛。

而Matlab作为一种功能强大的数学软件,也提供了许多工具和函数用于线性规划问题的求解。

本文将介绍在Matlab中进行线性规划问题求解的基本步骤和常用函数。

一、线性规划概述线性规划是一种寻找线性目标函数在线性约束条件下的最优解的方法。

通常情况下,线性规划问题可以表示为:max/min z = c^T * xsubject to A * x <= bx >=0其中,c和x是n维向量,A是m×n的矩阵,b是m维向量。

目标是求解向量x的取值,使得目标函数c^T * x在满足约束条件A * x <= b和x >=0的前提下,取得最大(或最小)值z。

二、Matlab中线性规划求解函数Matlab中提供了多个函数用于线性规划问题的求解,其中最常用的是“linprog”函数。

linprog函数的基本语法如下所示:[x, fval, exitflag, output] = linprog(f, A, b, Aeq, beq, lb, ub, options)其中,参数f是目标函数的系数向量,A和b是不等式约束的矩阵和右侧向量,Aeq和beq是等式约束的矩阵和右侧向量,lb和ub分别是变量的下界和上界向量,options是优化选项。

三、解决实际问题的例子假设有一家电子公司,为了提高利润,决定如何分配生产资源。

公司生产三种产品A、B、C,每种产品所需的生产时间分别为5小时、10小时和15小时。

已知公司每周的生产时间为80小时,每单位产品的利润分别为5、8和10。

现在问题是如何分配生产时间,使得总利润最大化。

首先,我们需要确定目标函数和约束条件。

根据题意,我们可以将目标函数设置为z = 5*x(1) + 8*x(2) + 10*x(3),其中x(1)、x(2)和x(3)分别表示产品A、B、C的生产数量。

用MATLAB求解线性规划

用MATLAB求解线性规划
划。
模型 1 固定风险水平,优化收益
目标函数: 约束条件:
n 1
Q=MAX (ri pi )xi
i 1
qi xi ≤a
M
(1 p )x M , ii
xi≥ 0
i=0,1,…n
b.若投资者希望总盈利至少达到水平 k 以上,在风险最小的 情况下寻找相应的投资组合。
模型 2 固定盈利水平,极小化风险
从 a=0 开始,以步长△a=0.001对下列组合投资模型求解, 并绘图表示 a 与目 标函数最优值 Q 的对应关系:
max s.t.
Q = (-0.05, -0.27, -0.19, -0.185, -0.185) (x0,x1,x2,x3,x4) T
x0 + 1.01x1 + 1.02x2 +1.045x3 +1.065x4 =1
目标函数: R= min{max{ qixi}} 约束条件:
n
(r i
p )x
i
i
≥k,
i0
(1 pi )xi M , xi≥ 0
i=0,1,…n
c.投资者在权衡资产风险和预期收益两方面时,希望选择 一个令自己满意的投资组合。
因此对风险、收益赋予权重 s(0<s≤1),s 称为投资偏好 系数.
2.当投资越分散时,投资者承担的风险越小,这与题意一致。即: 冒险的投资者会出现集中投资的情况,保守的投资者则尽量分散投资。
3.曲线上的任一点都表示该风险水平的最大可能收益和该收益要求的最 小风险。对于不同风险的承受能力,选择该风险水平下的最优投资组合。
4.在a=0.006附近有一个转折点,在这一点左边,风险增加很少时,利润增长
符号规定:
Si
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、用MATLAB 求解线性规划问题
(1) 编写的M 文件为:
f=[-1;-1]
A=[1 -2;1 2]
b=[4,8]
[x,feval]=linprog(f,A,b,[],[],zeros(2,1))
所求解为:x 1=6,x 2=1;min f=-7
(2) 编写的M 文件为:
f=[-4;-3]
A=[3 4;3 3;4 2]
b=[12;10;8]
[x,feval]=linprog(f,A,b,[],[],zeros(1,2))
所求得的解为:x 1=0.8,x 2=2.4;max f=10.4
(3)
(4) 编写的M 文件为:
f=[-1;-3;3]
Aeq=[1 1 2;-1 2 1]
beq=[4;4]
[x,feval]=linprog(f,[],[],Aeq,beq,zeros(3,1))
所求得的结果为:x 1=4/3,x 2=8/3,x 3=0;max f=28/3。

12121212min 24s.t.28,0f x x x x x x x x ì=--ïïïï-?镲íï+?ïïï³ïî121212121243max 3412..3310428,0f x x x x s t x x x x x x ì=+ïïïï+?ïïï+?íïïï+?ïïï³ïî
12312312313min 3s.t.211423210(1,2,3)j f x x x x x x x x x x x x j =--ìïïïï-+?ïïïï-++?íïï-+=ïïïïï?ïî123123123max 3s.t.24240(1,2,3)
j f x x x x x x x x x x j =+-ìïïïï++=ïïí-++=ïïïïï?ïîmin s.t.1f x y z x y ìï=++ïïï+?í
(5)(选做)
先做如下转化:
% x=u1-v1,,y=u2-v2,,z=u3-v3
% min f=u1+u2+u3+v1+v2+v3
% s.t. u1+u2-v1-v2<=1
% 2*u1+u3-2*v1-v3=3
则编写的M文件为:
f=[1;1;1;1;1;1]
A=[1 1 0 -1 -1 0]
b=1
Aeq=[2 0 1 -2 0 -1]
beq=3
[x,feval]=linprog(f,A,b,Aeq,beq,zeros(6,1))
所求得的结果为:u1=1.0936,u2=0,u3=0.8192,v1=0,v2=0.9302,v3=0
Min f =2。

二、某机构现在拥有资本200万元,为了获取更大的收益,该机构决定将这200万元
进行投资,以期最大回报,现在共有四个方案可供选择,投资的方式为每年初将机构持有的所有资本都用于投资。

方案1:从第1年到第4年的每年年初都需要投资,次年末回收本利1.15
方案2:第3年初投资,到第5年末收回本利1.25,最大投资额为80万元
方案3:第2年初投资,到第5年末收回本利1.40,最大投资额为60万元
方案4:每年初投资,每年末收回本利1.06
那么应该采用何种投资组合策略,使得该机构5年末的总资本最大?
三、某饲养场有5种饲料.已知各种饲料的单位价格和每百公斤饲料的蛋白质、矿物质、
维生素含量如表所示,又知该场每日至少需蛋白质70单位、矿物质3单位、维生素10毫单位.间如何混合调配这5种饲料.才能使总成本最低?
解:设五种饲料的使用量分别为x1,x2,x3,x4,x5。

所用饲料的总成本为f。

则该问题的线性规划模型为:
()12345
123451234512345min 274350.30 2.20.06 1.8700.10.050.020.200.0530.050.10.020.20.081001,2,3,4,5j f x x x x x x x x x x x x x x x x x x x x x j =++++++++≥⎧⎪++++≥⎪⎨++++≥⎪⎪≥=⎩
所编写的M 文件为:
f=[2;7;4;3;5]
A=[-0.3 -2.2 -1.00 -0.06 -1.80;-0.10 -0.05 -0.02 -0.20
-0.05;-0.05 -0.10 -0.02 -0.20 -0.08]
b=[-70;-3;-10]
[x,feval]=linprog(f,A,b,[],[],zeros(5,1))
解得的结果为:x 1=0,x 2=0,x 3=0,x 4=34.9,x 5=37.8;min f=293.4
总上即知按如上使用才能使总成本最低为293.4元。

四、设有两个建材厂C1和C2,每年沙石的产量分别为35万吨和55万吨,这些沙石需要供应到W1、W2和W3三个建筑工地,每个建筑工地对沙石的需求量分别为26万吨、38万吨和26万吨,各建材厂到建筑工地之间的运费(万元/万吨)如表所示,问题是应当怎么调运才能使得总运费最少?
解:设c 1往w 1,w 2,w 3运送的沙石分别为x 1,x 2,x 3;c 2往w 1,w 2,w 3分别为x 4,x 5,x 6.总运费为f 则该问题的线性规划模型为:
()
123456
123456
1425
36min 1012981113355526382601,2,3,4,5,6j f x x x x x x x x x x x x x x x x x x x j =+++++++=⎧⎪++=⎪⎪+=⎪⎨+=⎪⎪+=⎪≥=⎪⎩
所编的M 文件为:
f=[10;12;9;8;11;13]
Aeq=[1 1 1 0 0 0;0 0 0 1 1 1;1 0 0 1 0 0;0 1 0 0 1 0;0 0 1 0 0 1] beq=[35;55;26;38;26]
[x,feval]=linprog(f,[],[],Aeq,beq,zeros(6,1))
所得的结果为:x 1=0,x 2=9,x 3=26,x 4=26,x 5=29,x 6=0;
Min f=869
综上即知最低运费为869元。

相关文档
最新文档