基于小波变换的脑电信号特征提取讲解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7
重庆邮电大学
二、小波变换
小波变换与傅里叶变换的比较:
小波分析是在傅里叶分析的基础上发展起来的,但小波分析与傅里叶分析存 在着极大的不同,与Fourier变换相比,小波变换是空间(时间)和频率的局部变 换,因而能有效地从信号中提取信息。通过伸缩和平移等运算功能可对函数或信 号进行多尺度的细化分析,解决了Fourier变换不能解决的许多困难问题。小波变 换联系了应用数学、物理学、计算机科学、信号与信息处理、图像处理、地震勘 探等多个学科。
小波本身是紧支撑的,即只有小的局部非零定义域,在窗口之外函数为零; 本身是振荡的,具有波的性质,并且完全不含有直流趋势成分,即满足
?
? ? (0) ? ? (x)dx ? 0 ??
11 重庆邮电大学
二、小波变换
为什么选择小波:
小波提供了一种非平稳信号的时间-尺度分析手段,不同于FT方法,与STFT方 法比较具有更为明显的优势
5
重庆邮电大学
源自文库
一、脑电信号特点及一般处理流程
小波变换
CSP AR 特征提取的主要方法(滤波器): AAR FFT HHT
LDA SVM 模式分类的主要方法(分类器): BP人工神经网络 贝叶斯分类法
最后,将分类好的EEG信号以指令形式用于控制外部设备。
6
重庆邮电大学
二、小波变换
小波发展史:
小波变换是近十几年新发展起来的一种数学工具,是继一百多年前的傅里叶 (Fourier)分析之后的又一个重大突破,它对无论是古老的自然学科还是新兴的高 新应用技术学科均产生了强烈的冲击。
1909: Alfred Haar——发现了Haar小波。 1980:Morlet——Morlet小波,并分别与20世纪70年代提出了小波变换的概念,
20世纪80年代开发出了连续小波变换CWT( continuous wavelet transform ) 1986:Y.Meyer ——提出了第一个正交小波Meyer小波 1988: Stephane Mallat——Mallat快速算法(塔式分解和重构算法)
窗” 的宽度,检测高频信号时变窄,检测低频信号时变宽。这正是时间--频率分析所 希望的。根据小波变换的 “时间—频率窗” 的宽度可变的特点,为了克服上面
所 述的第三个不足,只要不同时检测高频与低频信息,问题就迎刃而解了。
9
重庆邮电大学
二、小波变换
小波是什么?
小波可以简单的描述为一种函数,这种函数在有限时间范围内变化,并且平 均值为0。这种定性的描述意味着小波具有两种性质:
(2)克服第二个不足:由于小波函数具有紧支撑的性质即某一区间外为零。 这样在求各频率水平不同时刻的小波系数时,只用到该时刻附近的局部信息。从 而克服了上面所述的第二个不足。
(3)克服第三个不足:通过与加窗傅立叶变换的“时间—频率窗”的相似分 析,可得到小波变换的“时间—频率窗”的笛卡儿积。小波变换的“时间--频率
3
重庆邮电大学
一、脑电信号特点及一般处理流程
?频率低。脑电信号是低频率的慢变信号,通常频率范围0.5—100Hz。 根据频率可把脑电信号分为以下几个基本节律:
δ波:频率:0.5~4Hz,振幅:20~200μV。 θ波:频率:4~7Hz,振幅:20~150μV。 α 波:频率:8~13Hz,振幅:20~100μV。 β 波:频率:14~30Hz,振幅:5~20μV。 γ波:频率:30~45Hz,振幅:一般不超过30μV。
傅里叶闭环具有一定的局限性。 ? 用傅立叶变换提取信号的频谱需要利用信号的全部时域信息。 ? 傅立叶变换没有反映出随着时间的变化信号频率成分的变化情况。 ? 傅立叶变换的积分作用平滑了非平稳信号的突变成分。
由于上述原因,必须进一步改进,克服上述不足,这就导致了小波分析。
8
重庆邮电大学
二、小波变换
(1)克服第一个不足:小波系数不仅像傅立叶系数那样,是随频率不同而变 化的,而且对于同一个频率指标j, 在不同时刻 k,小波系数也是不同的。
A、具有有限的持续时间和突变的频率和振幅; B、在有限时间范围内平均值为0。
10 重庆邮电大学
二、小波变换
小波的“容许”条件:
用一种数学的语言来定义小波,即满足“容许”条件的一种函数,“容许” 条件
非常重要,它限定了小波变换的可逆性。? ? (? ) 2
? ( x ) ? ? (? )
? C? ? ? ? ? d? ? ?
? 脑电信号具有非线性。脑电信号是大脑中各种神经元之间相互作用的信号的复杂
组合,组合的非线性导致脑电信号具有非线性的特点。
? 信噪比低。在维持正常生理活动的条件下,生物体的各个基本系统之间存在着有机
的联系,因而在脑电信号中存在着严重的背景噪声,而且噪声常常超过信号,导致信 噪比很低。
? 信号微弱。人体脑电信号的强度很微弱,一般在微、毫伏级 。
基于小波变换的EEG(脑电信号)特征提取
姓名: 学号:
复旦大学
Contents
一、EEG特点及一般处理流程 二、小波变换 三、基于小波变换的 EEG 特征提取
2
重庆邮电大学
一、脑电信号特点及一般处理流程 脑电信号特点:
? 随机性及非平稳性相当强。人脑是一个庞大而复杂的系统,按生理功能可分为
许多基本环节,这些基本环节的生理活动相互影响、相互渗透地交织在一起,而其中 存在的联系、制约关系及活动规律还没有被我们清楚地认识。因而,脑电信号表现出 明显的随机性,一般不能用数学函数来准确表达,它们的规律主要从大量的统计结果 中反映出来。
度 幅
时间






时间
12 重庆邮电大学
二、小波变换
小波变换的定义:
小波变换是一种信号的时间——尺度(时间——频率)分析方法,它具有多 分辨分析的特点,而且在时频两域都具有表征信号局部特征的能力,是一种窗口 大小固定不变但其形状可改变,时间窗和频率窗都可以改变的时频局部化分析方 法。即在低频部分具有较低的时间分辨率和较高的频率分辨率,在高频部分具有 较高的时间分辨率和较低的频率分辨率,很适合于分析非平稳的信号和提取信号 的局部特征,所以小波变换被誉为分析处理信号的显微镜。在处理分析信号时, 小波变换具有对信号的自适应性,也是一种优于傅里叶变换和窗口傅里叶变换的 信号处理方法。
4
重庆邮电大学
一、脑电信号特点及一般处理流程 一般处理流程:
脑电信号 BBCCII信信号号采采集集
EEG
特征提取 反馈
特征向量 模式识别分类
控制命令 控制装置
外部设备
采集:各种脑电采集的电极帽。
例如有:ECI 公司的 128 通道 Ag/AgCl 电极帽,还有如图所示 的Emotiv SDK Headset采集帽, 常用采样频率为128Hz。
相关文档
最新文档