超声学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声学
超声学是声学的一个重要分支或组成部分。它以研究超声在各种物质中产生、传播、接收及与物质的相互作用、产生的各种效应和应用为主要内容。声波属于机械波,是机械振动在弹性媒质中的传播。现代声学已涵盖了从10-4—1014Hz的频率范围,相当于从大约3小时振动一次的次声到波长短于固体中原子间距的分子热振动,即跨越了1018 量级的宽广频段。这也意味着,现在,人们已经掌握了几乎任意频率声波产生与测量研究的近代技术。
从频率范围而言,超声是指频率高于可听声频率范围的声。根据对人耳的统计规律,在声学中,规定可听声的频率上限为2×104Hz。因而概括地说,超声是频率高于20KHz.的声波。若再具体一点说,超声频段中,频率高于108 Hz的超声称为特超声。特别是其中108 —1012 Hz频段,因与电磁波谱中的微波频段相对应,故又称为微波超声。
从功率范围而言,连续波超声一般在毫瓦—几十千瓦范围。脉冲波超声可扩充为几分之一毫瓦—几兆瓦。相应地,从声强角度看,聚焦连续波超声在液体中,因受空化的限制,上限约可达几十千瓦每平方厘米;而聚焦脉冲超声在焦斑中心,甚至可达几十兆瓦每平方厘米。显见,超声学包含了从线性学到非线性声学大跨度动态范围丰富的研究内容。
再从传播媒质而言,超声在气体、液体、固体、固熔体等物质中,均能有效地传播。而在这些媒质中,不同频率、功率、强度的超声波,都具有其独特的传播特性的传播性及效应,因而也有其相应的研究内容及广泛的应用。
超声波空化效应
高频振荡信号,通过超声波换能器转换成高频机械振荡(既超声波)而传播到介质(既清洗液)中,超声波在清洗液中的辐射,使液体振动而产生数以万计的微小气泡,这些气泡在超声波纵向传播形成的负压区产生、生长,而在正压区迅速闭合,这种被称为空化效应。
在空化的基本效应中,还有许多其他有趣的现象。如,从能量放大的角度来看,一个声压幅值为0.1MPa的超声,可在水中产生声致发光,此压力相应于能量密度约为2.2J/cm3 ,或4×10-10eV/分子(eV为电子伏特单位,1eV=1.6021892×10-19J)。而最近证明,伴随声发光的光子具有超过6eV的能量。故声波产生发光的能量放大近似于1.5×1010。作为对比,考虑一个热能中子引起可分裂同位素铀的情况,中子具有约0.025eV的能量,它引起裂变释放能量约为
200MeV,则其能量放大能力仅为0.8×1010!
又如,一个在刚性界面作形变振动的气泡,实验表明,在其闭合阶段,会产生通过气泡中心,突破泡壁,冲向界面的射流。同时也引起周围液体的微冲流。
再从泡内能量密度看,气泡快速闭合到微米级小泡内,其密集度
可超过1012。最近美国 Los Alamos 国家实验室进行空化和微聚变
(Micro-Fusion)实验。在重水(D2O)中,伴随超声空化有异常发
热并产生了3He和4He核粉尘。反应率为1012—1013Rx/s。
还有,从降温速度看,气泡崩塌之后,泡内“热点”骤然冷却,冷却速度达108 K/s。这相当于金属熔浆放入液氮的急剧冷却速率。
超声的机械作用
1.机械搅拌。超声的高频振动及辐射压力可在气、液体中形成有效的搅动与流动。空化气泡振动对固体表面产生的强烈射流及局部微冲流,均能显著减弱液体的表面张力及磨擦力,并破坏固-液界面的附面层,因而达到普通低频机械搅动达不到的效果。这一作用是药物透入,美容品导入皮肤,超声除气,食品及化妆品调匀细化等应用的物理基础。
2.相互扩散。利用超声振动及空化的压力、高温效应,促使两种液体,两种固体,或液-固、液-气界面之间,发生分子的相互渗透,形成新的物质属性。金属或塑料的超声焊接,超声乳化、清洗、雾化可归为此类作用。
3.均匀化。空化气泡闭合后产生的局部冲击波,可粉碎液体中的颗粒,使其细化;使结晶均匀;将较大、不均匀乳滴分散为微小均匀药剂(如医用造影剂、治癌药剂等);甚至可包括消溶血栓等作用。
4.凝聚作用。超声振动可使气、液媒质中悬浮粒子以不同速度运动,增加相碰撞机会;