苏教版七年级数学第七章平面图形的认识(二)单元测试试题
(word完整版)苏科版七年级下《第7章平面图形的认识(二)》单元测试题含答案,推荐文档

第7 章平面图形的认识(二)一、选择题(本大题共 6 小题,每小题 4 分,共 24 分;在每个小题列出的四个选项中,只有一项符合题意)1.如图7-Z-1 所示的四个图形中,∠1和∠2是同位角的是( )图 7-Z-1A.②③B.①②③C.①②④D.①④2.下列图形中,不能通过其中一个四边形平移得到的是( ),A) ,B),C) ,D)图 7-Z-23.如图 7-Z-3,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是( )图 7-Z-3A.AC 是△ABC 的高 B.DE 是△BCD 的高C.DE 是△ABE 的高 D.AD 是△ACD 的高4. 如图7-Z-4,BE∥AF,D 是AB 上一点,且DC⊥BE 于点C,若∠A=35°,则∠ADC 的度数为( )图7-Z-4A.105°B.115°C.125°D.135°5.若一个多边形的每一个外角都是24°,则此多边形的内角和为( )A.2160°B.2340°C.2700°D.2880°6.将一张长方形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360°B.540°C.720°D.900°二、填空题(本大题共 6 小题,每小题 5 分,共 30 分)7.如图 7-Z-5,直线AB,CD 被直线EF 所截,若要AB∥CD,需增加条件:.(填一个即可)图 7-Z-58.若一个三角形的三边长分别为2,3,x,则x 的值可以为.(只需填一个整数)9.如图7-Z-6,点D,E 分别在AB,BC 上,DE∥AC,AF∥BC,∠1=70°,则∠2=°.图 7-Z-610.如图7-Z-7,已知AB∥CD,直线EF 与AB,CD 分别交于点E,F,EG 平分∠BEF.若∠1=50°,则∠2的度数为.图 7-Z-711.如图7-Z-8 所示,∠A+∠B+∠C+∠D+∠E+∠F=.图 7-Z-812.某中学校园内有一块长30 m,宽22 m 的草坪,中间有两条宽2 m 的小路,把草坪分成了4 块,如图7-Z-9 所示,则草坪的面积为.图 7-Z-9三、解答题(共 46 分)13.(8 分)如图 7-Z-10,在方格纸内将△ABC 水平向右平移 4 个单位长度得到△A′B′C′(每个小方格的边长为 1 个单位长度).(1)画出△A′B′C′;(2)画出AB 边上的中线CD 和高线CE(利用网格和直尺画图);(3)△BCD 的面积为.图 7-Z-1014.(8 分)如图 7-Z-11,已知∠1=∠2,∠B=100°,求∠D 的度数.图 7-Z-1115.(8 分)已知一个多边形的所有内角的和与它的外角之和为1620°,求这个多边形的边数n..(10 分)如图 7-Z-12,四边形ABCD 中,∠BAD=100°,∠BCD=70°,点M,N 分别在AB,BC 上,将△BMN 沿MN 翻折,得到△FMN.若MF∥AD,FN∥DC,求∠B 的度数.图 7-Z-1217.(12 分)如图 7-Z-13,在△ABC 中,AD⊥BC 于点D,AE 平分∠BAC,∠B=70°,∠C=30°.求:(1)∠BAE 的度数; (2)∠DAE 的度数.图 7-Z-13教师详解详析1.C [解析] 根据同位角的定义进行判断.2.D 3.C 4.C 5. B6.D [解析] ①将长方形沿对角线剪开,得到两个三角形,两个多边形的内角和为180°+180°=360°;②将长方形从一顶点剪向对边,得到一个三角形和一个四边形,两个多边形的内角和为180°+360°=540°;③将长方形沿一组对边剪开,得到两个四边形,两个多边形的内角和为360°+360°=720°.故选D.7.答案不唯一,如∠EGB=∠EHD 等8.答案不唯一,如 2 或3 或4,只要填其中一个即可[解析] 根据三角形的三边关系“三角形两边之和大于第三边;三角形两边之差小于第三边”得 3-2<x<3+2,即 1<x<5.因为x 为整数,所以x=2 或 3 或 4.9.70 [解析] 因为DE∥AC,所以∠C=∠1=70°.又因为AF∥BC,所以∠2=∠C=70°.故答案为 70.10.65° [解析] 因为AB∥CD(已知),所以∠1+∠BEF=180°(两直线平行,同旁内角互补).又因为∠1=50°(已知),所以∠BEF=130°(等式的性质).又因为EG 平分∠BEF(已知),所以∠FEG=∠BEG=65°(角平分线的定义).因为AB∥CD(已知),所以∠2=∠BEG=65°(两直线平行,内错角相等).11.360°12.560 m2 [解析] (30-2)×(22-2)=560(m2).13.解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,CD,CE 即为所求.(3)414.解:由∠1=∠AEF,∠1=∠2,得∠AEF=∠2,所以AB∥CD(同位角相等,两直线平行),所以∠B+∠D=180°(两直线平行,同旁内角互补).因为∠B=100°,所以∠D=80°.15.解:根据题意,得(n-2)·180°+360°=1620°,解得n=9.16.解:因为MF∥AD,FN∥DC,所以∠BMF=∠A=100°,∠BNF=∠C=70°(两直线平行,同位角相等).因为△BMN 沿MN 翻折,得到△FMN,1所以∠BMN=2∠BMF=50°,1∠BNM=2∠BNF=35°.在△BMN 中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.17.解:(1)因为∠B+∠C+∠BAC=180°,所以∠BAC=180°-∠B-∠C=180°-70°-30°=80°.因为AE 平分∠BAC,1所以∠BAE=2∠BAC=40°.(2)因为AD⊥BC,所以∠ADB=90°.而∠ADB+∠B+∠BAD=180°,所以∠BAD=180°-∠ADB-∠B=20°,所以∠DAE=∠BAE-∠BAD=40°-20°=20°.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
苏教版七年级下册第7章 平面图形的认识(二) 单元检测(含答案)

第7章平面图形的认识(二) 单元检测[时间:45分钟分值:100分]一、选择题(本大题共10小题,每小题3分,共30分;在每个小题列出的四个选项中,只有一项符合题意)1.如图-1,与∠B是同旁内角的角有()A.1个B.2个C.3个D.4个图-12.如图-2所示,下列推理及括号中所注明的推理依据错误的是()图-2A.因为∠1=∠3,所以AB∥CD(内错角相等,两直线平行)B.因为AB∥CD,所以∠1=∠3(两直线平行,内错角相等)C.因为AD∥BC,所以∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.因为∠DAM=∠CBM,所以AB∥CD(两直线平行,同位角相等)3.以下列长度的线段为边能构成三角形的是()A.1 cm,2 cm,3 cm B.2 cm,3 cm,4 cmC.4 cm,4 cm,9 cm D.1 cm,2 cm,4 cm4.若一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形5.如图-3,在△ABC中,BC=5,∠A=70°,∠B=75°,把△ABC沿BC方向平移到△DEF的位置,若CF=3,则下列结论错误的是()A.BE=3 B.∠F=35°C.DF=5 D.AB∥DE图-36.如-4,AD是△ABC的中线,DE是△ADC的中线,已知△ABC的面积为10,则△ADE 的面积为()图-4A.5 B.3 C.2.5 D.27.如图-5,已知l1∥AB,AC为∠DAB的平分线,下列选项错误的是()A.∠1=∠4 B.∠1=∠5C.∠2=∠3 D.∠1=∠3图-58.如图-6,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D,E,F,则△ABC 中BC边上的高是()图-6A.CF B.BE C.AD D.CD9.如图-7,将一副三角尺叠放在一起,使两直角顶点重合于点O,AB∥OC,DC与OB相交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°图-710.如图-8,∠B=∠C,∠A=∠D,有下列结论:①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC=∠BND.其中正确的是()图-8A.①②④B.②③④C.③④D.①②③④二、填空题(本大题共8小题,每小题3分,共24分)11.一个n边形的每个外角都是45°,则这个n边形的内角和是________.12.如图-9,现给出下列条件:①∠1=∠B;②∠2=∠5;③∠3=∠4;④∠BCD+∠D=180°.其中能够得到AB∥CD的是________.(填序号)图-913.如图-10,AB∥CD,直线EF与AB,CD分别交于M,N两点,将一个含有45°角的三角尺按图中所示的方式摆放.若∠EMB=75°,则∠PNM的度数为________.图-1014.一个三角形两边的长分别为3和6,若第三边长为奇数,则此三角形的周长为________.15.在△ABC 中,若∠A =12∠B =13∠C ,则∠A =________°,△ABC 是________三角形.16.某中学校园内有一块长30 m ,宽22 m 的长方形草坪,中间有两条宽2 m 的小路,把草坪分成了4块,如图-11所示,则草坪的面积为________.图-1117.如果一个多边形的内角和为1620°,那么过这个多边形的一个顶点可以画________条对角线.18.如图-12所示,∠A +∠B +∠C +∠D +∠E +∠F = ________°.图-12三、解答题(共46分)19.(6分)如图-13,在网格纸中(每个小正方形的边长均为1),将格点三角形ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′;(2)连接AA′,BB′,则线段AA′与BB′的数量关系是________,位置关系是________;(3)求△A′B′C′的面积.图-1320.(5分)如图-14,直线EF与直线AB,CD分别相交于点M,N,且∠1=∠2,MO,NO分别平分∠BMF和∠END,试判断△MON的形状,并说明理由.图-1421.(6分)如图-15,六边形ABCDEF的内角都相等,∠F AD=60°.(1)求∠ADE的度数;(2)试说明:AD∥BC.图7-Z-1522.(9分)如图-16,在△ABC中,AD⊥BC于点D,AE平分∠BAC,∠B=70°,∠C =30°.(1)求∠BAE的度数.(2)求∠DAE的度数.(3)探究:如果将条件“∠B=70°,∠C=30°”改成“∠B-∠C=40°”,你还能得出∠DAE的度数吗?若能,请写出求解过程;若不能,请说明理由.图-1623.(10分)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当三角形PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系是_________.(2)当三角形PMN所放位置如图②所示时,求证:∠PFD —∠AEM =90°.(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.24.(10分)(1)如图1,∠MON=70°,点A、B分别在射线OM、ON上移动,△AOB的角平分线AC与BD交于点P.试问:随着点A、B位置的变化,∠APB的大小是否会变化?若保持不变,请求出∠APB的度数.若发生变化,求出变化范围.(2)如图2,画两条相交的直线OX、OY,使∠XOY=60°,①在射线OX、OY上分别再任意取A、B两点,②作∠ABY的平分线BD,BD的反向延长线交∠OAB的平分线于点C,随着点A、B位置的变化,∠C的大小是否会变化?若保持不变,请求出∠C的度数.若发生变化,求出变化范围.答案解析1.[解析] C根据同旁内角的定义,图中与∠B是同旁内角的角有3个,分别是∠BAC,∠BEF,∠ACB.故选C.2.D3.B4.[解析] C n边形的内角和为(n-2)×180°,所以设边数为n,可列方程(n-2)×180=108n,解得n=5.5.[解析] C因为把△ABC沿BC的方向平移到△DEF的位置,BC=5,∠A=70°,∠B =75°,所以CF=BE=3,∠F=∠ACB=180°-∠A-∠B=180°-70°-75°=35°,AB∥DE,所以A,B,D正确,C错误.故选C.6.[解析] C因为AD是△ABC的中线,△ABC的面积为10,所以S△ADC=12S△ABC=12×10=5.因为DE是△ADC的中线,所以S△ADE=12S△ADC=12×5=2.5.故选C.7.[解析] B因为l1∥AB,所以∠2=∠4,∠3=∠2,∠5=∠1+∠2.因为AC为角平分线,所以∠1=∠2所以∠1=∠2=∠4=∠3,∠5=2∠1.故选B.8.[解析] C根据图形知,AD是△ABC中BC边上的高.故选C.9.[解析] C因为AB∥OC,∠A=60°,所以∠A+∠AOC=180°,所以∠AOC=120°,所以∠BOC=120°-90°=30°,所以∠OEC=180°-∠C-∠BOC=180°-45°-30°=105°,所以∠DEO=180°-∠OEC=75°.故选C.10.[解析] A因为∠B=∠C,所以AB∥CD,所以∠A=∠AEC.又因为∠A=∠D,所以∠AEC=∠D,所以AE∥DF,所以∠AMC=∠FNM.又因为∠BND=∠FNM,所以∠AMC=∠BND,故①②④正确.由条件不能得出∠AMC=90°,故③不一定正确.故选A.11.[答案] 1080°[解析] 多边形的边数是360÷45=8,则多边形的内角和是(8-2)×180=1080°.12.①②13.[答案] 30°[解析] 因为AB ∥CD ,所以∠DNM =∠EMB =75°.因为∠PND =45°,所以∠PNM =∠DNM -∠PND =30°.14.[答案] 14或16[解析] 根据三角形的三边关系可得:6-3<第三边长<6+3,即3<第三边长<9.因为第三边长取奇数,所以第三边长是5或7,所以三角形的周长为14或16.15.[答案] 30 直角[解析] 因为∠A =12∠B =13∠C , 所以可以假设∠A =x ,∠B =2x ,∠C =3x .因为∠A +∠B +∠C =180°,所以6x =180°,所以x =30°,所以∠A =30°,∠C =90°,所以△ABC 是直角三角形.故答案为30,直角.16.[答案] 560 m 2[解析] (30-2)×(22-2)=560(m 2).17.[答案] 8[解析] 设此多边形的边数为x .由题意,得(x -2)×180°=1620°,解得x =11.从这个多边形的一个顶点出发所画的对角线条数为11-3=8.18.36019.解:(1)如图所示,△A ′B ′C ′即为所求.(2)相等 平行(3)△A ′B ′C ′的面积为12×4×4=8. 20.解:△MON 是直角三角形.理由:因为∠1=∠2,∠2=∠END ,所以∠1=∠END ,所以AB ∥CD ,所以∠BMF +∠END =180°.因为MO ,NO 分别平分∠BMF 和∠END ,所以∠OMN +∠ONM =12(∠BMF +∠END )=90°, 所以∠O =180°-(∠OMN +∠ONM )=90°,所以△MON 是直角三角形.21.解:(1)因为六边形ABCDEF 的内角都相等,所以∠BAF =∠B =∠C =∠CDE =∠E =∠F =120°.因为∠F AD =60°,所以∠F +∠F AD =180°,所以EF ∥AD ,所以∠E +∠ADE =180°,所以∠ADE =60°.(2)因为∠BAD =∠BAF -∠F AD =60°,所以∠BAD +∠B =180°,所以AD ∥BC .22.解:(1)因为∠B +∠C +∠BAC =180°,所以∠BAC =180°-∠B -∠C =180°-70°-30°=80°.因为AE 平分∠BAC ,所以∠BAE =12∠BAC =40°. (2)因为AD ⊥BC ,所以∠ADB =90°,所以∠B +∠BAD =90°,则∠BAD =90°-∠B =90°-70°=20°,所以∠DAE =∠BAE -∠BAD =40°-20°=20°.(3)能.因为∠B +∠C +∠BAC =180°,所以∠BAC =180°-∠B -∠C .因为AE 平分∠BAC ,所以∠BAE =12∠BAC =12(180°-∠B -∠C )=90°-12(∠B +∠C ). 因为AD ⊥BC ,所以∠ADB =90°,所以∠B +∠BAD =90°,则∠BAD =90°-∠B ,所以∠DAE =∠BAE -∠BAD =90°-12(∠B +∠C )-(90°-∠B )=12(∠B -∠C ). 因为∠B -∠C =40°,所以∠DAE =12×40°=20°. 23.24.。
苏科版七年级数学下册单元测试题:第七章平面图形的认识(二)(可编辑修改word版)

第七章平面图形的认识(二)第八章(满分:100 分 时间:90 分钟)一、选择题(每小题 2 分,共 20 分) 1. 如图,∠1 与∠2 是()A.对顶角B.同位角C.内错角D.同旁内角第 1 题 第 2 题2. 如图,直线 AB 、CD 相交于点O , ∠1=80°,如果 DE ∥ AB ,那么∠D 的度数是( ) A. 80° B. 90° C. 100° D. 110°3. 小明和小丽是同班同学,小明的家距学校 2 千米远,小丽的家距学校 5 千米远,设小明家距小丽家 x 千米远,则 x 的值应满足 ( ) A. x = 3 B. x = 7 C. x = 3 或 x = 7 D. 3 ≤ x ≤ 74. 如图是“福娃欢欢”的五幅图案,②、③、④、⑤中可以通过平移图案①得到的是 ( )第 4 题A.②B.③C.④D.⑤1 15.在( )∆ABC 中,∠A = ∠B = ∠C ,则3 5∆ABC 是A. 钝角三角形B.直角三角形C.锐角三角形D.无法确定6. 如图,若有一条公共边的两个三角形称为一对“共边三角形”,则图中以 BC 为公共边的“共边三角形”有 ( )A.2 对B. 3 对C. 4 对D. 6 对第 6 题第 7 题第 8 题7. 如图,直线l 1 // l 2 , ∠A = 125︒ , ∠B = 85︒ ,则∠1+ ∠2 的度数为 ( )A. 30°B. 35°C. 36°D. 40°8. 如图,把三角形纸片 ABC 沿 DE 折叠, 当点 A 落在四边形 BCDE 的内部时, ∠A 与∠1+ ∠2 之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )DFEA. ∠A = ∠1+ ∠2 C. 3∠A = 2∠1+ ∠2B. 2∠A = ∠1+ ∠2 D. 3∠A = 2(∠1+ ∠2)9.如图,过△ABC 的顶点 A ,作 BC 边上的高,以下作法正确的是 ()10. 如图,在方格纸中,线段 a , b , c , d 的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有 ()A. 3 种B. 6 种C. 8 种D. 12 种二、填空题(每小题 2 分,共 20 分)11. 内角和与外角和相等的多边形的边数是 .12. 如图,请你写出一个能判定l 1 // l 2 的条件:.第 12 题 第 13 题 第 14 题 第 15 题13. 如图,一块直角三角尺的两个顶点分别在长方形的一组对边上,若∠1 = 30︒ ,则∠2 = .14. 如图,以四边形 ABCD 各个顶点为圆心,1 cm 长为半径画弧,则图中阴影部分面积之和是 cm 2(结果保留). 15. 直线l 1 // l 2 ,一块含 45°角的直角三角尺如图所示放置, ∠1 = 85︒ ,则∠2 =°.16. 如图,在△ABC 中,∠B 、∠C 的平分线 BE 、CD 相交于 F ,∠ABC =42º,∠A =60º, 则∠BFC = °.A17. 在∆ABC 中,第 18 题第 19 题 第 20 题∠A : ∠B : ∠C = 2 : 3 : 4 ,则∠B = . 18. 如图,线段CD 是线段 AB 先向右平移 格,再向下平移 格后得到的. 19. 如图, ∠A = 58︒ , ∠B = 44︒ , ∠DFB = 42︒ ,则∠C = .20. 将正三角形、正四边形、正五边形按如图所示的位置摆放. 如果∠3 = 32︒, 那么∠1+ ∠2 = °. 三、解答题(共 60 分)21. (6 分)请把下面的小船图案先向上平移 3 格,再向右平移 4 格,最后为这个图案配上一句简短的解说词.第 21 题22. ( 6 分)有一块长方形钢板 ABCD ,现将它加工成如图所示的零件,按规定∠1 、∠2 应分别为 45°和 30°. 检验人员量得∠EGF 为 78°,就判断这个零件不合格,你能说明理由吗?第 22 题23. (8 分)小明想:2015 年世博会将在意大利米兰举行,设计一个内角和是 2015°的多边形图案多有意义啊!你同意小明的想法吗?为什么?24. (8 分)阅读下面的材料:如图①,在∆ABC 中,试说明∠A + ∠B + ∠C = 180︒ .分析:通过画平行线,将∠A 、∠B 、∠C 作等量代换,使各角之和恰为一个平角,依辅助线不同而得多种方法.解:如图②,延长 BC 到点 D ,过点C 作CE 因为 BA // CE (作图所知),第 24 题// BA . 所以∠B = ∠2 , ∠A = ∠1 (两直线平行,同位角、内错角相等). 又因为∠BCD = ∠BCA + ∠2 + ∠1 = 180︒(平角的定义), 所以∠A + ∠B + ∠ACB = 180︒(等量代换).如图③,过BC 上任一点F ,作FH // AC ,明∠A +∠B +∠C = 180︒吗?并说明理由.FG // AB ,这种添加辅助线的方法能说25.(10 分)如图,在△ABC 中(BC>AC),∠ACB=90°,点D 在AB 边上,DE⊥AC 于点E.设点F 在线段EC 上,点G 在射线CB 上,以F,C,G 为顶点的三角形与△EDC 有一个锐角相等,FG 交CD 于点P,问:线段CP 可能是△CFG 的高线还是中线?或两者都有可能?请说明理由.CA D B26.(10 分)如图,D 是∆ABC 的边BC 上任意一点,E 、F 分别是线段AD 、CE 的中点,且∆ABC 的面积为20 cm2,求∆BEF 的面积.第26 题27.(12 分)在∆ABC 中,∠C >∠B .如图①,AD ⊥BC 于点D , AE 平分∠BAC ,则易知∠EAD =1(∠C -∠B) .2(1)如图②,AE 平分∠BAC , F 为AE 上的一点,且FD ⊥BC 于点D ,这时∠EFD与∠B 、∠C 有何数量关系?请说明理由;(2)如图③,AE 平分∠BAC , F 为AE 延长线上的一点,FD ⊥BC 于点D ,请你写出这时∠AFD 与∠B 、∠C 之间的数量关系(只写结论,不必说明理由).第27 题E参考答案一、题号 1 2 3 4 5 6 7 8 9 10答案 B C D D A B A B A A二、11. 412. 答案不唯一,如∠1 =∠213. 60°14.15.13016.120º17.60°18.2 219.36°20.70三、21.提示:先将确定小船的 7 个关键点按要求平移,再顺次连接各点即可.22.连接EF .由题意推算出∠EGF = 75︒,而检验人员量得∠EGF 为78︒,所以这个零件不合格.23.不同意,小明的想法无法实现. 因为多边形的内角和公式为(n - 2) 180︒,其一定是180°的整数倍,而2015°不能被180°整除,所以不可能有内角和为2015°的多边形.24.能理由:因为FH ∥ AC ,所以∠1 =∠C, ∠2 =∠CGF ,因为FG ∥ AB ,所以∠3 =∠B, ∠CGF =∠A ,所以∠A =∠2 ,因为∠BFC = 180︒,所以∠A +∠B +∠C = 180︒.25.①若∠CFG1 =∠ECD ,此时线段CP1为△CFG1的斜边FG1上的中线.证明如下:∵∠CFG1=∠ECD,∴∠CFG1=∠FCP1.又∵ ∠CFG1+∠CG1F = 90︒,∴ ∠FCP1+∠P1CG1=90︒.∴∠CG1F =∠P1CG1. ∴CP1=G1P1.又∵ ∠CFG1=∠FCP1,∴CP1=FP1. ∴CP1=FP1=G1P1.∴线段CP1为△CFG1的斜边FG1上的中线.②若∠CFG2=∠EDC ,此时线段CP2为△CFG2的斜边FG2上的高线.证明如下:∵∠CFG2=∠EDC ,又∵DE⊥AC,∴ ∠DEC = 90︒. ∴∠ECD +∠EDC = 90︒.∴∠ECD +∠CFG2=∠ECD +∠EDC = 90︒. ∴CP2⊥FG2.∴线段CP2为△CFG2的斜边FG2上的高线.③当CD 为∠ACB 的平分线时,CP 既是△CFG 的FG 边上的高线又是中线.26.因为E 是AD 的中点,所以BE 是∆ABD 的中线,CE 是∆ACD 的中线,所以BF 是1∆BCE 的中线,所以S∆BEF = S∆BEC =5(cm2). 2127.(1)如图辅助线:作AG ⊥BC ,∠EFD =1(∠C -∠B) . 2(2) ∠AFD = (∠C -∠B)2。
七年级下册数学第七章平面图形的认识二单元试卷苏科版

七年级下册数学第七章平面图形的认识二单元试卷苏科版七年级下册数学第七章平面图形的认识(二)单元试卷(苏科版)第七章平面图形的认识(二)单元测试一、选择(3′×10=30′)1、下列现象是数学中的平移的是()A、秋天的树叶从树上随风飘落B、电梯由一楼升到顶楼C、DVD片在光驱中运行D、“神舟”六号宇宙飞船绕地球运动2、下列哪个度数可能成为某个多边形的内角和()A、2400B、6000C、19800D、218003、长度为1㎝、2㎝、3㎝、4㎝、5㎝的五条线段,若以其中的三条线段为边构成三角形,可以构成不同的三角形共有()A、2个B、3个C、4个D、5个4、如图1,若AB∥CD,则之间的关系为()A、B、图1图2图35、如图2,AB∥CD,下列关于∠B、∠D、∠E关系中,正确的是()A.∠B+∠D+∠E=90°B.∠B+∠D+∠E=180°C.∠B=∠E-∠DD.∠B-∠D=∠E6.如图3,BE、CF都是△ABC的角平分线,且∠BDC=1100,则∠A=()(A)500(B)400(C)700(D)3507、一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C点,那么∠ABC等于()A.75°B.105°C.45°D.90°8.已知三条线段长分别为、b、c,(、b、c均为整数)若c=6则线段、b、c能组成三角形的有_______种情形()A、3B、4C、5D、69、如图4,把△ABC纸片沿DE折叠,当A落在四边形BCDE内时,则与之间有始终不变的关系是()A.B.C.D.3∠A=2(∠1+∠2)图4图5图610、如图5,光线a照射到平面镜CD上,然后在平面镜AB 和CD 之间来回反射,光线的反射角等于入射角.若已知∠1=35°,∠3=75°,则∠2=()A.50°B.55°C.66°D.65°二、填空(3′×12=36′)11、如图6,添加条件:(只需写出一个),可以使AB∥DC.你的根据是:.12、若三角形三条边的长分别是7cm、10cm、x,则x的取值范围是;13、三角形三个外角的比为2:3:4,则最大的内角是________度14、若等腰三角形的两边的长分别是3cm、7cm,则它的周长为cm.15、若多边形的每一个外角都是其相邻内角的,则它的每个外角的度数为°,这个多边形是边形.16、△ABC中,,则,,,17、平移是图形的变换,许多汉字也可以看成是字中的一部分平移得到的,如“从、晶、森”等.请你开动脑筋,写出至少三个可以由平移变换得到的字(与题中例字不同)_______.18、小明在用计算器计算一个多边形的内角和时,得出的结果为2005°,小芳立即判断他的结果是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认为正确的内角和应该是多少度?答:是度19、用等腰直角三角板画,并将三角板沿方向平移到如图7所示的虚线处后绕点逆时针方向旋转,则三角板的斜边与射线的夹角为______.20、如果一个十二边形的每个内角都是相等的,那么这个内角的度数是。
2020-2021学年七年级数学苏科版下册《第7章 平面图形的认识(二)》单元测试卷(有答案)

2020-2021学年苏科新版七年级下册《第7章平面图形的认识(二)》单元测试卷一.选择题1.如图,下列说法正确的有()个.①∠1和∠4是同位角;②∠1和∠5是同位角;③∠7和∠2是内错角;④∠1和∠4是同旁内角;⑤∠1和∠2是同旁内角.A.1B.2C.3D.42.如图:下列条件能说明AD∥BC的是()A.∠A=∠C B.∠B=∠D C.∠B=∠C D.∠A+∠B=180°3.如图,从学校到书店有两条路可走,请你判断下列说法正确的是()A.路①近B.路②近C.一样近D.无法确定4.已知:如图,AD是△ABC的角平分线,AE是△ABC的外角平分线,若∠DAC=20°,问∠EAC=()A.60°B.70°C.80°D.90°5.有长度为9cm、12cm、15cm、36cm,39cm的五根木棒,从中任取三根,则可搭成(首尾连接)直角三角形的取法有()A.1种B.2种C.3种D.4种6.如图,AB∥CD∥EF,BC∥DE,则∠B与∠E的关系是()A.相等B.互余C.互补D.不能确定7.两条平行线被第三条直线所截,形成的角平分线互相平行的是()A.对顶角的角平分线B.同位角的角平分线C.同旁内角的角平分线D.以上都不对8.共有5个正三角形,从位置来看,下图中()是由如图平移得到的.A.B.C.D.9.从多边形一条边上的一点(不是顶点)出发,连接各个顶点得到2013个三角形,则这个多边形的边数为()A.2011B.2015C.2014D.201610.图中,可以视为是图形平移的不同组合对数(一个梅花对另一个梅花不计方向)有()A.9对B.10对C.5对D.8对二.填空题11.将△ABC沿BC方向平移3cm得到△DEF,则CF=;若∠A=80°,∠B=60°,则∠F=.12.某校初一(3)班共有42名同学,若每两名同学互相握手一次.则每个同学需要握次,全班同学共握手次.13.如图所示,∠ACD=115°,∠B=55°,则∠A=,∠ACB=.14.伸拉铁门能自由伸拉主要是应用了四边形的.15.△ABC的周长为24cm,a+b=2c,a:b=1:2,则a=,b=,c=.16.如图,在△ABC中,BD=CD,∠ABE=∠CBE,则(1)是△ABC的中线,ED是△的中线;(2)△ABC的角平分线是,BF是△的角平分线.17.如图,DAE是一条直线,DE∥BC,则x=.18.小明家买回一批地面砖,规格均为60cm×45cm,现欲在地面上铺成一个正方形的图案,至少要用块地砖.19.如图,求∠A+∠B+∠C+∠D+∠E+∠F=.20.如图,在△ABC中,点D、E、F分别是三条边上的点,EF∥AC,DF∥AB,∠B=45°,∠C=60°.则∠EFD的大小为.三.解答题21.已知AD、AE分别是△ABC的中线和高,△ABD的周长比△ACD大3cm,且AB=7cm.(1)求AC的长;(2)求△ABD与△ACD的面积关系.22.若把一个多边形剪去一个角,剩余的部分内角和为1440°,那么原多边形有几条边?23.在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠CDA.(1)作出符合本题的几何图形;(2)求证:BE∥DF.24.如图,AD∥BC,BD平分∠ABC,∠A=120°,∠C=60°,AB=CD=4cm,求:(1)AD的长;(2)四边形ABCD的周长.25.如图(1),MN∥PQ,点A,B在MN上,点C,D在PQ上,点A在点B的左侧,点C在点D的左侧,∠CDE=∠ADE,∠ABE=∠CBE,DE,BE交于点E,∠CBN=100°.(1)若∠ADQ=130°,求∠BED的度数;(2)将线段AD向左平移,使点D在点C的左侧,其他条件不变,如图(2).若∠ADQ =n°,求∠BED的度数(用含n的代数式表示).参考答案与试题解析一.选择题1.解:①∠1和∠4找不到被截线,不是同位角,故错误;②∠1和∠5在截线的同一方,被截线的同一侧是同位角,故正确;③∠7和∠2找不到被截线,不是内错角,故错误;④∠1和∠4找不到被截线,不是同旁内角,故错误;⑤∠1和∠2在截线的内部,被截线的同侧是同旁内角,故正确.根据同位角、内错角、同旁内角的定义,正确的是②⑤两个,故选:B.2.解:∵∠A+∠B=180°,∴AD∥BC.故选:D.3.解:根据平移的性质得出:从学校到书店有两条路一样近.故选:C.4.解:∵AD是△ABC的角平分线,∠DAC=20°,∴∠BAC=2∠DAC=40°,∴∠B+∠ACD=140°,∴∠EAC=∠FAC=(∠B+∠ACD)=70°.故选:B.5.解:∵92=81,122=144,152=225,362=1296,392=1521,又∵81+144=225,225+1296=1521,∴92+122=152,152+362=392,故选:B.6.解:∵AB∥CD,∴∠B=∠C,∵BC∥DE,∴∠C+∠D=180°,∴∠B+∠D=180°,∵CD∥EF,∴∠D=∠E,∴∠B+∠E=180°,即∠B和∠E互补.故选:C.7.解:A、对顶角的角平分线AC、AD共线,故错误;B、同位角的角平分线AC、BF互相平行,∵AM∥BN,∴∠PAM=∠PBN;∵AC、BF是∠PAM和∠PBN的角平分线,∴∠1=∠PAM=∠PBN=∠2;∴AC∥BF.故正确.C、同旁内角的角平分线AE、BF互相垂直,∵AM∥BN,∴∠MAB+∠PBN=180°;∵AE、BF是∠MAB和∠PBN的角平分线,∴∠3+∠2=∠MAB+∠PBN=90°;∴AE⊥BF.故错误.D、因为B正确,所以错误.故选:B.8.解:A、可以由对称得到;B、可以由平移得到;C、可以由旋转变换得到;D、可以由旋转变换得到;故选:B.9.解:多边形一条边上的一点(不是顶点)出发,连接各个顶点得到2003个三角形,则这个多边形的边数为2013+1=2014.故选:C.10.解:1和2、3、4、5有四种组合;2和3、4、5有三种组合;3和4、5有两种组合;4和5有一种组合,共有4+3+2+1=10中组合.故选:B.二.填空题11.解:观察图形可知,对应点连接的线段是AD、BE和CF.∵△ABC沿BC方向平移3cm得到△DEF,∴BE=CF=3cm,∴∠F=∠ACB=180°﹣∠A﹣∠B=40°,故答案为:3cm,40°.12.解:∵共有42名同学,若每两名同学互相握手一次,∴每个同学需要握41次,全班同学共握手41×42÷2=861(次),故答案为:41;861.13.解:∵∠ACD为△ABC的外角,∴∠ACD=∠A+∠B,则∠B=115°﹣55°=60°,又∠ACB和∠ACD互为邻补角,∴∠ACB=180°﹣∠ACD=180°﹣115°=65°.故答案为:60°,65°.14.解:伸拉铁门能自由伸拉主要是应用了四边形的不稳定性.故空中填:不稳定性.15.解:根据题意,得,解得.故答案分别是:,,8.16.解:(1)∵BD=CD,∴AD是△ABC的中线,ED是△BEC的中线;(2)∵∠ABE=∠CBE,∴△ABC的角平分线是BE,BF是△ABD的角平分线.故答案为:(1)AD;BEC;(2)BE;ABD.17.解:∵DE∥BC,∴∠DAC=∠ACF,即70°+x=134°,解得x=64°.故答案为:64°.18.解:∵60和45的最大公约数是15,∴60÷15×(45÷15)=12块,故答案为:12.19.解:∵∠1=∠A+∠B,∠2=∠D+∠E,又∵∠1+∠F=115°,∠2+∠C=115°,∴∠A+∠B+∠C+∠D+∠E+∠F=115°+115°=230°.故答案为:230°.20.解:∵在△ABC中,∠B=45°,∠C=60°,∴∠A=180°﹣∠B﹣∠C=180°﹣45°﹣60°=75°.∵EF∥AC,DF∥AB,∴四边形AEFD是平行四边形,∴∠EFD=∠A=75°.故答案为:75°.三.解答题21.解:(1)∵AD 是△ABC 的中线,∴BD =CD ,∵△ABD 的周长比△ACD 大3cm ,∴AB +BD +AD ﹣(AD +AC +DC )=3cm ,AB ﹣AC =3cm ,∵AB =7cm ,∴AC =4cm ;(2)△ABD 与△ACD 的面积相等;∵S △ADB =DB •AE ,S △ADC =DC •AE ,∴S △ADB =S △ADC .22.解:设新多边形是n 边形,由多边形内角和公式得(n ﹣2)×180°=1440°, 解得n =10,原多边形是10﹣1=9,10+1=11,故答案为:9、10或11.23.(1)解:如图所示:(2)证明:∵四边形ABCD 中,∠A =∠C =90°,∴∠ADC +∠ABC =180°,∵BE 平分∠ABC ,DF 平分∠CDA ,∴∠ADF =∠FDE =ADC ,∠EBF =∠EBC =ABC ,∴∠FBE +∠FDE =90°,∵∠A =90°,∴∠AFD +∠ADF =90°,∴∠AFD +∠EDF =90°,∴∠DFA =∠EBF ,∴DF∥EB.24.(1)解:∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AD=AB=4cm;(2)解:∵AD∥BC,∠A=120°,∠C=60°,∴∠ADC=120°,∠ABC=60°,∠ADB=∠DBC;∵BD平分∠ABC,∴∠ABD=∠ADB=30°,∠BDC=90°;∴AB=AD,BC=2CD;又AB=CD=4cm,∴AD=4,BC=8,∴AB+BC+CD+AD=4+8+4+4=20(cm),∴四边形ABCD的周长为20cm.25.解:(1)如图(1),过点E作EF∥PQ.∵∠CBN=100°,∠ADQ=130°,∴∠CBM=80°,∠ADP=50°.∵∠CDE=∠ADE,∠ABE=∠CBE,∴∠EBM=40°,∠EDP=25°.∵EF∥PQ,∴∠DEF=∠EDP=25°.∵EF∥PQ,MN∥PQ,∴EF∥MN,∴∠FEB=∠EBM=40°,∴∠BED=∠DEF+∠FEB=25°+40°=65°;(2)如图(2),过点E作EF∥PQ.∵∠CBN=100°,∴∠CBM=80°.∵∠CDE=∠ADE,∠ABE=∠CBE,∴∠EBM=40°,∠EDQ=n°.∵EF∥PQ,∴∠DEF=180°﹣∠EDQ=180°﹣n°.∵EF∥PQ,MN∥PQ,∴EF∥MN,∴∠FEB=∠EBM=40°,∴∠BED=∠DEF+∠FEB=180°﹣n°+40°=220°﹣n°.。
第7章平面图形的认识(二) 单元综合测试题2021-2022学年苏科版七年级数学下册( 含答案)

2021-2022学年苏科版七年级数学下册《第7章平面图形的认识(二)》单元综合测试题(附答案)一.选择题(共8小题,满分40分)1.在同一平面内,将两个完全相同的三角板如图所示摆放(直角边重合),可以画出两条互相平行的直线a,b.这样操作的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,内错角相等D.两直线平行,同位角相等2.如图,△ABC沿BC所在直线向右平移得到△DEF,已知EC=2,BF=8,则平移的距离为()A.3B.4C.5D.63.如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6+∠4=180°;⑥∠5+∠1=180°,其中能判断直线l1∥l2的有()A.②③④B.②③⑤C.②④⑤D.②④4.如图,AD∥CE,∠ABC=110°,则∠2﹣∠1的度数是()A.50°B.60°C.70°D.110°5.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外面时,此时测得∠1=112°,∠A=40°,则∠2的度数为()A.32°B.33°C.34°D.38°6.如图,若AB∥DE,∠B=130°,∠D=35°,则∠C的度数为()A.80°B.85°C.90°D.95°7.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB,CD.若CD∥BE,∠1=30°,则∠2的度数是()A.50°B.60°C.65°D.70°8.如图,∠A+∠B+∠C+∠D+∠E+∠F的值是()A.240°B.360°C.540°D.720°二.填空题(共8小题,满分40分)9.如图,AB∥CD,AD⊥AC,∠BAD=40°,则∠ACD等于°.10.如图所示,要在竖直高AC为3米,水平宽BC为12米的楼梯表面铺地毯,地毯的长度至少需要米.11.如图,线段AF⊥AE,垂足为点A,线段GD分别交AF、AE于点C,B,连结GF,ED.则∠D+∠G+∠AFG+∠AED的度数为.12.如图,试求∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数为.13.如图,已知∠ABD=∠PCE,AB∥CD,∠AEC的角平分线交直线CD于点H,∠AFD =86°,∠H=22°,∠PCE=°.14.如图,∠ABC+∠C+∠CDE=360°,直线FG分别交AB、DE于点F、G.若∠1=110°,则∠2=.15.如图,AB∥CD,∠CDE=119°,GF交∠AEH的平分线EF于点F,∠DGF=130°,则∠F=°.16.如图,已知直线l1∥l2,∠A=125°,∠B=85°,且∠1比∠2大4°,那么∠1=.三.解答题(共5小题,满分40分)17.如图,已知点D,E分别在△ABC的边AB,AC上,DE∥BC.(1)若∠ABC=80°,∠AED=40°,求∠A的度数;(2)若∠BFD+∠CEF=180°,求证:∠EDF=∠C.18.如图:已知,∠A=120°,∠ABC=60°,BD⊥DC于点D,EF⊥DC于点F,求证:(1)AD∥BC;(2)∠1=∠2.19.如图,CE平分∠ACD,F为CA延长线上一点,FG∥CE交AB于点G,∠ACD=140°,∠B=45°,求∠AGF的度数.20.平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB、CD内部,∠B=50°,∠D=30°,求∠BPD 的度数;(2)如图2,在AB∥CD的前提下,将点P移到AB、CD外部,则∠BPD、∠B、∠D 之间有何数量关系?请证明你的结论;(3)如图3,写出∠BPD、∠B、∠D、∠BQD之间的数量关系?(不需证明);(4)如图4,计算∠A+∠B+∠C+∠D+∠E+∠F的度数是.21.已知直线AB∥CD,点P为直线AB、CD所确定的平面内的一点.(1)如图1,直接写出∠APC、∠A、∠C之间的数量关系;(2)如图2,写出∠APC、∠A、∠C之间的数量关系,并证明;(3)如图3,点E在射线BA上,过点E作EF∥PC,作∠PEG=∠PEF,点G在直线CD上,作∠BEG的平分线EH交PC于点H,若∠APC=30°,∠P AB=140°,求∠PEH 的度数.参考答案一.选择题(共8小题,满分40分)1.解:如图:∵两个完全相同的三角板,∴∠1=∠2,而∠1、∠2是一对内错角,∴a∥b,故选:A.2.解:由平移的性质可知,BE=CF,∵BF=8,EC=2,∴BE+CF=8﹣2=6,∴BE=CF=3,∴平移的距离为3,故选:A.3.解:①∠1=∠2,不能判定l1∥l2;②∠4=∠5,能判定l1∥l2;③∠2+∠5=180°,不能判定l1∥l2;④∠1=∠3,能判定l1∥l2;⑤∠6+∠4=180°,不能判定l1∥l2;⑥∠5+∠1=180°,不能判定l1∥l2;故选:D.4.解:如图,作BF∥AD,∵AD∥CE,∴AD∥BF∥EC,∴∠1=∠3,∠4+∠2=180°,∠3+∠4=110°,∴∠1+∠4=110°,∴∠2﹣∠1=70°.故选:C.5.解:如图,设A′D与AD交于点O,∵∠A=40°,∴∠A′=∠A=40°,∵∠1=∠DOA+∠A,∠1=112°,∴∠DOA=∠1﹣∠A=112°﹣40°=72°,∵∠DOA=∠2+∠A′,∴∠2=∠DOA﹣∠A′=72°﹣40°=32°.故选:A.6.解:过C作CM∥AB,∵AB∥DE,∴AB∥CM∥DE,∴∠1+∠B=180°,∠2=∠D=35°,∵∠B=130°,∴∠1=50°,∴∠BCD=∠1+∠2=85°,故选:B.7.解:如图,延长F A,由折叠的性质,可得∠3=∠1=30°,∴∠4=180°﹣30°﹣30°=120°,∵CD∥BE,BE∥AF,∴∠ACD=∠4=120°,又∵AC∥BD,∴∠2=180°﹣∠ACD=180°﹣120°=60°.故选:B.8.解:如图,AC、DF与BE分别相交于点M、N,在四边形NMCD中,∠MND+∠CMN+∠C+∠D=360°,∵∠CMN=∠A+∠E,∠MND=∠B+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故选:B.二.填空题(共8小题,满分40分)9.解:∵AD⊥AC,∴∠CAD=90°,∵∠BAD=40°,∴∠BAC=∠CAD+∠BAD=130°,∵AB∥CD,∴∠ACD+∠BAC=180°,∴∠ACD=180°﹣∠BAC=50°.故答案为:50.10.解:由题意可得:地毯的水平长度=BC=12米,地毯的垂直长度=AC=3米,∴地毯的长度至少需要:12+3=15米,故答案为:15.11.解:∵∠A+∠ACB+∠ABC=180°,∠A=90°,∴∠ACB+∠ABC=90°,∵∠GCF=∠ACB,∠DBE=∠ABC,∴∠GCF+∠DBE=90°,∵∠G+∠F+∠GCF=∠D+∠B+∠DBE=180°,∴∠G+∠F+∠GCF+∠D+∠B+∠DBE=360°,∴∠D+∠G+∠AFG+∠AED=270°,故答案为:270°.12.解:如图,根据四边形的内角和可得,∠1+∠2+∠3+∠8=360°,∠4+∠5+∠9+∠10=360°,∵∠9=∠6+∠7,∠8+∠10=180°,∴∠1+∠2+∠3+∠8+∠4+∠5+∠10+∠6+∠7=720°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=540°.故答案为:540°.13.解:∵AB∥CD,∴∠ABD=∠PDB,∵∠ABD=∠PCE,∴∠PDB=∠PCE,∴BD∥CE,∴∠CEG=∠DGH,∵EH平分∠AEC,∴∠CEH=∠AEH,∵∠DGH=∠EGF,∴∠EGF=∠GEF,∵∠AFD=∠AEG+∠EGF=2∠EGF=86°,∴∠EGF=43°,∴∠DGH=43°,∴∠PCE=∠PDG=∠H+∠DGH=65°,故答案为:65.14.解:如图,过点C作CH∥AB,则∠ABC+∠BCH=180°,∵∠ABC+∠C+∠CDE=360°,即∠ABC+∠BCH+∠DCH+∠CDE=360°,∴∠DCH+∠CDE=180°,∴CH∥DE,∴AB∥DE,∴∠DGF=∠1=110°,∴∠2=180°﹣110°=70°,故答案为:70°.15.解:∵AB∥CD,∠CDE=119°,∴∠AEH=∠CDE=119°,∵EF平分∠AEH,∴∠FEH=∠AEH=59.5°,∵∠DGF=130°,∴∠FGE=180°﹣∠DGF=50°,∵∠FEH是△EFG的外角,∴∠F=∠FEH﹣∠FGE=9.5°.故答案为:9.5.16.解:如图,过点A作l1的平行线AC,过点B作l2的平行线BD,则∠3=∠1,∠4=∠2,∵l1∥l2,∴AC∥BD,∴∠CAB+∠ABD=180°,∴∠3+∠4=125°+85°﹣180°=30°,∴∠1+∠2=30°,∵∠1=∠2+4°,∴∠1=17°,故答案为:17°.三.解答题(共5小题,满分40分)17.(1)解:∵DE∥BC(已知),∴∠C=∠AED(两直线平行,同位角相等).∵∠A+∠ABC+∠C=180°(三角形内角和定理),∴∠A=180°﹣∠ABC﹣∠C=180°﹣∠ABC﹣∠AED(等式的性质).∵∠AED=40°,∠ABC=80°(已知),∴∠A=180°﹣40°﹣80°=60°(等式的性质);(2)证明:∵∠BFD+∠DFE=180°(平角定义),∠BFD+∠CEF=180°(已知),∴∠DFE=∠CEF(同角的补角相等).∴DF∥AC(内错角相等,两直线平行).∴∠EDF=∠AED(两直线平行,内错角相等).∵DE∥BC(已知),∴∠AED=∠C(两直线平行,同位角相等).∴∠EDF=∠C(等量代换).18.证明:(1)∵∠A=120°,∠ABC=60°,∴∠A+∠ABC=180°.(2)∵AD∥BC,∴∠1=∠DBC.∵BD⊥DC,EF⊥DC,∴∠BDF=90°,∠EFC=90°.∴∠BDF=∠EFC=90°.∴BD∥EF.∴∠2=∠DBC.∴∠1=∠2.19.解:∵CE平分∠ACD,∠ACD=140°,∴∠ACE=×∠ACD=×140°=70°,∠ACB=180°﹣∠ACD=40°,∵FG∥CE,∴∠AFG=∠ACE=70°,∵∠F AG=∠B+∠ACB=85°,∴∠ADF=180°﹣∠AFG﹣∠F AG=25°.故∠AGF的度数是25°.20.解:(1)如图1,过P点作PO∥AB,∵AB∥CD,∴CD∥PO∥AB,∴∠BPO=∠B,∠OPD=∠D,∵∠BPD=∠BPO+∠OPD,∴∠BPD=∠B+∠D.∵∠B=50°,∠D=30°,∴∠BPD=∠B+∠D=50°+30°=80°;(2)∠B=∠D+∠BPD,∴∠B=∠BOD,∵∠BOD=∠D+∠BPD,∴∠B=∠D+∠BPD;(3)∠BPD=∠B+∠D+∠BQD.证明:如图3,连接QP并延长,∵∠BPE=∠B+∠BQE,∠DPE=∠D+∠DQE,∴∠BPE+DPE=∠B+∠BQE+∠D+∠DQE,即∠BPD=∠B+∠D+∠BQD.(4)∵∠CMN=∠A+∠E,∠DNB=∠B+∠F,又∵∠C+∠D+∠CMN+∠DNM=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.21.解:(1)∠A+∠C+∠APC=360°如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如图2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ﹣∠CPQ,∴∠APC=∠A﹣∠C;(3)由(2)知,∠APC=∠P AB﹣∠PCD,∵∠APC=30°,∠P AB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG﹣∠GEH=∠FEG﹣∠BEG=∠BEF=55°.。
苏教版七年级下册数学试卷-第7章《平面图形的认识(二)》-7.4-认识三角形(含答案)

第7章《平面图形的认识(二)》7.4 认识三角形选择题1.下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.2.若AD是△ABC的中线,则下列结论错误的是()A.AD平分∠BAC B.BD=DC C.AD平分BC D.BC=2DC3.把三角形的面积分为相等的两部分的是()A.三角形的角平分线 B.三角形的中线C.三角形的高 D.以上都不对4.如果一个三角形的三条高的交点恰是三角形的一个顶点,则这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.都有可能5.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是()A.AC是△ABC的高 B.DE是△BCD的高C.DE是△ABE的高 D.AD是△ACD的高6.下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③ B.①② C.②③ D.①③7.下列说法中错误的是()A.三角形三条角平分线都在三角形的内部B.三角形三条中线都在三角形的内部C.三角形三条高都在三角形的内部D.三角形三条高至少有一条在三角形的内部8.画△ABC的BC边上的高,正确的是()A.B.C.D.9.已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为1,则点C的个数为()A.3个 B.4个 C.5个 D.6个10.如图,小方格都是边长为1的正方形,则四边形ABCD的面积是()A.25 B.12.5 C.9 D.8.511.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A .2cm ²B .1cm ²C .12 cm ²D .14 cm ²12.如图,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这种做法的根据是( ) A .两点之间线段最短 B .矩形的对称性C .矩形的四个角都是直角D .三角形的稳定性13.如图,一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是( )A .三角形的稳定性B .两点之间线段最短C .两点确定一条直线D .垂线段最短14.如图,木工师傅在做完门框后,为防止变形常常象图中所示那样钉上两条斜拉的木条(图中的AB ,CD 两根木条),这样做是运用了三角形的( )A .全等性B .灵活性C .稳定性D .对称性15.下列图形中具有稳定性的是( )A .菱形B .钝角三角形C .长方形D .正方形 16.在△ABC 中,AD 是BC 边上的中线,G 是重心.如果AG=6,则线段DG 的长为( )1 A.2 B.3 C.6 D.1217.已知三角形的两边长分别为3cm和8cm,则此三角形的第三边的长可能是()A.4cm B.5cm C.6cm D.13cm18.下列长度的三条线段能组成三角形的是()A.1cm、2cm、3.5cm B.4cm、5cm、9cmC.5cm、8cm、15cm D.6cm、8cm、9cm19.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米 B.15米 C.10米 D.5米,20.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm21.现有2cm、4cm、6cm、8cm长的四根木棒,任意选取三根组成一个三角形,则可以组成三角形的个数为()A.1个 B.2个 C.3个 D.4个22.已知三角形的三边长分别是3,8,x;若x的值为偶数,则x的值有()A.6个 B.5个 C.4个 D.3个23.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cmC.1cm,1cm,3cm D.3cm,4cm,9cm24.在下列长度的四根木棒中,能及4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm25.下列每组数分别表示三根小木棒的长度(单位:cm),将它们首尾相接后能摆成三角形的是()A.1,2,3 B.5,7,12 C.6,6,13 D.6,8,1026.下列长度的三条线段,能组成三角形的是()A.1cm,1cm,3cm B.2cm,3cm,5cmC.3cm,4cm,9cm D.5cm,6cm,8cm27.以下各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.8cm,6cm,4cmC.14cm,6cm,7cm D.2cm,3cm,6cm答案:1、D2、A3、B4、C5、C6、B7、C8、C 9、D 10、B 11、B 12、D 13、A 14、C 15、B 16、B 17、C 18、D 19、D 20、B 21、A 22、D 23、B 24、C 25、D 26、D 27、B。
苏教版七年级数学第七章平面图形的认识(2)测试卷

第七章测试卷一、选择题(每小题3分,共24分)1、如图,∠1=∠2,判断哪两条直线平行()A.AB∥CD B. AD∥BC C. A和B都对 D.无法判断2、如图,由A测B的方向是( )A.南偏东30°B.南偏东60°C.北偏东30°D.北偏东60°3、如图,阴影部分的面积为:()A. a²B. 2πa²C. πa²D. πa²/44、适合条件∠A=∠B=1/2∠C的三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.等腰直角三角形5、一次数学活动课上,小聪将一副三角板按图中方式叠放,则∠a等于()A. 30°B.45°C.60°D. 75°6、下列判断中正确的是:()A.四边形的外角和大于内角和B.若多边形边数从3增加到n(n为大于3的自然数),它的外角和的度数不变C.一个多边形的内角中,锐角的个数可以任意多D.一个多边形的内角和为1880°7、正N边形的每一个外角都不大于40°,则满足条件的多边形边数最少为()A.七边形B.八边形C.九边形D.十边形8、如果多边形的内角和是外角和的K倍,那么这个多边形的边数是()A. KB. 2K+1C. 2K+2D. 2K-2二、填空题:(每空2分,共28分)9、如图,(1)因为∠1=∠2,所以∥;(2)∠4=∠A,所以∥;(3)因为∠1+∠DBE=180°,所以∥ .10、如图,在△ABC中,AB=AC. (1)在图上分别画出AB,AC边上的高CD和BE;(2)S△ABC=½AC×,S△ABC=½AB×;(3)BE CD11、八边形的内角和为度,正八边形的每个内角为度。
12、四边形ABCD中,若∠A+∠B=∠C+∠D,∠C=2∠D,则∠C=13、如图,小明在操场上从A点出发,沿直线前进10米后向左转40°,再沿直线前进10米后,又向左转40°,…,照这样走下去,他第一次走到出发点A时,一共走了米。
苏科版七年级数学下册第7章 平面图形的认识(二) 单元综合卷(B)含答案

第7章平面图形的认识(二) 单元综合卷(B)一、选择题。
(每题3分,共21分)l.如图,△DEF经过怎样的平移得到△ABC ( )A.把△DEF向左平移4个单位,再向下平移2个单位B.把△DEF向右平移4个单位,再向下平移2个单位C.把△DEF向右平移4个单位,再向上平移2个单位D.把△DEF向左平移4个单位,再向上平移2个单位2.如图,直线a、b被直线c所截,以下说法正确的选项是( )A.当∠1=∠2时,一定有a∥b B.当a∥b时,一定有∠1=∠2C.当a∥b时,一定有∠1+∠2=90︒D.当∠1+∠2=180︒时,一定有a∥b 3.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么这两次拐弯的角度可能是( )A.先向左转130︒,再向左转50︒B.先向左转50︒,再向右转50︒C.先向左转50︒,再向右转40︒D.先向左转50︒,再向左转40︒4.现有3 cm、4 cm、7 cm、9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )A.1个B.2个C.3个D.4个5.将一张长方形纸片如下图折叠后,再展开,如果∠1=56︒,那么∠2等于( ) A.56︒B.68︒C.62︒D.66︒6.如下图,一块试验田的形状是三角形(设其为△ABC),管理员从BC边上的一点D出发,沿DG→CA→BD的方向走了一圈回到D处,则管理员从出发到回到原处在途中身体( )A.转过90︒B.转过180︒C.转过270︒D.转过360︒7.如图,在长方形网格中,每个小长方形的长为2、宽为1,A、B两点在网格点上,假设点C也在网格格点上,以A、B、C为顶点的三角形的面积为2,则满足条件的点C的个数是( )A.2个B.3个C.4个D.5个二、填空题。
(每空3分,共21分)8.如图,(1)∠B=∠1,那么根据,可得AD∥BC;(2) ∠D=∠1,那么根据,可得AB∥CD.9.假设(a一1)2+︱b—2︱=0,则a、b为边长的等腰三角形的周长为.10.如图,直线a∥b,EF⊥CD于点F,∠2=65︒,则∠1的度数是.11.假设一个三角形的三个内角的度数之比为2:3:4,则相应的外角度数的比是.12.如图,将边长为3个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD的周长为.13.将一副三角板如下图摆放(其中一块三角板的一条直角边与另一块三角板的斜边摆放在一直线上),那图中∠a= .14.某机器零件的横截面积如下图,按要求线段AB和DC的延长线相交成直角才算合格.假设一名工人测得∠A=23︒,∠D=31︒,∠AED=143︒,则该零件(填“合格”或“不合格”).三、解答题。
苏科版七年级下数学第7章平面图形的认识(2)单元考试测试卷(有答案)

七年级下数学第7 章平面图形的认识 (2) 单元测试卷一、选择题:1、如图,∠ 1=100°,要使 a∥ b,一定具备的另一个条件是()A. ∠ 2=100 °B∠. 3=80 °C∠.3=100 °D∠. 4=80 °2、如下图,直线a∥ b,∠ 1=125°,则∠ 2=()A. 55 °B. 30°C. 75°D. 125°3、以下长度的三根小木棒能组成三角形的是()A. 2cm,3cm ,5cmB. 7cm, 4cm, 2cmC. 3cm, 4cm, 8cmD. 3cm, 3cm, 4cm4、能够将一个三角形的面积均分的线段是()A. 一边上的高线B.一个内角的角均分线C. 一边上的中线D.一边上的中垂线5、如图,直线 l1∥ l2,∠ α=∠ β,∠ 1=35 °,则∠2=()A.1 55 °B. 145°C. 75°D. 125°6、下边四个图形中,线段BD 是△ ABC的高的是()7、如图,已知直线a, b 被直线 c 所截,那么∠ 1 的内错角是()A. ∠ 2B∠. 3C∠. 4D∠. 58、如图,由已知条件推出的结论,正确的选项是()A. 由∠ 1=∠5,能够推出 AD∥ CB B由.∠ 4=∠ 8,能够推出 AD∥ BCC. 由∠ 2=∠ 6,能够推出 AD∥ BC D由.∠ 3=∠7 ,能够推出 AB∥ DC9、如图,AB∥ CD,∠ CDE=119°,GF 交∠ DEB的均分线EF于点 F,∠ AGF=130°,则∠ F= ()A. 9.5°B. 19°C. 7.5°10、如图,在△ ABC中,∠ BAC=60°,BD、CE分别均分∠则∠ BOC的度数是 ()D. 15°ABC、∠ ACB,BD、CE订交于点O,A. 120 °11、如图,B. 130°C. 75°AB∥ CD, CE均分∠ BCD,∠ DCE=18°,则∠ B=(D. 150).°A. 12 °B. 30°C. 36°D. 27°12、如图,把一副常用的三角板如下图拼在一同,那么图中∠ ABF=()A. 15 °B. 30°C. 25°D. 10°二、填空题:13、已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为7: 2,则这个多边形的边数为.DE BC EF AB BFE个。
苏科版七年级数学下册第七章平面图形的认识(二)单元测试卷(C)及答案

第七章平面图形的认识( 二 )测试卷 C一、选择题 ( 每题 3 分,共 24 分 )1 .如图,由六个大小同样的等边三角形拼成了六边形,此中能够由A△ OBC 平移获得的是( ).△ OCDB .△ OABC .△ OAF D.△ OEF2.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与本来的方向同样,这两次拐弯角度可能是( )A .第一次向左拐 40°,第二次向右拐 40°B .第一次向右拐 40°,第二次向左拐 140°C .第一次向右拐 40°,第二次向右拐 140°D .第一次向左拐 40°,第二次向左拐 140°3.如图,直线 a 、 b 被直线 c 所截,以下说法正确的选项是.当 1 2 时,必定有 a // b B .当 a // b 时,必定有1 2A C .当 a // b 时,必定有 1 2180 D .当 a // b 时,必定有 1 2 904.如图,若 第 3 题 AE 是△ ABC 边上的高,∠EAC 的角均分线 AD 交 第 4 题 BC 于D ,∠ ACB=40°,则∠DAE 等于()A . 50°B .40°C . 35° D.25°5.如下图, AB ∥ CD , CD ∥ EF 且∠ 1=30°,∠ 2=70°,则∠ BCE 等于( )A .40°B .100°C .140°D .130°6.将以下图剪成若干小块,再分别平移后能够获得①、②、③中的( )A . 0 个B .1 个C . 2 个D . 3 个7.假如三角形有一条高与三角形的一条边重合,那么这个三角形的形状是( )A .锐角三角形B .直角三角形C .钝角三角形 D.不可以确立8.小明同学在计算某n 边形的内角和时,不当心少输入一个内角,获得和为 2005°.则 n 等于()A .11 B . 12 C . 13 D . 14二、填空题 ( 每题 4 分,共 24 分 )9.如下图,直线 AB 、 CD 被直线 EF 所截,交点分别为M 、N ,则 EMB 的同位角是 ____________ .第 9 题 第 10 题 第 11 题10 .如图,直线 l 1∥ l 2,AB ⊥ l 1,垂足为O ,BC 与 l 2订交于点E ,若∠1=43°,则∠2=____________°.11.在△ ABC 中,若∠ A= 1∠ B=1∠ C ,则该三角形的形状是__________ . 2312 .如图,将一张长方形纸片沿EF 折叠后,点 D 、 C 分别落在 D ′、 C ′的地点, ED ′的延伸线与 BC交于点 G .若∠ EFG=55°,则∠ 1=__________.13.已知三角形的两边长为 3、 7,周长为奇数,则该三角形的周长为_________.14.倘若将 n(n ≥ 3) 边形切去一角,则切去后的多边形的内角和与n 边形的内角和之间的关系为______________ .三、解答题 (15 ~ 18 题每题 7 分, 19~ 21 题每题 8 分,共 52 分 )15.如图, EP ∥AB , PF ∥CD ,∠ B=100°,∠ C=120°,求∠ EPF 的度数.16.绘图题:(1)如图,已知△ ABC,请你画出△ ABC的高 AD,中线 BE,角均分线 CF.并依据绘图填空:AD_______BC AE_______CE∠ ACF_______∠ BCF.(2) 将以下图所示的四边形按箭头所指方向平移2 cm.17.如图,已知AB∥ CD,∠ 1==∠F,∠ 2=∠E,求∠ EOF的度数.18.等腰三角形ABC中,一腰AC 上的中线把三角形的周长分为12 cm 和 15 cm 两部分,求此三角形各边的长.19.如图,点E 在直线 DF上,点 B 在直线 AC上,∠ AGB=∠ EHF,∠ C=∠ D.试问:∠ A=∠ F 吗 ?假如成立,请你说明原因;假如不建立,说明原因.20.连接多边形不相邻的两个极点的线段,叫做多边形的对角线.察看以下图形,并阅读图形下边的有关文字,思虑以下问题:(1)三角形的对角线有 ________条;(2)四边形的对角线有 ________条;(3)五边形的对角线有 ________条;(4)六边形的对角线有 ________条;(5)在此基础上,你能概括出船边形的对角线有_________ 条.21 .小明有长为20 cm 、90 cm 、100 cm 的三根木条,可是不当心将100 cm 的一根折断了.(1)最长的木条被折的状况如何时,小明将不可以与另两根木条钉成三角形架?(2)假如最长的木条折去了 40 cm,小明能够经过如何再折木条的方法钉成一个三角形架?一、 1. C 2 . A3. C 4 . D 5 . C6参照答案.C 7 .B 8.D二、 9. END10 . 133°11 .直角三角形12.110° 13.15或17 或 1914 .大 180°或小三、 15. 40°180°或相等16.略17. 90°18.腰长 10 cm,底边长7 cm 或腰长 8 cm,底边长11cm19.建立,原因,略n n320. (1)0 ; (2)2 ; (3)5 ; (4)9 ; (5)221. (1)当被折成的两段都大于30cm,而小于70 cm 时,不可以与此外两根木条钉成三角形架;(2)将 90 cm的木条截去一段,截去部分的长大于10cm,而且小于50 cm,就能钉成三角形架.。
[数学]-第7章平面图形的认识(二)单元测试(能力提升卷,七下苏科)-【】2022-2023学年七年
![[数学]-第7章平面图形的认识(二)单元测试(能力提升卷,七下苏科)-【】2022-2023学年七年](https://img.taocdn.com/s3/m/1f807e43591b6bd97f192279168884868762b8e4.png)
【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【苏科版】第1章平面图形的认识(二)单元测试(能力提升卷,七下苏科)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分100分,试题共24题,其中选择8道、填空8道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题2分,共16分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•山西期末)若一个三角形的两边长分别为7和9,则此三角形第三边的长可能为()A.1 B.7 C.16 D.172.(2022秋•城关区校级期末)若n边形的内角和比它的外角和的3倍少180°,则n是()A.5 B.7 C.8 D.93.(2022秋•临汾期末)如图,两条平行线a,b被第三条直线c所截.若∠2=56°,则∠1的度数为()A.120°B.112°C.124°D.56°4.(2022秋•硚口区期末)如图,D是AB上一点,E是AC上一点,BE,CD相交于点F,∠A=70°,∠ACD=20°,∠ABE=25°,则∠BFC的大小是()A.90°B.95°C.105°D.115°5.(2022秋•重庆期末)如图,△ABC中,D在BC的延长线上,过D作DF⊥AB于F,交AC于E.已知∠A=33°,∠ECD=85°,则∠D=()A.52°B.43°C.33°D.38°6.(2022秋•蒲城县期末)如图,∠1=60°,下列推理正确的是()①若∠2=60°,则AB∥CD;②若∠5=60°,则AB∥CD;③若∠3=120°,则AB∥CD;④若∠4=120°,则AB∥CD.A.①②B.②④C.②③④D.②③7.(2022秋•大渡口区校级期末)如图,AB∥CD,∠ABE=125°,∠C=30°,则∠α=()A.70°B.75°C.80°D.85°8.(2022春•牡丹江期中)如图,AB∥CD,F为AB上一点,FD∥EH,且FE平分∠AFG,过点F作FG ⊥EH于点G,且∠AFG=2∠D,则下列结论:①∠D=30°;②2∠D+∠EHC=90°;③FD平分∠HFB;④FH平分∠GFD.其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题2分,共16分)请把答案直接填写在横线上9.(2022秋•凤凰县期末)如图,自行车的主框架采用了三角形结构,这样设计的依据是三角形具有.10.(2022秋•市北区校级期末)如图,将直角三角形的直角顶点放在直尺的一边上,若∠1=55°,∠2=60°,则∠3=°.11.(2023•惠阳区校级开学)已知D、E分别是△ABC的边BC和AC的中点,若△ABC的面积=36cm2,则△DEC的面积为.12.(2022秋•广饶县校级期末)如图所示的是重叠的两个直角三角形,将其中一个直角三角形沿BC方向平移得到△DEF.若AB=10cm,BE=6cm,DH=4cm,则图中阴影部分面积为.13.(2022秋•朝阳区校级期末)一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=135°,则∠ABC=度.14.(2022秋•天山区校级期末)如图,BE、CE分别为△ABC的内、外角平分线,BF、CF分别为△EBC 的内、外角平分线,若∠A=44°,则∠BFC=度.15.(2022秋•沙坪坝区校级期末)如图,直线GH分别与直线AB,CD相交于点G,H,且AB∥CD.点M在直线AB,CD之间,连接GM,HM,射线GH是∠AGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠BGM,∠M=∠N+∠HGN,则∠MHG的度数为.16.在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”.例如,三个内角分别为120°,40°,20°的三角形是“灵动三角形”.如图∠MON=40°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A 为端点作射线AD,交线段OB于点C(规定0°<∠OAC<60°).当△ABC为“灵动三角形”时,∠OAC的度数为.三、解答题(本大题共8小题,共68分.解答时应写出文字说明、证明过程或演算步骤)17.(2022秋•朝阳区校级期末)阅读下面的推理过程,将空白部分补充完整.已知:如图,在△ABC中,FG∥CD,∠1=∠3.求证:∠B+∠BDE=180°.证明:因为FG∥CD(已知),所以∠1=.又因为∠1=∠3(已知),所以∠2=(等量代换).所以BC∥(),所以∠B+∠BDE=180°().18.(2022秋•天山区校级期末)如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠ABD的度数.19.(2022秋•朝阳区校级期末)如图,淇淇从点A出发,前进10米后向右转20°,再前进10米后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)求淇淇一共走了多少米?(2)求这个多边形的内角和.20.(2022秋•驿城区校级期末)如图,在△ABC中,CF⊥AB于F,ED∥CF,∠1=∠2.(1)求证:FG∥BC;(2)若∠A=60°,∠AGF=70°,求∠B及∠2的度数.21.(2022秋•江北区校级期末)在正方形网格中,小正方形的顶点称为“格点”,每个小正方形的边长均为1,△ABC的三个顶点均在“格点”处.(1)在给定方格纸中,点B与点B'对应,请画出平移后的△A'B'C';(2)线段AA'与线段CC'的关系是;(3)求平移过程中,线段BC扫过的面积.22.(2021秋•抚州期末)如图,已知直线AB∥CD,∠A=∠C=100°,点E,F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.(1)直线AD与BC有何位置关系?请说明理由;(2)求∠DBE的度数;(3)若平行移动AD,在平行移动AD的过程中是否存在∠BEC=∠ADB?若存在,求出∠BEC的度数;若不存在,请说明理由.23.(2022•南谯区校级开学)如图,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数;(3)将图①中的三角尺COD绕点O按每秒15°的速度沿顺时针方向旋转一周,在旋转过程中,在第几秒时,MN恰好与CD平行;第几秒时,MN恰好与直线CD垂直.24.(2022春•顺德区校级期中)如图1,已知直线PQ∥MN,点A在直线PQ上,点C,D在直线MN 上,连接AC,AD,∠P AC=50°,∠ADC=30°,AE平分∠P AD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数.(2)若将图1中的线段AD沿MN向右平移到A1D1,如图2所示位置,此时AE平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠P AC=50°,∠A1D1C=30°,求∠A1EC的度数.(3)若将图1中的线段AD沿MN向左平移,若点A1的位置如图3,点D此时还在点C的右边,其他条件与(2)相同,请你在备用图图3上画出草图分析,并直接写出此时∠A1EC的度数.。
苏科版数学七年级下册第七章平面图形的认识(二)单元检测卷

第七章平面图形的认识(二) 单元检测卷(满分:100分时间:60分钟)一、选择题(本大题共8小题,每小题2分,共16分)1.下列语句中,不能判定两直线平行的是( )A.内错角相等,两直线平行B.同位角相等,两直线平行C.同旁内角相等,两直线平行D.同一平面内,垂直于同一直线的两条直线平行2.下列长度的4根木条中,能与4 cm和9 cm长的2根木条首尾依次相接围成一个三角形的是( )A.4cm B.9 cm C.5 cm D.13 cm3.如图,AD∥BC,BD平分∠ABC,若∠A=100°,则∠DBC的度数等于( ) A.100°B.85°C.40°D.50°4.如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E等于( ) A.70°B.80°C.90°D.100°5.若△ABC的三边长分别为整数,周长为11,且有一边长为4,则这个三角形的最大边长为( )A.7 B.6 C.5 D.46.将直角三角尺的直角顶点靠在直尺上,且斜边与这把直尺平行,那么,在形成的这个图中与∠a互余的角共有( )A.4个B.3个C.2个D.1个7.如图,若AB∥CD,则∠A、∠E、∠D之间的关系是( )A.∠A+∠E+∠D=180°B.∠A-∠E+∠D=180°C.∠A+∠E+∠D=270°D.∠A+∠E-∠D=180°8.如图,一块四边形绿化园地,四角都做有半径为R的圆形喷水池,则这四个喷水池占去的绿化园地的面积为( )A.πR2B.2πR2C.4πR2D.不能确定二、填空题(本大题共10小题,每小题2分,共20分)9.如图,直径为4 cm 的圆O 1平移5 cm 到圆O 2,则图中阴影部分面积为_______cm 2.10.△ABC 中,∠A =∠B =13∠C ,则△ABC 是_______三角形. 11.一个等腰三角形的两条边长分别为10 cm 和4 cm ,那么它的周长为_______.12.如图,直角三角形ABC 中,AC =3,BC =4,AB =5,则斜边上的高CD 等于_______. 13.一个多边形的内角和为2340°,若每一个内角都相等,则每个外角的度数是_______. 14.若两个角的两边分别平行,且其中一个角比另一个角的2倍少30°,则这两个角分别为______________.15.一副三角板如图所示叠放在一起,则图中∠a 的度数是_______.16.如图,把△ABC 沿线段DE 折叠,使点A 落在点F 处,BC ∥DE ,若∠B =50°,则∠BDF =_______°.17.光线a 照射到平面镜CD 上,然后在平面镜AB 和CD 之间来回反射,这时光线的入射角等于反射角,即∠1=∠6,∠5=∠3,∠2=∠4.若已知∠1=55°,∠3=75°,那么∠2=_______度.18.如图,若AB ∥CD ,BF 平分∠ABE ,DF 平分∠CDE ,∠BED =80°,则∠BFD =_______.三、解答题(第19题10分,第20题10分,第21题10分,第22题11分,第23题11分,第24题12分,共64分) 19.画图并填空:(1)画出把△ABC 向右平移6格后得到的△A 1B 1C 1; (2)画出图中△A 2B 1C 1向下平移2格后得到的△A 2B 2C 2;(3)连接AA 2、BB 2,则这两条线段的关系为_______和_______.1220.如图,∠1=∠2,∠C=∠D.∠A与∠F有怎样的数量关系?请说明理由.21.如图,∠A=65°∠ABD=30°,∠ACB=72°,且CE平分∠ACB,求∠BEC的度数.22.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=80°,试求:(1)∠EDC的度数;(2)若∠BCD=n°,试求∠BED的度数.23.已知,如图,在△ABC中,∠B>∠C,AD是BC边上的高,AE平分∠BAC.(1)若∠B=40°,∠C=30°,则∠DAE=_______;(2)若∠B=80°,∠C=40°,则∠DAE=_______;(3)由(1)、(2)我能猜想出∠DAE与∠B、∠C之间的关系为______________,并说明理由.24.(1)如图,小莉画了一个角∠MON=80°,点A、B分别在射线OM、ON上移动,△AOB的角平分线AC与BD交于点P.试问:随着点A、B位置的变化,∠APB的大小是否会变化?若保持不变,请求出∠APB的度数;若发生变化,求出变化范围.(2)聪明的小莉想出了一个画30°角的方法:①画两条相交的直线OX、OY,使∠XOY =60°,②在射线OX、OY上分别再任意取A、B点,③作∠ABY的平分线BD,BD的反向延长线交∠OAB的平分线于点C,则∠C就是30°的角.你认为小莉的方法正确吗?请你说明理由.参考答案一、1.C 2.B 3.C 4.C 5.C 6.C 7.D 8.A二、9.20 10.直角11. 24cm 12.2.4 13.24° 14.30°,30°或70°,110° 15.165° 16.80 17.65 18.40° 三、19.(1)略 (2)略 (3)相等 平行 20.相等. 21.131°22.(1)40° (2)40°+n ° 23.(1)5°(2) 20°(3)(∠B -∠C). 24.(1)不变,130° (2)正确.1212。
苏科版七年级数学第七章平面图形的认识(二)单元测试卷(A)及答案

第七章平面图形的认识(二) 测试卷 A一、选择题(每题3分,共24分)1.下列说法中错误的是 ( )A.三角形的中线、角平分线、高线都是线段B.任意三角形的内角和都是180°C.三角形按边分可分为不等边三角形和等腰三角形D.三角形的一个外角大于任何一个内角2.如图,AB∥ED,则∠A+∠C +∠D= ( )A.180° B.270°C.360° D.540°3.在下列各图中,正确画出AC边上高的是 ( )4.如图,∠1=∠2=45°,∠3=70°,则∠A= ( )A.45°B.70°C.110°D.135°5.下列每组数表示三根小木棒的长度,三根小棒能摆成三角形的一组是 ( )A.1 cm,2 cm,3 cm B.2 cm,3 cm,4 cmC.2 cm,3 cm,5 cm D.2 cm,3 cm,6 cm6.等腰三角形的一边等于3,一边等于6,则它的周长等于 ( )A.12 B.12或15 C.15或18 D.157.在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,下列关于平移的说法正确的是 ( )A.平移不改变图形的大小,只改变图形的形状B.平移不改变图形的位置,只改变图形的大小C.平移不改变图形的形状,只改变图形的大小D.平移不改变图形的大小与形状,只改变图形的位置8.如图,AB⊥EF,CD⊥EF,∠1=∠F=45°,那么与∠FCD相等的角有 ( )A.1个 B.2个C.3个 D.4个二、填空题(每题2分,共36分)9.如图,以∠C为内角的三角形有_______和_________,有两个三角形中,∠C的对边分别为_________和_________.10.等腰三角形一个底角为36°,则此等腰三角形顶角为________________.11.如图,∠A=20°,∠C=40°,∠ADB=80°,则∠ABD=________,∠DBC=________,图中共有等腰三角形__________个.12.如图,在△ABC中,AD是角平分线,BE是中线,∠BAD=40°,则∠CAD=_____________,若AC=6 cm,则AE=__________cm.13.如果一个多边形的内角和是1440°,那么这个多边形的边数是_______,它的外角和是_________.14.如图,△DEF是△ABC经过平移得到的,∠ABC=40°,AB=3 cm,则∠DEF=_________________,DE=_________cm.15.在△ABC中,(1)若∠A:∠B:∠C=3:2:5,则∠B=_________;(2)若∠A-∠C=35°,∠B-∠A=20°,则∠B=__________.16.如图,有一块三角形的土地,现在要求过三角形的某个顶点画一条线段,将它的面积平均分成两份,你认为这条线段应该如何画____________;为什么?______________________________.三、解答题(每题5分,共40分)17.如图,由下列条件可判定哪两条直线平行?并说明你的理由.(1)∠1=∠2; (2)∠3=∠A;(3)∠A+∠2+∠4=180°.18.如图,AD⊥BD,AE平分∠BAC,∠B=30°,∠ACD=70°.求∠AED的度数.19.如图,已知直线a∥b,直线c分别与直线a、b相交,∠l=(4x-5)°,∠2=(x+35)°,求∠1、∠2的度数.20.如图,线段BE=8 cm,C为BE的中点,△ABC与△DCE都是等边三角形.请问:△ABC是否可以经过平移变换到△DCE?如果可以,请写出平移的方向和距离;如果不可以,请说明理由.21.已知:如图,AB∥DE,BC∥EF,BC与DE相交于点G.请你猜想∠B与∠E之间具有什么数量关系,并说明理由.22.已知一个多边形的内角和是外角和的3倍,求此多边形的边数.23.如图,在△ABC中,∠ACB=90°,CD⊥AB.垂足为D.(1)图中有几个直角三角形?是哪几个?分别说出它们的直角边和斜边;(2) ∠ACD和∠A有什么关系? ∠BCD和∠A呢?24.用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点,以格点为顶点的多边形叫格点多边形,设格点多边形的面积为S,它各边上格点的个数和为x.(1)上图中的格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数和的对应关系如下表:多边形的序号①②③④…多边形的面积S 2 2.5 3 4 …多边形各边上格点的个数和x 4 5 6 8 …请写出S与x之间的关系式.答:S=____________;(2)请你再画出一些格点多边形,使这些多边形内部都有而且只有2格点,如序号⑤.此时所画的各个多边形的面积S与它各边上格点的个数和x之间的关系式是S=__________;(3)请你继续探索,当格点多边形内部有且只有n个格点时,猜想S与x有怎样的关系?参考答案—、1.D 2.C 3.C 4.C 5.B 6.D 7.D 8.D二、9.△ABC,△ADC,AB,AD 10.108° 11.80°,40°,2 12.40°,3 13.10,360° 14.40°,3 15.35°,85°16.过三角形任一顶点作中线,等底同高三、17.(1)AB∥CD,内错角相等,两直线平行; (2)AD∥BC,同位角相等,两直线平行; (3)AD∥BC,同旁内角互补,两直线平行. 18.∠AED=50° 19.∠1=115°,∠2=65° 20.可以.△ABC沿着BC 方向平移 4 cm 21.∠B=∠E由AB∥DE,得∠B=∠DGC,则BC∥EF得∠E=∠DGC,则∠B=∠E 22.8 23.(1)3个;Rt△ACD,直角边AD、CD,斜边AC;Rt△CBD,直角边CD、BC,斜边BC;Rt△ABC,直角边AC、BC,斜边AB; (2)互余,相等 24.(1)12x (2)12x+1 (3)S=12x+(n-1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 平面图形的认识(二) 单元测试
一.填空题(每空2分,共30分)
1、如图,60B ∠=︒,当1∠= ︒时,
DE ∥BC ,理由是 。
2、如图,如果65B ∠=︒,AD ∥BC ,AB ∥DC ,
那么 A ∠= ︒; D ∠= ︒;B ∠=∠ 。
3、已知:a ∥b ,3137∠=︒,则1∠= ︒,2∠= ︒。
4、长度为2cm 、3cm 、4cm 和5cm 的4根木棒,从中任取3根, 可搭成 种不同的三角形。
5、ABC ∆的高为AD ,角平分线为AE ,中线为AF ,则把ABC ∆面积分成相等的两部分的线段是 。
6、如图,x = ,y = 。
7、在ABC ∆中,36C ∠=︒,A B ∠=∠,则A ∠= ︒。
8、一个多边形的内角和是540︒,那么这个多边形是 边形。
9、一个多边形的内角和是外角和的4倍,那么这个多边形是 边形。
10、如图,将字母“V ” 向右平移 格会得到字母“W ”。
二.选择题(每空5分,共20分)
11、点P 为直线l 外一点,点A 、B 、C 为l 上三点,5PA cm =,6PB cm =,
6PC cm =,则点P 到直线l 的距离是( ).
A 、5cm
B 、小于5cm
C 、不大于5cm
D 、7cm 12、已知OA OB ⊥,O 为垂足,且AOC ∠∶1AOB ∠=∶2,则BOC ∠是( ).
A 、45︒
B 、135︒
C 、45︒或135︒
D 、60︒或20︒ 13、如图, AB ∥CD ∥EF ,BC ∥AD , AC 平分BAD ∠ 且与EF 交于点O ,那么与AO
E ∠相等的角有( )个.
A 、5
B 、4
C 、3
D 、2
14、如图,34∠=∠,则下列条件中不能推出AB ∥CD 的是(
).
A 、1∠与2∠互余
B 、12∠=∠
C 、13∠=∠且24∠=∠
D 、BM ∥CN
三.解答题(第15、16、17、18题为15、10、10、15分)
15、如图,AD 是EAC ∠的平分线,AD ∥BC ,64B ∠=︒,
C
B
A
x +10()︒
x +70()︒
y ︒
x ︒
A
B
D
C
O F E B
D A 1A
E D B
C
B
A
M C
D
N
4
3 2 1
你能算出EAD ∠,DAC ∠,C ∠的度数吗?
16、如图,65A ∠=︒,30ABD ∠=︒,72ACB ∠=︒,
且CE 平分ACB ∠,求BEC ∠ 的度数。
17、图中的6个小正方形面积都为1,A 、B 、C 、D 、E 、F 是小正方形的顶点,
以这6个点为顶点,可以组成多少个面积为1的三角形?请写出所有这样的三角形(并填入相应的集合内)
锐角三角形{ } 直角三角形{ } 钝角三角形{ }
18、如图,从下列三个条件中:(1)AD ∥CB (2)AB ∥CD (3)∠A =∠C ,任选
两个作为条件,另一个作为结论,编一道数学题,并说明理由。
已知: 结论: 理由:
提升:
19如图,△ABC 的顶点都在方格纸的格点上.
将△ABC 向左平移2格,再向上平移4格. (1)请在图中画出平移后的△A ′B ′C ′;
(2)利用网格在图中画出△ABC 的高CD 和中线AE . (3)△ABC 的面积为 .
E
D C
F
B A A
B
C
D
E
A
B
C
D E
C F
B
A
D
E
A B C D E
20如图,AB ∥CD ,∠CED =90°,∠BED =40°,求∠C 的度数。
21若等腰三角形的两边的长分别是5cm 、7cm,则它的周长为 cm.
22如图,在ΔABC 中,B D⊥AC ,EF ⊥AC ,垂足分别为D 、F ,且∠1=∠2,试判断DE 与BC 的位置关系,并说明理由.
23已知:∠MON=40°,OE 平分∠MON ,点A 、B 、C 分别是射线OM 、OE 、ON 上的动点(A 、B 、C 不与点O 重合),连接AC 交射线OE 于点D .设∠OAC=x°. (1)如图1,若AB ∥ON ,则①∠ABO 的度数是 ;
②当∠BAD=∠ABD 时,x= ;当∠BAD=∠BDA 时,x= . (2)如图2,若AB ⊥OM ,则是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值;若不存在,说明理由.。