三维建模毕业答辩论文英文文献翻译
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三维建模毕业答辩论文英文文献翻译
毕业设计(论文)
文献翻译
题目矿山测量三维模型制作学院测绘科学与技术学院专业测绘工程
班级0802班
学生史姝
学号0810020205
指导教师汤伏全
二〇一二年六月二日
Constructing Rules and Scheduling Technology for
3D Building Models
Zhengwei SUI, Lun WU, Jingnong WENG, Xing LIN, Xiaolu JI
Abstract
3D models have become important form of geographic data beyond conventional 2D geospatial data. Buildings are important marks for human to identify their environments, because they are close with human life, particularly in the urban areas. Geographic information can be expressed in a more intuitive and effective manner with architectural models being modeled and visualized in a virtual 3D environment. Architectural model data features with huge data volume, high complexity, non-uniform rules and so on. Hence, the cost of constructing large-scale scenes is high. Meanwhile, computers are lack of processing capacity upon a large number of model data. Therefore, resolving the conflicts between limited processing capacity of computer and massive data of model is valuable. By investigating the characteristics of buildings and the regular changes of viewpoint in virtual 3D environment, this article introduces several constructing rules and scheduling techniques for 3D constructing of buildings, aiming at the reduction of data volume and complexity of model and thus improving computers’ eff iciency at scheduling large amount of
architectural models. In order to evaluate the efficiency of proposed constructing rules and scheduling technology listed in the above text, the authors carry out a case study by 3D constructing the campus of Peking University using the proposed method and the traditional method. The two results are then examined and compared from aspects of model data volume, model factuality, speed of model loading, average responding time during visualization, compatibility and reusability in 3D geo-visualization platforms: China Star, one China’s own platform for 3D global GIS manufactured by the authors of this paper. The result of comparison reveals that models built by the proposed methods are much better than those built using traditional methods. For the constructing of building objects in large-scale scenes, the proposed methods can not only reduce the complexity and amount of model data remarkably, but can also improving computers’ efficiency.
Keywords: Constructing rules, Model scheduling, 3D buildings
I. INTRODUCTION
In recent years, with the development of 3D GIS (Geographical Information System) software like Google Earth, Skyline, NASA World Wind, large-scale 3D building models with regional characteristics have become important form of geographic data beyond conventional 2D geospatial data, like multi-resolution remote sensing images and vector data [1].Compared to traditional 2D representation, geographic information can be expressed in a more intuitive and effective manner with architectural models being modeled and visualized in a virtual 3D environment. 3D representation and visualization provides better visual effect and vivid urban geographic information, and thus plays an important role in people's perceptions of their environment. Meanwhile, the 3D building data is also of great significance for the construction of digital cities.
But how to efficiently visualize thousands of 3D building models in a virtual 3D environment is not a trivial question. The most difficult part of the question is the conflicts between limited processing capacity of computer and massive volume of model data, particularly in the procedure of model rendering. Taking the 3D modeling of a city for the example using traditional 3D modeling method, suppose there are 100 000 buildings to model in the urban area and the average size of model data for each building is roughly 10 M. So the total data volume of building models in the city could reach a TB level. However, the capacity of ordinary computer memory is only in the GB scale. Based on this concern, the authors proposed the scheduling technology for large-scale 3D buildings models in aspects of model loading and rendering. Due to the lack of building