无迹卡尔曼滤波在目标跟踪中的应用

合集下载

卡尔曼滤波在跟踪中的应用

卡尔曼滤波在跟踪中的应用

卡尔曼滤波在跟踪中的应用卡尔曼滤波在跟踪中的应用1. 引言在当今信息爆炸的时代,跟踪技术已经成为人们日常生活中不可或缺的一部分。

从物流追踪到电子支付,从目标检测到自动驾驶,跟踪技术在各种领域中发挥着重要的作用。

其中,卡尔曼滤波作为一种经典的统计优化方法,在跟踪问题中具有卓越的应用效果和广泛的适用性。

2. 卡尔曼滤波的原理和特点卡尔曼滤波是一种基于状态空间模型的递推滤波算法,它通过对系统的状态和观测进行联合估计,实现对系统状态的精确跟踪。

其基本原理是利用系统状态的先验估计和观测量进行状态修正,从而实现对系统状态的优化估计。

卡尔曼滤波具有以下几个特点:2.1 数学模型简洁:卡尔曼滤波基于线性系统和高斯分布假设,使得系统的描述更加简洁,计算效率更高。

2.2 递推更新:卡尔曼滤波通过递推的方式,根据当前的状态估计和观测量,得到下一时刻的状态估计,实现对系统状态的连续跟踪。

2.3 优化迭代:卡尔曼滤波通过最小化均方误差来优化状态估计,在迭代过程中不断调整估计的准确性,使得跟踪效果更加精确。

3. 卡尔曼滤波在目标跟踪中的应用3.1 运动物体跟踪:卡尔曼滤波在运动物体跟踪中具有广泛的应用。

通过结合系统的动态模型和观测模型,卡尔曼滤波可以预测运动物体的位置、速度等状态,并不断修正估计结果,从而实现对运动物体的准确跟踪。

3.2 目标检测与识别:卡尔曼滤波在目标检测与识别中属于一种重要补充手段。

通过将卡尔曼滤波与其他目标检测算法相结合,可以提高目标检测的精度和鲁棒性,有效应对目标尺度变化、遮挡等问题。

3.3 自动驾驶:卡尔曼滤波在自动驾驶系统中扮演着关键的角色。

通过对车辆状态实时跟踪和预测,卡尔曼滤波可以实现对车辆行驶路径、速度等参数的估计,从而辅助驾驶决策和行驶控制。

4. 个人观点和理解作为一种经典的统计优化方法,卡尔曼滤波在跟踪问题中的应用具有独特的优势。

相比于其他跟踪算法,卡尔曼滤波具有数学模型简洁、计算效率高、递推更新和优化迭代等特点,能够在动态环境中实现对目标位置、速度等状态的精确跟踪。

卡尔曼滤波实现目标跟踪

卡尔曼滤波实现目标跟踪

卡尔曼滤波实现目标跟踪1.系统模型x_k=A_k*x_{k-1}+B_k*u_k+w_k其中,x_k是目标的状态向量,A_k是系统状态转移矩阵,表示目标从k-1时刻到k时刻状态的变化;B_k是控制输入矩阵,表示外部输入对目标状态的影响;u_k是控制输入向量,表示外部输入的值;w_k是过程噪声,表示系统模型的误差。

2.观测模型观测模型描述了如何根据目标状态得到观测值。

观测模型可以用下面的观测方程表示:z_k=H_k*x_k+v_k其中,z_k是观测值,H_k是观测矩阵,表示目标状态到观测值的映射关系;v_k是观测噪声,表示观测数据的误差。

3.初始化在开始跟踪之前,需要对目标的状态进行初始化。

可以根据已有的观测数据和模型来初始化状态向量和协方差矩阵。

4.预测步骤在预测步骤中,根据系统模型和上一时刻的状态估计,可以预测目标的下一时刻状态。

预测的状态估计由下面的方程给出:x_k^-=A_k*x_{k-1}+B_k*u_k其中,x_k^-是预测的状态估计值。

同时,还需要预测状态估计值的协方差矩阵,可以使用下面的方程计算:P_k^-=A_k*P_{k-1}*A_k^T+Q_k其中,P_k^-是预测的协方差矩阵,Q_k是过程噪声的协方差矩阵。

5.更新步骤在更新步骤中,根据观测数据来修正预测的状态估计。

首先,计算创新(innovation)或者观测残差:y_k=z_k-H_k*x_k^-其中,y_k是观测残差。

然后,计算创新的协方差矩阵:S_k=H_k*P_k^-*H_k^T+R_k其中,S_k是创新的协方差矩阵,R_k是观测噪声的协方差矩阵。

接下来,计算卡尔曼增益:K_k=P_k^-*H_k^T*S_k^-1最后,更新估计的目标状态和协方差矩阵:x_k=x_k^-+K_k*y_kP_k=(I-K_k*H_k)*P_k^-其中,I是单位矩阵。

6.重复预测和更新步骤重复进行预测和更新步骤,可以得到目标的状态估计序列和协方差矩阵序列。

无迹卡尔曼滤波作用

无迹卡尔曼滤波作用

无迹卡尔曼滤波作用
无迹卡尔曼滤波是一种常用的状态估计算法,它通过将高斯分布的卡尔曼滤波方法扩展到非线性系统上,能够有效处理非线性和非高斯噪声的情况。

在实际应用中,无迹卡尔曼滤波广泛应用于机器人导航、目标跟踪、图像处理等领域。

与传统的卡尔曼滤波相比,无迹卡尔曼滤波具有更高的精度和鲁棒性。

它采用了一种无迹变换技术,通过选取一组特定的采样点,建立一个与原始状态分布相似的高斯混合分布来近似非线性函数。

这种采样点的选择方式保证了无偏性和方差最小化,并且能够有效地处理不可观测的状态。

无迹卡尔曼滤波的优点还在于它能够自适应地调整卡尔曼增益和状态估计的方差,以便更好地适应不同的环境和任务。

此外,它还可以通过引入扩展状态变量来应对非线性度更高的系统,例如具有周期性特征的系统。

总之,无迹卡尔曼滤波作为一种高效可靠的状态估计算法,在各种实际应用中都有着广泛的应用前景。

- 1 -。

无迹卡尔曼滤波在目标跟踪中的应用

无迹卡尔曼滤波在目标跟踪中的应用

本科毕业设计论文题目无迹卡尔曼滤波在目标跟踪中的应用专业名称学生姓名指导教师毕业时间毕业任务书一、题目无迹卡尔曼滤波在目标跟踪中的应用二、指导思想和目的要求利用已有的专业知识,培养学生解决实际工程问题的能力;锻炼学生的科研工作能力和培养学生的团结合作攻关能力;三、主要技术指标1、熟悉掌握无迹卡尔曼滤波的基本原理;2、对机动目标进行跟踪;四、进度和要求第01周----第02周:英文翻译;第03周----第04周:了解无迹卡尔曼滤波的发展趋势;第05周----第06周:学习无迹卡尔曼滤波基本原理;第07周----第09周:掌握Matlab编程,熟悉开发环境;第10周----第11周:学习常用目标的机动模型;第12周----第13周:编写程序,调试验证;第14周----第16周:撰写毕业设计论文,论文答辩;五、参考文献和书目1. 张勇刚,李宁,奔粤阳,等. 最优状态估计-卡尔曼及非线性滤波[M],国防工业出版社,2013。

2. 冯志全,孟祥旭,蔺永政,等.UKF滤波器的强跟踪性研究[J].小型微型计算机系统, 2006, 27(11): 2142-2145。

3. 潘泉,杨峰,叶亮,等.一类非线性滤波器-UKF综述[J].控制与决策, 2005, 20(5): 481-489。

4.宋迎春. 动态定位中的卡尔曼滤波研究[D]. 博士学位论文;长沙:中南大学, 2006。

5.贺觅知.基于卡尔曼滤波原理的电力系统动态状态估计算法研究[D].西安:西安交通大学,2006。

6.孙清,张陵,张爱社,伍晓红,等.基于扩展卡尔曼滤波(EKF)的结构动态物理参数识别[A];第十届全国结构工程学术会议论文集第Ⅲ卷[C];2001年。

7.黄铫.一种扩维无迹卡尔曼滤波.电子测量与仪器学报[J].2009,2009增刊:56-60。

8.柴霖,袁建平,罗建军,等。

非线性估计理论的最新进展[J].宇航学报,2005,26(3):380-384。

无迹Kalman滤波器及其目标跟踪应用

无迹Kalman滤波器及其目标跟踪应用
f r c s h a n h o a in e o e a tn a u e n a u n o a i n e t l s ,c l u a i g t e UKF p u , o e a tt e me n a d t e c v ra c ;f r c si g me s r me t v l e a d c v r a c ;a a t a c l tn h ls r n wi g sa e v c o n a i n e T e s mu a i n s o d t a h sme h d i r r c i a ha e e n t t e t ra d v r a c . h i l to h we h t i t t o Smo e p a t l c t n EKF me h d to .
最后 计 算 U F增益 ,更新 状 态 向量和 方差 。仿真 表 明该 方法 比 E F方 法可 用 性 更 强 K K 关键 词 :卡 尔曼滤 波 ;无迹 变换 ; 无迹卡 尔 曼滤波 中图分 类号 :T 3 1 ;T 1 . P0. 6 N7 3 1 文 献标 识码 :A
Uns e t d Ka m a le nd IsAplc to o Ta g tTr c ng c n e l n Fit ra t i a i n t r e a ki
d srb t n h a n h o a i n e o h p i t r q a o t e me n a d t e c v r a c f t e o i i t t iti u i ;t e me n a d t e c v ra c f t e o n s we e e u lt h o a n h o a i n e o h rg nm
M e s r me t n n r l c n q e a u e n d Co t a o Te h i u

卡尔曼滤波应用实例

卡尔曼滤波应用实例

卡尔曼滤波应用实例1. 介绍卡尔曼滤波是一种状态变量滤波技术,又称为按时间顺序处理信息的最优滤波。

最初,它是由罗伯特·卡尔曼(Robert Kalman)在国防领域开发的。

卡尔曼滤波是机器人领域中常用的滤波技术,用于估计变量,如机器人位置,轨迹,速度和加速度这些有不确定性的变量。

它利用一组测量值,通过机器学习的形式来观察目标,以生成模糊的概念模型。

2. 应用实例(1) 航迹跟踪:使用卡尔曼滤波可以进行航迹跟踪,这是一种有效的状态估计技术,可以处理带有动态噪声的状态变量跟踪问题。

它能够在航迹跟踪中进行有效的参数估计,而不受环境中持续噪声(如气动噪声)的影响。

(2) 模糊控制:模糊控制是控制系统设计中的一种重要方法,可用于解决动态非线性系统的控制问题。

卡尔曼滤波可用于控制模糊逻辑的控制政策估计。

它能够以更低的复杂性和高的控制精度来解决非线性控制问题,是一种高度有效的模糊控制方法(3) 定位和导航:使用卡尔曼滤波,可以实现准确的定位和导航,因为它可以将具有不确定性的位置信息转换为准确可信的信息。

这对于记录机器人的行走路径和定位非常重要,例如机器人搜索和地图构建中可以使用卡尔曼滤波来实现准确的定位和导航。

3. 结论从上文可以看出,卡尔曼滤波是一种非常强大的滤波技术,可以有效地解决各种由动态噪声引起的复杂问题。

它能够有效地解决估计(如机器人的位置和轨迹),控制(模糊控制)和定位(定位和导航)方面的问题。

而且,卡尔曼滤波技术具有计算速度快,参数估计效果好,能有效弥补传感器误差,还能够避免滤波状态混淆,精度较高等特点,可以在很多领域中广泛应用。

卡尔曼滤波在车辆定位系统中的应用

卡尔曼滤波在车辆定位系统中的应用

卡尔曼滤波在车辆定位系统中的应用随着智能交通的不断发展,车辆定位系统已成为现代交通运输领域不可或缺的一部分。

车辆定位系统可以通过对车辆的位置、速度、方向等信息进行实时监测和处理,为车辆驾驶员和交通管理部门提供准确、可靠的信息支持,从而提高车辆的安全性、效率性和舒适性。

而卡尔曼滤波作为一种常见的信号处理方法,已经在车辆定位系统中得到广泛的应用。

一、卡尔曼滤波的基本原理卡尔曼滤波是一种基于贝叶斯统计学理论的最优估计方法,能够通过对已知数据和未知数据的联合概率分布进行递归计算,得到最优的估计结果。

在车辆定位系统中,卡尔曼滤波主要用于对车辆位置、速度、方向等信息进行滤波处理,从而减少噪声干扰,提高定位精度。

卡尔曼滤波的基本流程如下:1. 系统建模:将系统状态和观测量表示为数学模型,建立状态转移方程和观测方程。

2. 预测阶段:根据系统状态的当前值和状态转移方程,预测系统状态的下一步值。

3. 更新阶段:根据观测量和观测方程,计算观测量的期望值和方差,并将预测值和观测值进行合并,得到最优的估计值和方差。

二、卡尔曼滤波在车辆定位系统中的应用1. 车辆位置估计在车辆定位系统中,卡尔曼滤波可以用于对车辆位置进行估计。

通过对车辆的速度、加速度、航向角等信息进行处理,可以得到车辆的位置信息。

同时,卡尔曼滤波还可以通过对车辆位置的历史数据进行分析,预测车辆未来的位置,从而提高车辆定位的准确性和稳定性。

2. 车辆速度估计车辆速度是车辆定位系统中一个重要的参数,可以用于判断车辆的运动状态和行驶路线。

卡尔曼滤波可以通过对车辆加速度和航向角等信息进行处理,估计车辆的速度。

同时,卡尔曼滤波还可以对车辆速度的历史数据进行分析,预测车辆未来的速度,从而提高车辆定位的准确性和稳定性。

3. 车辆方向估计车辆方向是车辆定位系统中另一个重要的参数,可以用于判断车辆行驶的方向和角度。

卡尔曼滤波可以通过对车辆航向角的历史数据进行分析,估计车辆的方向。

卡尔曼滤波在目标跟踪中的应用

卡尔曼滤波在目标跟踪中的应用

卡尔曼滤波在目标跟踪中的应用卡尔曼滤波是一种常用的目标跟踪算法,它通过预测和更新两个步骤,能够有效地估计目标的状态,对于实时目标跟踪有着重要的应用。

在目标跟踪中,我们通常需要根据已有的观测数据,来预测目标的未来位置或状态。

然而,由于观测数据往往存在噪声和不确定性,仅仅依靠单个观测值进行预测往往会引入较大的误差。

卡尔曼滤波通过对系统的动态模型和测量模型进行建模,能够准确地预测目标的状态,并根据新的观测数据进行更新,从而提高目标跟踪的精度。

卡尔曼滤波的核心思想是通过融合先验估计和观测数据,得到后验估计,从而更准确地估计目标的状态。

在预测步骤中,利用系统的动态模型和先验估计,通过状态转移方程对目标的状态进行预测。

在更新步骤中,根据观测数据和测量模型,通过测量方程对预测值进行修正,得到更准确的后验估计。

卡尔曼滤波的核心是卡尔曼增益,它用于衡量观测数据的权重。

卡尔曼增益越大,观测数据的权重越大,反之亦然。

卡尔曼增益的计算依赖于系统噪声和测量噪声的协方差矩阵,以及先验估计和观测数据之间的协方差矩阵。

通过调整卡尔曼增益,可以在系统噪声和观测噪声之间取得一个平衡,从而实现对目标状态的准确估计。

卡尔曼滤波在目标跟踪中有着广泛应用。

例如,在无人机跟踪目标的场景中,通过传感器获取目标的位置和速度信息,可以利用卡尔曼滤波对目标的运动进行预测,并根据新的观测数据对预测值进行修正,从而实现对目标的精确跟踪。

另外,在自动驾驶领域,卡尔曼滤波也被广泛应用于车辆的目标检测和跟踪,通过对车辆状态的准确估计,可以实现自动驾驶系统的精确控制。

除了目标跟踪,卡尔曼滤波还在其他领域有着重要的应用。

例如,在导航系统中,卡尔曼滤波可以用于优化地图匹配和位置估计,提高导航的精度和鲁棒性。

在信号处理中,卡尔曼滤波可以用于降噪和提取有效信号,从而改善信号质量。

在机器人领域,卡尔曼滤波可以用于机器人的定位和建图,实现自主导航和环境感知。

卡尔曼滤波在目标跟踪中有着广泛的应用。

卡尔曼滤波应用实例-目标跟踪滤波

卡尔曼滤波应用实例-目标跟踪滤波

z x [2] x[2] x[2] ( z [2] z [1]) / T x x x[2 / 2] z y [2] y[2] ( z [2] z [1]) / T y y[2] y
x[2] z x [2] x[2] x[2] wx [2] wx [2]
滤波误差方差阵: Px [k / k ] ( I K[k ]H)Px [k / k 1]
滤波起始:采用两点起始法,
即利用前两个观测数据 z[1], z[2] 进行起始。
z x [2] ( z [2] z [1]) / T x x ˆ x[2 / 2] z y [2] ( z y [2] z y [1]) / T
2 p33 E ( w2 [2]) y

2
T
2
2 a
/ 4 2 / T
2
2
p34 E w y [2] (T / 2)a y [1] ( w y [1] w y [2]) / T / T
2


p44 E (T / 2)a y [1] ( w y [1] w y [2]) / T
2 T 22 2 a 2 4 T
0 0 2 2 T
z x [2] ( z [2] z [1]) / T x x ˆ [2 / 2] x z y [2] ( z y [2] z y [1]) / T
0 0
0 0 2 T 2 2 2 T a 2 2 4 T
x[1] T x[1] T a x [1] / 2 x[1] x[1] T a x [1] (T / 2)a x [1] T

卡尔曼滤波器在运动目标中的跟踪

卡尔曼滤波器在运动目标中的跟踪
挑战
运动目标的跟踪面临许多挑战, 如目标运动的不确定性、噪声干 扰、遮挡等。
卡尔曼滤波器概述
01
02
03
定义
卡尔曼滤波器是一种高效 的递归滤波器,用于从一 系列测量中估计状态变量 的值。
特点
卡尔曼滤波器具有无偏性 和最小方差性,能够提供 状态变量的最优估计。
应用
卡尔曼滤波器广泛应用于 各种领域,如控制系统、 信号处理、金融预测等。
1
卡尔曼滤波器在运动目标跟踪中具有较高的跟踪 精度和鲁棒性,能够适应不同场景和条件下的运 动目标跟踪。
2
卡尔曼滤波器在实时性方面表现较好,能够快速 响应运动目标的变化,满足实时应用的需求。
3
卡尔曼滤波器在运动目标跟踪中具有广泛的应用 前景,可以应用于视频监控、自动驾驶、机器人 视觉等领域。
05
卡尔曼滤波器在运动目标跟踪 中的改进方向
根据实际观测结果和估计结果 不断更新卡尔曼滤波器的参数 ,提高运动目标跟踪的准确性

04
卡尔曼滤波器在运动目标跟踪 中的性能评估
性能评估指标
跟踪精度
衡量卡尔曼滤波器对运动目标位 置估计的准确性。
鲁棒性
评估卡尔曼滤波器在不同场景和 条件下对运动目标跟踪的稳定性

实时性
评估卡尔曼滤波器在运动目标跟 踪过程中的计算效率。
实验结果展示与分析
实验一
在不同速度和方向变化的运动目标跟踪中,卡尔曼滤波器能够准 确估计目标位置,并具有较好的鲁棒性。
实验二
在复杂背景和噪声干扰下,卡尔曼滤波器能够保持稳定的跟踪性能 ,并具有较好的抗干扰能力。
实验三
在实时性方面,卡尔曼滤波器能够快速响应运动目标的变化,并具 有较快的计算速度。

卡尔曼滤波在目标跟踪中的应用

卡尔曼滤波在目标跟踪中的应用

卡尔曼滤波在目标跟踪中的应用摘要:机动卡尔曼算法(VD 算法)在扩展卡尔曼滤波诸算法中原理较为简单,目标跟踪效果也较好。

一. 模型建立(1) 非机动模型(匀速直线运动) 系统模型)()()1(k GW k X k X +Φ=+其中⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=)()()()()(k V k y k V k x k X y x ; ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Φ10001000010001T T; ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=10200102T T G⎥⎦⎤⎢⎣⎡=)()()(k W k W k W y x ; 0)]([=k W E ; kj T Q j W k W E δ=)]()([ 测量模型为:)()()(k V k HX k Z +=;其中 ⎥⎦⎤⎢⎣⎡=01000001H )(k V 为零均值,协方差阵为R 白噪声,与)(k W 不相关。

(2) 机动模型 系统模型);(*)()1(k W G k X k X m m m m m +Φ=+其中⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=)()()()()()()(k a k a k V k y k V k x k X m y m ym y m m x mm ;⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=Φ1000000100000100020100000100200122T T T T T T m;⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=10012040020422T T T T G m 0)]([=k W E m , kj m m m Q j W k W E Tδ=)]()([观测模型与机动模型的相同,只是H 矩阵为m H 。

⎥⎦⎤⎢⎣⎡=000100000001mH二.Kalman 滤波算法作为一般的Kalman 滤波算法其算法可以描述如下:)1/1(ˆ)1/(ˆ--Φ=-k k X k k XT T G k GQ k k P k k P )1()1/)1()1/(-+Φ--Φ=- 1])1/([)1/()(-+--=R H k k HP H k k P k K T T )]1/()()[()1/(ˆ)/(ˆ--+-=k k HX k Z k K k k X k k X)1/()()1/()/(---=k k HP k K k k P k k P起始估计值为()()()()()()()221/ˆ2/2221/x x x y y y z z z T z z z T ⎡⎤⎢⎥-⎡⎤⎣⎦⎢⎥=⎢⎥⎢⎥⎢⎥⎡⎤-⎣⎦⎣⎦X 起始估计的估计误差为(2)(1)(2)(1)2(2/2)(2)(1)(2)(1)2x x x x y y y y v v v T u T v v v Tu T -⎡⎤⎢⎥-⎢⎥⋅+⎢⎥=⎢⎥-⎢⎥-⎢⎥⋅+⎢⎥⎣⎦X 起始估计的估计误差协方差矩阵为22222222222222/002/004(2/2)00/200/4xyux x u y TT TT T T TT ⎡⎤σσ⎢⎥σσ⎢⎥σ+⎢⎥=⎢⎥σσ⎢⎥⎢⎥σσ⎢⎥σ+⎢⎥⎣⎦P 三.VD 算法描述VD 算法采用两种模型,即非机动模型和机动模型,无机动时滤波器工作于正常模式(低阶模型),用机动检测器监视机动,一旦检测到机动,模型中立即增加一个状态变量,用机动模型跟踪直至下一次判决而退回到正常的非机动模型。

无迹卡尔曼滤波在目标跟踪中的应用答辩稿

无迹卡尔曼滤波在目标跟踪中的应用答辩稿
5.33 5.325 5.32 5.315 -1.5
5.32 5.315 -1.5
目标真实轨迹 UKF算 法 轨 迹 -1 -0.5 X/m 0 0.5 x 10 1
6
卡尔曼滤波后的轨迹对比图
无迹卡尔曼滤波后的轨迹对比图
4.滤波算法分析比较
表4-5 原噪声水平(10,1.7e-3) 位置均方根误差(m) 卡尔曼滤波 7.5269 0.000173 无迹卡尔曼滤波 1.8736 0.000079
(三)目标模型 的建立 当目标无机 动 , 即目标作匀速 或匀加速直线运 动时 , 其运动状态 可分别用下面的 二阶常速CV模型 或三阶常加速CA 模型表示。
(t ) 0 1 x(t ) 0 x w(t ) (t ) 0 0 x (t ) 1 x
F的基础理论 (一)基本卡尔曼滤波 卡尔曼滤波是一种递推线性最小方差估计。 显著地改善动态跟踪精度,它在目标跟踪中不仅 利用当前的量测值,而且充分利用以前的量测数 据,根据线性最小方差原则求出最优估计。 其中包含: (1)连续系统的卡尔曼滤波 缺点:无递推 (2)离散系统的卡尔曼滤波 优点:有递推,应用广
3.跟踪模型的建立
(一)目标的状态模型和量测模型
状态模型:描述了目标的
运动状态变量,状态噪声随着
时间的变化。 量测模型:描述了量测数 据与状态变量、量测噪声之间 的函数关系
3、跟踪模型的建立
( 二 ) 跟 踪 坐 标 系 的 选 取
ɣ为观测站0到目标M的距离,β 为方位角ε 为高低 角。
3.跟踪模型的建立
无迹卡尔曼滤波在目标跟踪中的应用
导 师: 答辩人: 专 业: 自动化
论文框架
1 2 3
研究背景及意义 UKF的基础理论

无迹卡尔曼滤波在目标跟踪中的应用

无迹卡尔曼滤波在目标跟踪中的应用

无迹卡尔曼滤波在目标跟踪中的应用摘要: 卡尔曼滤波算法是现阶段雷达信号处理中最常用的跟踪算法,结合雷达跟踪的空中目标的实际情况,针对目标运动模型中的线性运动和非线性运动模型,分别设计了两种模型,并利用马尔可夫状态转移矩阵实现交互多模算法。

最后对交互多模型卡尔曼滤波算法进行了Matlab仿真及结果分析。

关键词: 卡尔曼滤波; 目标跟踪; 交互多模; MatlabAbstractThe Kalman filtering algorithm is the most use in now stage in radar signal processing.According to the nonlinear sport and the linear sport in goal sport model the paper designs two model scombining the actual condition of the air goal of radar tracking. And it realizes interaction multiple model algorithm using Markov state transfer matrix. And finally for interaction multiple model Kalman filtering it carries out emulation and interpretation of result.Keywords:Kalman filter; target tracking; interaction multiple module; Matla目录第一章绪论 (1)§1.1 选题背景及意义 (1)§1.2 当前国内外研究现状 (X)§1.3 课程主要研究内容 (X)第二章目标跟踪理论研究 (X)§2.1 概述 (1)§2.2 基本内容 (1)§2.3 常用模型 (1)§2.3.1 CV、CA模型 (X)§2.3.2 “当前”统计模型(CSM) (X)§2.4 本章小结 (1)第三章非线性滤波算法的研究 (X)§3.1 标准卡尔曼(Kalman)滤波算法 (X)§3.1.1 基本概述 (X)§3.1.2 主要内容 (X)§3.1.3 存在不足及改进 (X)§3.2 扩展卡尔曼(Kalman)滤波算法 (X)§3.2.1 基本概述 (X)§3.2.2 主要内容 (X)§3.2.3 存在不足及改进 (X)§3.3 无迹卡尔曼(Kalman)滤波算法 (X)§3.3.1 基本概述 (X)§3.3.2 主要内容 (X)§3.3.3 存在不足及改进 (X)§3.4 本章小结 (X)第四章仿真结果及误差分析 (X)§4.1 运动场景及响定的设置 (X)§4.2 卡尔曼(Kalman)滤波算法仿真 (X)§4.2.1 基于匀速运动的仿真结果及分析 (X)§4.2.2 基于机动模型的仿真结果及分析 (X)§4.3 扩展卡尔曼(Kalman)滤波算法仿真 (X)§4.3.1 基于匀速运动的仿真结果及分析 (X)§4.3.2 基于机动模型的仿真结果及分析 (X)§4.4 无迹卡尔曼(Kalman)滤波算法仿真 (X)§4.4.1 基于匀速运动的仿真结果及分析 (X)§4.4.2 基于机动模型的仿真结果及分析 (X)§4.5 误差对比分析 (X)§4.6 本章小结 (X)第五章文章总结与展望 (X)§5.1 总结分析 (X)§5.2 未来展望 (X)参考文献 (X)致谢 (X)附录 (X)绪论§1.1 选题背景及意义在目标跟踪中,对目标进行可靠而精确的跟踪是目标跟踪系统设计的主要目的。

卡尔曼滤波应用实例

卡尔曼滤波应用实例

卡尔曼滤波应用实例卡尔曼滤波(KalmanFiltering)是一种状态估计方法,主要应用于定位、导航、目标跟踪以及模式识别等技术中。

它可以用来估计未知系统或过程的状态,也可以将一个测量值序列转换成更准确的状态序列,以消除噪声对测量结果的影响。

卡尔曼滤波是一种概率算法,它以一种可以提供模型描述的方式来估计状态变量的未知过程。

它的主要思想是,当一次测量值被收集后,将其与历史测量值进行比较,根据观测序列和模型参数,使用最优状态估计方法来更新状态估计器的预测数据。

卡尔曼滤波的应用实例非常多,下面将介绍其在定位、导航、目标跟踪以及模式识别等领域中的典型应用实例。

1)定位:卡尔曼滤波在定位领域中最常用的是GPS定位。

GPS 是一种全球定位系统,它使用太空技术进行定位。

GPS定位系统使用微波载波技术来定位,用于计算两个位置之间的距离,然后根据计算出的距离和测量结果,使用卡尔曼滤波算法来估计当前位置。

2)导航:在航海导航领域,卡尔曼滤波算法可以应用于军用导航系统中,以便将航行状态传递给其他航行设备,以及用于精细的航行定位、航迹计算和轨迹规划等。

3)目标跟踪:卡尔曼滤波在目标跟踪领域也得到广泛应用,它可以用来跟踪目标物体,如机器人、无人机、汽车等。

例如,可以使用卡尔曼滤波算法来跟踪机器人在空间中的位置,以及汽车在高速公路上行驶的轨迹。

4)模式识别:卡尔曼滤波还可以应用于模式识别领域,可以用来识别视觉系统中的图像模式,以及用于图像处理领域中的边缘检测和轮廓提取等。

以上是卡尔曼滤波在定位、导航、目标跟踪以及模式识别等领域中的应用实例,该算法在实际工程中得到了广泛应用,但也存在一些问题和缺陷,如对模型参数的依赖性太强、不适用于动态系统以及模型中噪声太多等问题。

因此,需要持续改进卡尔曼滤波的算法,以使其能够在更复杂的场景中得到更好的应用。

总之,卡尔曼滤波是一种广泛应用于定位、导航、目标跟踪以及模式识别等领域的优秀技术,它以一种可以提供模型描述的方式来估计状态变量的未知过程,在实际应用中发挥着巨大作用,但也需要不断完善和改进,以满足更多的需求。

卡尔曼滤波目标跟踪算法

卡尔曼滤波目标跟踪算法

卡尔曼滤波目标跟踪算法1. 引言1.1 背景介绍在目标跟踪领域,卡尔曼滤波算法是一种广泛应用的估计方法,它通过处理传感器测量数据和系统动态模型,实现对目标状态的预测和更新。

随着目标跟踪应用的普及和需求的增加,卡尔曼滤波算法在实时目标跟踪中发挥着重要作用。

卡尔曼滤波算法最初由R.E. Kalman和R.S. Bucy在20世纪60年代提出,被广泛应用于航空航天领域。

随着计算机技术的不断发展和普及,卡尔曼滤波算法被应用到了更多领域,包括机器人导航、目标追踪、人脸识别等。

在目标跟踪中,卡尔曼滤波算法能够通过对目标状态的动态建模和传感器测量的融合,实现对目标位置、速度等信息的精准估计。

这为实时目标跟踪系统提供了重要支持,使得系统能够更好地适应复杂环境和动态场景。

本文将介绍卡尔曼滤波算法的原理、在目标跟踪中的应用,同时分析其优缺点并提出改进的方法,最后通过案例分析展示其在实际应用中的效果。

通过本文的研究,可以更深入了解卡尔曼滤波目标跟踪算法的原理和实际应用,为进一步研究和应用提供参考和借鉴。

1.2 研究意义卡尔曼滤波目标跟踪算法在目标跟踪领域具有重要的研究意义。

目标跟踪是计算机视觉和机器人领域的重要研究方向,涉及到目标识别、运动估计、位置预测等问题。

传统的目标跟踪算法往往受限于噪声、运动模型不准确等因素,难以取得准确的跟踪结果。

而卡尔曼滤波算法通过对系统的动态模型和观测模型进行建模,并根据最小均方误差准则对系统状态进行优化估计,能够有效地解决这些问题。

卡尔曼滤波目标跟踪算法在目标跟踪任务中具有较高的准确性和鲁棒性,能够适应各种复杂的场景。

卡尔曼滤波算法还能够自适应地根据实时观测数据对系统进行调整,具有较强的实时性和稳定性。

深入研究和应用卡尔曼滤波目标跟踪算法可以为目标跟踪技术的发展提供重要的理论支持和技术保障,推动相关领域的进步和发展。

研究卡尔曼滤波目标跟踪算法不仅有助于提高目标跟踪的精度和效率,还对实际应用具有重要的意义。

卡尔曼滤波算法在雷达目标定位跟踪中的应用

卡尔曼滤波算法在雷达目标定位跟踪中的应用

卡尔曼滤波算法在雷达目标定位跟踪中的应用摘要:本文阐述了雷达跟踪系统中滤波器模型的建立方法,介绍了卡尔曼滤波器的工作原理,通过仿真方法,用卡尔曼滤波方法对单目标航迹进行预测,即搜索目标并记录目标的位置数据,对观测到的位置数据进行处理,自动生成航迹,并预测下一时刻目标的位置。

基于此方法的仿真实验获得了较为满意的结果,可以应用于雷达目标跟踪定位。

关键词:卡尔曼滤波;滤波模型;定位跟踪中图分类号:TN9591.引言雷达目标跟踪是整个雷达系统中的关键环节。

跟踪的任务是通过相关和滤波来确定目标的运动路径[1]。

在雷达中,人们通常只对跟踪目标感兴趣,但对目标位置、速度和加速度的测量随时都会产生噪声。

卡尔曼滤波器利用目标的动态信息去除噪声的影响,对目标位置进行较好的估计。

其可以是当前目标位置的估计滤波器、未来位置的预测、过去位置的插值或平滑。

随着计算机硬件技术和计算能力的迅速提高,卡尔曼滤波逐渐取代其他滤波方法成为ATC自动系统跟踪滤波的标准方法[2]。

卡尔曼滤波不需要独立于跟踪滤波过程的目标机动或跟踪效果检测,而是对其作统一处理,提高了算法的归一化程度。

卡尔曼滤波还可以将高度跟踪和水平位置跟踪结合起来,以考虑高度和水平方向之间可能存在的耦合。

本文从理论推导和仿真验证两方面探讨了卡尔曼滤波在单目标航迹预测中的应用,通过仿真对实验结果进行评价:卡尔曼滤波具有最佳的目标定位和跟踪精度。

1.Kalman滤波跟踪1.Kalman滤波模型•目标运动的动力学模型目标状态转移方程如下:状态转移方程描述了如何从当前时间目标的状态变量计算下一次的状态变量。

方程中的目标运动转移矩阵,反映了目标运动规律的基本部分,模型误差,反映了目标运动规律中不能被准确表达的随机偏差,是目标运动动力学模型的数学表达式。

•测量模型一般来说,传感器(雷达)可以直接检测到的目标参数并不是描述目标动力学的最合适的状态变量。

例如,二次雷达直接测量目标的俯仰角、方位角和斜距,而描述目标动力学最合适的状态变量是三维笛卡尔坐标及其导出量。

卡尔曼滤波在目标跟踪中的研究与应用

卡尔曼滤波在目标跟踪中的研究与应用
收 稿 日期 :2 1 0 1—0 2 3— 4
本文主要研究对机 动 目标进行 建模 , 目标发 当
・-・ — —
作者简介 :刘静( 96一 , , 18 ) 男 助理工程师 , 研究方 向为雷达装备性 能测试 与故障诊断 。
1 4 -— 7 — . —
统及非平稳随机过程 , 是线性系统的最优估计理论。
2 1 年第 0 0 1 1期
中图分类号 :N 5 T 93 文献标识码 : A 文章编号 :0 9— 52(0 1 1 0 7 0 10 2 5 2 1 )0— 14— 4
卡 尔 曼 滤 波在 目标 跟踪 中的研 究 与应 用
刘 静, 姜 恒 ,石晓原
(2 6 7 4 5部队 , 济南 2 02 ) 5 0 2
1 目标 跟踪 的基本 内容及算法
1 1 机 动 目标跟踪 的基 本 内容 .
12 卡尔曼滤波理论 . 卡尔曼滤波理论突破 了经典维纳滤波理论和方
法 的局 限性 , 引人 了 系统 的状 态 变量 和 状 态 空 间 的
目标跟踪 基本 上 包 含 量测 数 据 形 成 与处 理 、 机
动 目标建模、 机动检测与机动辨识 、 滤波 与预测、 跟 踪坐标系的选取 、 跟踪门规则、 数据关联 、 航迹起始
与终 止 等 内容 。机 动 目标 跟踪 系统 的基本 框 图如 图
1所示 。
概念 , 出了时域上 的状态空间方法 , 提 标志着现代控 制理论的诞生。它给出了~套在计算机上容易实时 实现的递推滤波算法 , 适合处理多变量系统 、 时变系
(2 6 ro so L Jn n20 2 C ia 74 5T o p f A,ia 5 02, hn ) P
Ab t a t T e Kama l r g a g r h i e mo t u e i o tg n r d r sg a r c s i g sr c : h l n f t i lo i m s t s s n n w s e i a a in l p o e sn . i en t h a

《卡尔曼与均值漂移在动态目标跟踪中的应用研究》范文

《卡尔曼与均值漂移在动态目标跟踪中的应用研究》范文

《卡尔曼与均值漂移在动态目标跟踪中的应用研究》篇一一、引言动态目标跟踪是计算机视觉领域中一项重要的研究课题,广泛应用于智能监控、无人驾驶、人机交互等多个领域。

卡尔曼滤波器和均值漂移算法作为两种有效的目标跟踪方法,在动态目标跟踪中发挥着重要作用。

本文将详细探讨卡尔曼滤波器和均值漂移算法在动态目标跟踪中的应用研究。

二、卡尔曼滤波器在动态目标跟踪中的应用卡尔曼滤波器是一种高效的递归滤波器,它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。

在动态目标跟踪中,卡尔曼滤波器通过预测和更新两个阶段,对目标的位置进行估计。

预测阶段根据系统的动态模型和上一时刻的状态估计值,预测当前时刻的状态;更新阶段则根据当前时刻的观测值和预测值,计算出当前时刻的最优估计值。

卡尔曼滤波器在动态目标跟踪中的应用具有以下优点:1. 能够处理含有噪声的观测数据,提高目标跟踪的准确性。

2. 能够适应目标的运动状态变化,包括目标的加速、减速、旋转等。

3. 计算量小,实时性好,适用于对实时性要求较高的场景。

三、均值漂移算法在动态目标跟踪中的应用均值漂移算法是一种基于密度的目标跟踪算法,它通过计算目标区域与周围区域的颜色直方图差异,确定目标的运动方向和速度。

在动态目标跟踪中,均值漂移算法通过迭代优化目标区域的位置,实现目标的稳定跟踪。

均值漂移算法在动态目标跟踪中的应用具有以下优点:1. 对光照变化和部分遮挡具有较好的鲁棒性。

2. 能够处理复杂的背景环境,包括颜色变化、纹理变化等。

3. 适用于多种场景下的目标跟踪任务。

四、卡尔曼与均值漂移的融合应用卡尔曼滤波器和均值漂移算法在动态目标跟踪中各有优势,为了充分发挥两者的优点,可以将两者进行融合应用。

具体而言,可以利用卡尔曼滤波器对目标的运动状态进行预测和更新,同时利用均值漂移算法对目标区域进行迭代优化。

这样可以在保证实时性的同时,提高目标跟踪的准确性和鲁棒性。

卡尔曼与均值漂移的融合应用具有以下优点:1. 结合了卡尔曼滤波器的预测能力和均值漂移算法的优化能力,提高了目标跟踪的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科毕业设计论文题目无迹卡尔曼滤波在目标跟踪中的应用专业名称学生姓名指导教师毕业时间毕业任务书一、题目无迹卡尔曼滤波在目标跟踪中的应用二、指导思想和目的要求利用已有的专业知识,培养学生解决实际工程问题的能力;锻炼学生的科研工作能力和培养学生的团结合作攻关能力;三、主要技术指标1、熟悉掌握无迹卡尔曼滤波的基本原理;2、对机动目标进行跟踪;四、进度和要求第01周----第02周:英文翻译;第03周----第04周:了解无迹卡尔曼滤波的发展趋势;第05周----第06周:学习无迹卡尔曼滤波基本原理;第07周----第09周:掌握Matlab编程,熟悉开发环境;第10周----第11周:学习常用目标的机动模型;第12周----第13周:编写程序,调试验证;第14周----第16周:撰写毕业设计论文,论文答辩;五、参考文献和书目1. 张勇刚,李宁,奔粤阳,等. 最优状态估计-卡尔曼及非线性滤波[M],国防工业出版社,2013。

2. 冯志全,孟祥旭,蔺永政,等.UKF滤波器的强跟踪性研究[J].小型微型计算机系统, 2006, 27(11): 2142-2145。

3. 潘泉,杨峰,叶亮,等.一类非线性滤波器-UKF综述[J].控制与决策, 2005, 20(5): 481-489。

4.宋迎春. 动态定位中的卡尔曼滤波研究[D]. 博士学位论文;长沙:中南大学, 2006。

5.贺觅知.基于卡尔曼滤波原理的电力系统动态状态估计算法研究[D].西安:西安交通大学,2006。

6.孙清,张陵,张爱社,伍晓红,等.基于扩展卡尔曼滤波(EKF)的结构动态物理参数识别[A];第十届全国结构工程学术会议论文集第Ⅲ卷[C];2001年。

7.黄铫.一种扩维无迹卡尔曼滤波.电子测量与仪器学报[J].2009,2009增刊:56-60。

8.柴霖,袁建平,罗建军,等。

非线性估计理论的最新进展[J].宇航学报,2005,26(3):380-384。

9.何衍.机动目标跟踪与传感器网络自组织[D];博士学位论文.浙江大学:2001年。

10.汪雄良.基于参数化技术的目标跟踪方法[D];博士学位论文.国防科学技术大学;2002年。

11.祝石厚.基于卡尔曼滤波算法的动态谐波状态估计技术研究[D].重庆:重庆大学,2008,5。

12.于静文,薛蕙,温渤婴,等.基于改进的RBAUKF的电力频率跟踪新算法[M].电测与仪表.2010,47(537):22-26。

13.于静文.基于卡尔曼滤波的电能质量分析方法综述[J].电网技术。

2010,34(2):97-102。

14.魏崇毓,徐善驾,王东进,等.多探测器目标跟踪算法分析[A];第九届全国信号处理学术年会(CCSP-99)论文集[C];1999年。

15.王宏强.目标融合跟踪技术及性能预测研究[D];博士学位论文.中国人民解放军国防科学技术大学;2002年。

学生指导教师系主任摘要由于卡尔曼滤波器具有结构简单、性能最优、易于被掌握和应用等一系列的优点其已被广泛应用于状态跟踪和估计等科学领域。

值得一提的是,由于其线性的推导和计算过程,决定了卡尔曼滤波器不能应用于非线性系统。

本文主要研究的是UKF滤波方法的滤波性能、现存问题和改进方法。

首先,介绍卡尔曼滤波在军事等领域的实际应用以及其今后的发展趋势,而后,初步了解卡尔曼滤波的意义,显著地改善动态跟踪精度,它在目标跟踪中不仅利用当前的量测值,而且充分利用以前的量测数据,根据线性最小方差原则求出最优估计。

连续系统的卡尔曼滤波方程以及离散系统的卡尔曼滤波方程让我们对其在线性化的处理有了深刻的印象。

同时,通过比例Unscented变换方法,可以更为准确地求得随机分布经过非线性变换后的均值和方差。

再次,在机动目标跟踪过程中,目标的状态模型和量测模型,直角及极坐标系下跟踪系统模型等等能更好的与实际的目标运动学相匹配。

最后,滤波算法在目标跟踪中的分析,能仿真出卡尔曼滤波和无迹卡尔曼滤波在运动中的状态估计。

关键词:UKF、均值、Unscented变换方法、状态模型、量测模型ABSTRACTBecause the kalman filter has simple structure, the optimal performance, easy to master and application and so on a series of advantages, it has been widely used in scientific fields such as status tracking and estimation. Be worth what carry is, because of its derivation and calculation of the linear process, determine the kalman filter can not be applied to nonlinear system. This paper studies the UKF filter method of filtering performance, existing problems and improving methods.First of all, this paper introduces the practical application of kalman filtering in the fields such as military and its development trend in the future.And then a preliminary understanding of the meaning of the kalman filter, significantly improve the dynamic tracing accuracy, it is not only in target tracking using the current measurement value, and make full use of the previous measurement data, according to the linear minimum variance principle to find the optimal estimation. Kalman filtering equation of continuous system and discrete system let us in the kalman filter equation linearized processing has a deep impression. At the same time, through the Unscented transform method, random distribution can be obtained more accurately after nonlinear transform of the mean and variance.Again, in the process of maneuvering target tracking, the state of the target model and measurement model, right Angle tracking system and polar coordinate model and so on can better match the actual target kinematics.Finally, the analysis of the filtering algorithm in target tracking, can simulate the kalman filtering and no trace of the kalman filter state estimation in the movement.KEYWORDS:UKF, average, unscented transformation method, the state model, the measurement model目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1 研究背景及意义 (1)1.2 卡尔曼滤波技术的现状 (2)1.3 有待解决的问题和发展趋势 (6)第二章无迹卡尔曼滤波的基础理论 (10)2.1 基本卡尔曼滤波 (10)2.1.1 连续系统的卡尔曼滤波方程 (10)2.1.2 离散系统的卡尔曼滤波方程 (11)2.1.3 离散卡尔曼滤波的分析 (13)2.2克服滤波发散的滤波方法 (14)2.2.1 加权衰减记忆滤波 (14)2.2.2 平方根滤波器 (17)2.3 非线性系统的卡尔曼滤波 (18)2.4 VD算法描述 (21)2.5 Unscented变换和对称采样策略 (22)2.6 UKF滤波的实现算法 (23)2.7 影响UKF精度的主要因素 (25)2.8 本章小结 (26)第三章跟踪模型的建立 (27)3.1 目标的状态模型和量测模型 (27)3.2 跟踪坐标系的选取 (27)3.2.1 直角坐标系下跟踪系统模型 (28)3.2.2 极坐标下跟踪系统模型 (28)3.2.3 量测模型的坐标转换 (29)3.3 机动目标模型的建立 (29)3.3.1 CV与CA模型 (30)3.3.2 时间相关模型(singer模型) (30)3.3.3 Noval统计模型 (31)3.3.4 机动目标“当前”统计模型 (31)3.4 本章小结 (32)第四章滤波算法在目标跟踪中的分析及比较 (33)4.1仿真想定设置 (33)4.2仿真结果及分析 (34)4.2.1 匀速直线运动仿真分析 (34)4.2.2 S形机动模型 (37)4.3 本章小结 (40)第五章结束语 (41)5.1 本文总结 (41)5.2 发展与展望 (41)参考文献 (44)致谢 (46)毕业设计小结 (47)第一章绪论1.1 研究背景及意义不管在现代军事领域、国防领域还是民用领域中,目标跟踪技术均占有非常重要的地位。

但是被探测目标的不确定性也随着现代目标隐身技术的发展以及目标机动性能的增强而增加。

尤其是在航空航天技术飞速发展的今天,作战条件以及战场环境翻天覆地的变化,迫使我们不能简单的对规则运动目标进行探测跟踪,一旦目标发生例如转向、减速、加速、下降、上升、S 型等突然的运动形态的改变,即目标发生机动时,若要对目标进行稳定、精确地跟踪就会变得很困难。

相关文档
最新文档