应用文-资本资产定价模型(CAPM)理论及应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资本资产定价模型(CAPM)理论及应用
'
资本资产定价模型是用来确定证券均衡价格的一种预测模型,模型以其简洁的形式和理论的浅显易懂使它在整个
学领域得到了广泛的
,但由于理论与实际情况的背离使它的实用性降低。
本文简要评述了资本资产定价模型的应用,指出了模型的改进方向。
资本资产定价模型β系数系统风险
资产定价理论源于马柯维茨(Harry Markowtitz)的资产组合理论的研究。
1952年,马柯维茨在《金融杂志》上
题为《投资组合的选择》的博士
是现代金融学的第一个突破,他在该文中确定了最小方差资产组合集合的思想和方法,开创了对投资进行整体
的先河,奠定了投资理论
的基石,这一理论提出标志着现代投资分析理论的诞生。
在此后的岁月里,经济学家们一直在利用数量化方法不断丰富和完善组合管理的理论和实际投资管理方法,并使之成为投资学的主流理论。
到了60年代初期,金融经济学家们开始研究马柯维茨的模型是如何影响证券估值,这一研究导致了资本资产定价模型(Capital Asset Price Model,简称为CAPM)的产生。
现代资本资产定价模型是由夏普(William Sharpe ,1964年)、林特纳(Jone Lintner,1965年)和莫辛(Mossin,1966年)根据马柯维茨最优资产组合选择的思想分别提出来的,因此资本资产定价模型也称为SLM模型。
由于资本资产定价模型在资产组合管理中具有重要的作用,从其创立的六十年代中期起,就迅速为实业界所接受并转化为实用,也成了学术界研究的焦点和
问题。
资本资产定价模型是在马柯维茨均值方差理论基础上发展起来的,它继承了其的假设,如,资本市场是有效的、资产无限可分,投资者可以购买股票的任何部分、投资者根据均值方差选择投资组合、投资者是厌恶风险,永不满足的、存在着无风险资产,投资者可以按无风险利率自由借贷等等。
同时又由于马柯维茨的投资组合理论计算的繁琐性,导致了其的不实用性,夏普在继承的同时,为了简化模型,又增加了新的假设。
有,资本市场是完美的,没有交易成本,信息是免费的并且是立即可得的、所有投资者借贷利率相等、投资期是单期的或者说投资者都有相同的投资期限、投资者有相同的预期,即他们对预期回报率,标准差和证券之间的协方差具有相同的理解等等。
该模型可以表示为:
E(R)= Rf+ [E(Rm)-Rf] ×β
其中,E(R)为股票或投资组合的期望收益率,Rf为无风险收益率,投资者能以这个利率进行无风险的借贷,E(Rm)为市场组合的收益率,β是股票或投资组合的系统风险测度。
从模型当中,我们可以看出,资产或投资组合的期望收益率取决于三个因素:(1)无风险收益率Rf,一般将一年期国债利率或者银行三个月定期存款利率作为无风险利率,投资者可以以这个利率进行无风险借贷;(2)风险价格,即[E(Rm)-Rf],是风险收益与风险的比值,也是市场组合收益率与无风险利率之差;(3)风险系数β,是度量资产或投资组合的系统风险大小尺度的指标,是风险资产的收益率与市场组合收益率的协方差与市场组合收益率的方差之比,故市场组合的风险系数β等于1。
资本资产定价模型是第一个关于金融资产定价的均衡模型,同时也是第一个可以进行计量检验的金融资产定价模型。
模型的首要意义是建立了资本风险与收益的关系,明确指明证券的期望收益率就是无风险收益率与风险补偿两者之和,揭示了证券报酬的内部结构。
资本资产定价模型另一个重要的意义是,它将风险分为非系统风险和系统风险。
非系统风险是一种特定公司或行业所特有的风险,它是可以通过资产多样化分散的风险。
系统风险是指由那些影响整个市场的风险因素引起的,是股票市场本身所固有的风险,是不可以通过分散化消除的风险。
资本资产定价模型的作用就是通过投资组合将非系统风险分散掉,只剩下系统风险。
并且在模型中引进了β系数来表征系统风险。
资本资产定价模型之所以一经推出就风靡整个实业界、投资界,不仅仅因为其简洁的形式,理论的浅显易懂,更在于其多方面的应用。
1、计算资产的预期收益率
这是资本资产定价模型最基本的应用,根据公式即可得到。
资本资产定价模型其它的应用,均是通过这基本的应用延展开来的。
2、有助于资产分类,进行资源配置
我们可以根据资本资产定价模型对资产进行分类。
资产定价是利用各种风险因子来解释平均收益率的,因此风险因子不同的资产具有不同的收益,按照因子变量不同范围划分的资产类型具有不同的收益特征。
我们利用资产定价模型中股票的风险因子β对股票进行分类。
当β>1,如β=2时,那么当市场收益率上涨价1%时,这种股票收益率预计平均上涨2%;但是当市场收益率下降1%时,这种股票收益率预计下跌2%,因此,可以认识'。