工业生产中常用的微生物菌种1
发酵工业中常用常见的酵母菌
发酵工业中常用常见的酵母菌(一)酿酒酵母(Saccharomyces cerevisiae)这是发酵工业上最常用的菌种之一(图2-84)。
按细胞长与宽的比例可将其分为三组。
1)细胞多为圆形或卵形,长与宽之比为1~2。
这类酵母除了用于酿造饮料酒和制作面包外,还用于乙醇发酵。
其中德国2号和12号(RasseII和RasseXII)最有名,但因其不能耐高浓度盐类,故只适用于以糖化的淀粉质为原料生产乙醇和白酒。
2)细胞形状以卵形和长卵形为主,也有些圆形或短卵形细胞,长与宽之比通常为2。
常形成假菌丝,但不发达也不典型。
这类酵母主要用于酿造葡萄酒和果酒,也可用于酿造啤酒、蒸馏酒和酵母生产。
葡萄酒酿造业称此为葡萄酒酵母(Sac.ellisoideus)。
3)大部分细胞长宽之比大于2,它以俗名为台湾396号酵母为代表。
我国南方常将其用于糖蜜原料生产乙醇。
其特点为耐高渗压,可忍受高浓度盐类。
该酵母原称魏氏酵母(Sac.willanus)。
在啤酒酿造中最早采用的酵母是卡尔斯伯啤酒厂的E.C.Hansen(1842~1909年)在1883年分离的卡尔斯伯酵母(Saccharomyces carlsbergensis),这是一种底面发酵酵母。
酿酒酵母也可用于啤酒酿造,但属上面发酵酵母,这两种酵母发酵的过程和啤酒风味都有所不同。
目前在分类上皆采用酿酒酵母的学名。
底面发酵酵母其细胞为圆形或卵圆形,直径为5~10μm。
它与酿酒酵母在外形上的区别是,卡氏酵母部分细胞的细胞壁有一平端。
另外,温度对这两类酵母的影响也不同。
在高温时,酿酒酵母比卡氏酵母生长得更快,但在低温时卡氏酵母生长较快。
酿酒酵母繁殖速度最高时的温度为33℃,而卡氏酵母需在36℃。
但在8℃时卡氏酵母较酿酒酵母繁殖速度几乎快一倍。
(二)异常汉逊酵母(Hansenula anomala)细胞为圆形,直径4~7μm,椭圆形成腊肠形,大小为(2.5~6)μm×(4.5~20)μm,甚至有长达30μm的长细胞,多边芽殖,发酵,液面有白色菌醭,培养液混浊,有菌体沉淀于管底(图2-85)。
2021届高中生物竞赛理论辅导课件-微生物学(基础)04生物工业菌种与种子的扩大培养(共89张PPT)
▪ 二、菌种的复壮 ▪ ⑴ 纯种分离 ▪ 菌落纯 ▪ 细胞纯
单核细胞 枯草芽孢杆菌菌落
▪ ⑵ 通过寄主体进行复壮 ▪ 如杀螟杆菌
米曲霉菌落
▪ ⑶ 淘汰已衰退的个体 ▪ 如“5406”菌种
▪ 三、菌种的保藏
分叉中间体
青霉素
▪ (f) 筛选二价金属离子抗性突变株 ▪ (g) 筛选前体或前体结构类似物抗性突变
株 ▪ (h) 筛选自身所产的抗生素抗性突变株
▪ ㈤ 突变基因的表现 ▪ 菌种的发酵产量决定于菌种的遗传特性和
菌种的培养条件 ▪ 例如,诱变处理四环素产生菌得到的突变
株
第四节 生产菌种的改良
▪ 一、常规的杂交育种 ▪ 青霉菌的杂交过程实际上也是青霉菌准性生
2021届
高中生物竞赛理论辅导课件
微生物学
(基础部分)
第四章 生物工业菌种与种子的扩 大培养
第一节 工业生产常用的微生 物及要求 第二节 工业微生物菌种的衰 退、复壮与保藏
第四章 生物工业菌种与种子的扩 大培养
第三节 育 第四节 第五节
工业微生物菌种的选
生产菌种的改良 种子的扩大培养
第一节 工业生产常用的微生物 及要求
▪ ㈣ 筛选的方法 ▪ ⒈ 制定筛选方案 ▪ 整个流程可分为诱变和筛选两部分。 ▪ 筛选过程主要包括传种斜面、菌株保藏和
筛选高产菌株这三项工作。
▪ ⒉ 营养缺陷型的筛选方法 ▪ 比较:营养缺陷型(auxotroph)、原养型
(prototroph)、野生型(wild type) ▪ 比较:基本培养基(MM)、完全培养基
▪ (a) 利用营养缺陷型筛选
发酵工程(菌种选育)重点
2.它尽可能地避免出现表型延迟现象
表型延迟(Phenotypic lag)是指某一突变在
DNA复制和细胞分裂后, 才在细胞表型上显示
出来, 造成不纯的菌落的现象。出现这种现象
的原因是诱变对象处于多核时期造成的。
霉菌和放线菌对数期细胞往往是多核的, 很可能一个
核发生突变, 而另一个核未突变, 若突变性状是隐性的, 在
第一章 微生物菌种选育
菌种选育:利用微生物的遗传变异的特性, 采用各种手段,改变菌种的遗传性状。 ◇自然选育:根据菌种自然变异的特点进行选 育的过程。 ◇人工选育:人为方式改变微生物菌株遗传物 质选育过程,包括诱变育种、杂交育种、原 生质体融合、基因工程育种等高新技术。
第一节 菌种的来源
一、工业发酵常见微生物种类 细菌
从自然界筛选
采样季节:以温度适中,雨量不多的秋初 为好。 采土方式:在选好适当地点后,用小萨子 除去表土,取离地面 5-15cm处的土约 10g, 盛入清洁的牛皮纸袋或塑料袋中,扎好, 标记,记录采样时间、地点、环境条件等, 以备查考。为了使土样中微生物的数量和 类型尽少变化,宜将样品逐步分批寄回, 以便及时分离。
2.富集培养
富集培养可增加待分离菌的数量,增加分离的成功 率。
为了容易分离到所需的菌种,可以通过配制选择性 培养基,选择一定的培养条件来控制。
例如碳源利用的控制,可选定糖、淀粉、纤维素, 或者石油等,以其中的一种为唯一碳源,那么只有 利用这一碳源的微生物才能大量正常生长,而其它 微生物就可能死亡或淘汰。这样对下阶段的纯种分 离就会顺利得多。
续诱变处理很可能导致产量下降甚至死亡。
因此,在实际生产中,一般可选择①或②类菌
生物工艺学知识点
生物工艺学知识点第一章绪论1、生物工艺学biotechnology:又称为生物技术,它是应用自然科学及工程学原理,依靠生物作用剂biologicalagents的作用将物料进行加工以提供产品或社会服务的技术;特点:多学科和多技术的结合、生物作用剂生物催化剂的参与、应用大量高、精、尖设备;;2、生物催化剂是游离的或固定化的细胞或酶的总称;生物催化剂特点:优点:①常温、常压下反应②反应速率大③催化作用专一④价格低廉缺点:稳定性差控制条件严格易变异细胞生物反应过程实质是利用生物催化剂以从事生物技术产品的生产过程processengineering;3、生物技术研究的主要内容:基因工程DNA重组技术,geneengineering、细胞工程cellengineering、酶工程enzymeengineering、发酵工程fermentationengineering、蛋白质工程proteinengineering、第二章菌种的来源1、工业生产常用的微生物细菌、酵母菌、霉菌、放线菌、担子菌、藻类;2、分离微生物新种的过程大体可分为采样、增殖、纯化和性能测定;含微生物材料的预处理方法:物理方法加热;化学方法pH;诱饵法;诱饵技术:将固体基质加到待检的土壤或水中,待其菌落长成后再铺平板;分离的效率影响因素:1培养基的养分;2pH;3加入的选择性抑制剂;3、高产培养基成分的选择准则:制备一系列的培养基,其中有各种类型的养分成为生长限制因素C、N、P、O;使用一聚合或复合形式的生长限制养分;避免使用容易同化的碳葡萄糖或氮NH4+,它们可能引起分解代谢物阻遏;确定含有所需的辅因子Co2+,Mg2+,Mn2+,Fe2+加入缓冲溶液以减小pH变化;4、代谢控制发酵MetabolicControlfermentation:用人工诱变的方法,有意识地改变微生物的代谢途径,最大限度地积累产物,这种发酵形象地称为代谢控制发酵,最早在氨基酸发酵中得到成功应用;5、菌种的衰退表观现象有哪些目的产物的产量下降营养物质代谢和生长繁殖能力下降发酵周期延长抗不良环境的性能减弱6、菌种的衰退的原因菌种保藏不当提供不了当的条件或不利的条件经诱变得到的新菌株发生回复突变7、菌种的复壮方法:纯种分离通过寄主体进行复壮淘汰已衰退的个体8、菌种的保藏的原理根据菌种的生理生化特点,人工创造条件,使孢子或菌体的生长代谢活动尽量降低,以减少其变异;一般可通过保持培养基营养成分在最低水平,缺氧状态,干燥和低温,使菌种处于“休眠”状态,抑制其繁殖能力;9、菌种的保藏方法:A斜面冰箱保藏法B沙土管保藏法C石蜡油封存法D真空冷冻干燥保藏法E液氮超低温保藏法第三章菌种选育1、常用菌种选育方法1自然选育:是指在生产过程中,不经过人工处理,利用菌种的自发突变spontaneousmutation而进行菌种筛选的过程;特点:自发突变的频率较低,变异程度不大;所以该法培育新菌种的过程十分缓慢; 2诱变育种:是利用物理或化学诱变剂处理均匀分散的微生物细胞群,促进其突变率大幅度提高,然后采用简便、快速和高效的筛选方法,从中挑选少数符合育种目的的突变株,以供生产实践或科学研究使用;诱变育种的理论基础是基因突变;常用诱变剂:物理诱变剂、化学诱变剂碱基类似物、与碱基反应的物质、在DNA分子中插入或缺失一个或几个碱基物质、生物诱变剂3分子育种DNA重组、基因工程:用人为的方法将所需的某一供体生物的遗传物质DNA分子提取出来,在离体条件下切割后,把它与作为载体的DNA分子连接起来,然后导入某一受体细胞中,让外来的遗传物质在其中进行正常的复制和表达,从而获得新物种的一种崭新的育种技术;4杂交育种Hybridization:常规杂交育种Hybridization:一般是指人为利用真核微生物的有性生殖或准性生殖或原核微生物的接合、F因子转移、转导和转化等过程,促使两个具有不同遗传性状的菌株发生基因重组,以获得性能优良的生产菌株;原生质体融合技术:通过人工方法,使遗传性状不同的两个细胞的原生质体发生融合,并产生重组子的过程,亦称为“细胞融合”cellfusion;原生质体融合的基本过程:原生质体形成、原生质体融合、原生质体的再生;3、工程菌的不稳定性表现质粒的不稳定质粒的丢失、重组质粒的DNA片段脱落、表达产物的不稳定第三章微生物的代谢调节1、微生物代谢调节方式代谢流向的调控分为代谢物的合成和代谢物的降解;通过快速启动蛋白质的合成和有关的代谢途径,平衡各代谢物流和反应速率来适应外界环境的变化;代谢速度的调控分为酶量粗调酶合成的诱导和酶合成的阻遏和酶活细调酶活性的激活、酶活性的抑制反馈阻遏是转录水平的调节,产生效应慢;影响催化一系列反应的多个酶反馈抑制是酶活性水平调节,产生效应快;只对是一系列反应中的第一个酶起作用底物对酶的影响称为前馈;产物对酶的影响称为反馈;2、微生物初级代谢调节包括酶活调节、酶合成调节、遗传控制1酶活性的调节细调:一定数量的酶,通过其分子构象或分子结构的改变来调节其催化反应的速率;酶活调节的影响因素包括:底物和产物的性质和浓度、压力、pH、离子强度、辅助因子以及其他酶的存在等等;特点是反应快速;酶活性的调节包括:酶活性的激活和酶活性的抑制反馈抑制2酶合成的调节:通过调节酶合成的量来控制微生物代谢速度的调节机制;这类调节在基因转录水平上进行,对代谢活动的调节是间接的、缓慢的3酶合成的阻遏:在某代谢途径中,当末端产物过量时,微生物的调节体系就会阻止代谢途径中包括关键酶在内的一系列酶的合成,从而彻底地控制代谢,减少末端产物生成,这种现象称为酶合成的阻遏;末端代谢产物阻遏:由于某代谢途径末端产物的过量积累而引起酶合成的反馈阻遏;分解代谢物阻遏:当细胞内同时存在两种可利用底物碳源或氮源时,利用快的底物会阻遏与利用慢的底物有关的酶合成;这种阻遏并不是由于快速利用底物直接作用的结果,而是由这种底物分解过程中产生的中间代谢物引起的,所以称为分解代谢物阻遏过去被称为葡萄糖效应;3、改变细胞膜通透性的方法A限制培养基中生物素浓度在1~5mg/L,控制细胞膜中脂质的合成;B加入青霉素,抑制细胞壁肽聚糖合成中肽链的交联;C加入表面活性剂如吐温80或阳离子表面活性剂如聚氧化乙酰硬脂酰胺,将脂类从细胞壁中溶解出来,使细胞壁疏松,通透性增加;D控制Mn2+、Zn2+的浓度,干扰细胞膜或细胞壁的形成;E可以通过诱变育种的方法,筛选细胞透性突变株;5、人工控制微生物代谢的两种手段:1生物合成途径的遗传控制2发酵条件的控制6.谷氨酸棒杆菌生物素缺陷型生产谷氨酸的调控第四章微生物次级代谢与调节1、次级代谢产物:某些微生物在生命循环的某一个阶段产生的物质,它们一般是在菌生长终止后合成的;其生物合成至少有一部分是与核内和核外的遗传物质有关,同时也与这类遗传信息产生的酶所控制的代谢途径有关;微生物产生的次级代谢物有抗生素、毒素、色素和生物碱等;2、初级与次级代谢途径相互连接次级代谢物通常是由初级代谢中间体经修饰后形成的修饰初级代谢中间体的三种生化过程生物氧化与还原、生物甲基化、生物卤化3、前体:指加入到发酵培养基中的某些化合物,它能被微生物直接结合到产物分子中去,而自身的结构无多大变化有些还具有促进产物合成的作用;中间体是指养分或基质进入一途径后被转化为一种或多种不同的物质,他们均被进一步代谢,最终获得该途径的终产物;4、次级代谢物生物合成的原理①一旦前体被合成,在适当条件下它们便流向次级代谢物生物合成的专用途径;②在某些情况下单体结构单位被聚合,形成聚合物;这些特有的生物合成中间体产物需做后几步的结构修饰,修饰的程度取决于产生菌的生理条件;有些复杂抗生素是由几个来自不同生物合成途径组成的;第五章发酵培养基1、培养基通常指人工配制的供微生物生长、繁殖、代谢和合成所需产物的营养物质和原料,同时,培养基也为微生物等提供除营养外的其它生长所必需的环境条件2、发酵培养基的要求①培养基能够满足产物最经济地合成②发酵后所形成的副产物尽可能的少③培养基的原料应因地制宜,价格低廉;且性能稳定,资源丰富,便于采购运输,适合大规模储藏,能保证生产上的供应;④所用培养基应能满足总体工艺的要求,如不应影响通气、提取、纯化及废物处理等;3、工业上常用的碳源:葡萄糖、乳糖、淀粉、蔗糖工业上常用的氮源:无机氮源:氨水,铵盐,硝酸盐等;有机氮源:玉米浆、豆饼粉、花生饼粉、棉籽粉、鱼粉、酵母浸出液等;生理酸性物质,如硫酸铵;生理碱性物质,如硝酸钠;提供生长因子的农副产品原料:1玉米浆2麸皮水解液3糖蜜4酵母:可用酵母膏、酵母浸出液或直接用酵母粉;产物促进剂是指那些非细胞生长所必需的营养物,又非前体,但加入后却能提高产量的添加剂;4、发酵培养基的设计和优化方法正交试验设计、均匀设计、响应面分析正交试验设计:利用正交表来安排与分析多因素试验的一种设计方法;它是由试验因素的全部水平组合中,挑选部分有代表性的水平组合进行试验,通过对这部分试验结果的分析,了解全面试验的情况,找出最优的水平组合;正交实验数据分析,见教材P112-114例题,表4-16,同时确定因素的主次顺序、各因素的优水平、各因素水平的最优组合;小数点后保留一位;第六章发酵培养基灭菌和空气净化在发酵工业生产中,为了保证纯种培养,在生产菌种接种培养前,要对培养基、空气系统、消泡剂、流加物料、设备、管道等进行灭菌,还要对生产环境进行消毒,防止杂菌和噬菌体的大量繁殖;1.微生物热阻:微生物在某一特定条件下主要是温度和加热方式下的致死时间;2.对数残留定律中各符号的意义;3.理论灭菌时间的计算间歇实罐灭菌时间的计算连续灭菌的灭菌时间计算:4.灭菌温度的选择:随着温度升高,灭菌速率常数增加的倍数大于培养基中营养成分的分解速率常数的增加倍数;即当灭菌温度升高时,微生物杀灭速度提高,培养基营养成分破坏的速度减慢;5.影响培养基灭菌的因素:所污染杂菌的种类、数量、灭菌温度和时间,培养基成分、pH值、培养基中颗粒、泡沫等对培养基灭菌也有影响;6.无菌空气:指通过除菌处理使空气中含菌量降低至一个极低的百分数,从而能控制发酵污染至极小机会;此种空气称为“无菌空气”;7.介质过滤除菌是使空气通过经高温灭菌的介质过滤层,将空气中的微生物等颗粒阻截在介质层中,而达到除菌的目的;是大多数发酵厂广泛采用的方法;按除菌机制可分为:绝对表面过滤和深层介质过滤;介质过滤除菌的机理:空气流通过这种介质过滤层时,借助惯性碰撞、拦截滞流、静电吸附、扩散等作用,将其尘埃和微生物截留在介质层内,达到过滤除菌目的;第七章种子的扩大培养1、种子扩大培养:指将保存在砂土管、冷冻干燥管中处于休眠状态的生产菌种接入试管斜面活化后,再经过扁瓶或摇瓶及种子罐逐级扩大培养而获得一定数量和质量的纯种过程;这些纯种培养物称为种子2、种子扩大培养的目的与要求1种子扩培的目的①接种量的需要②菌种的驯化③缩短发酵时间、保证生产水平2种子的要求①菌种细胞的生长活力强,移种至发酵罐后能迅速生长,延迟期短②生理性状稳定③菌体总量及浓度能满足大容量发酵罐的要求④无杂菌污染⑤保持稳定的生产能力;3、种子罐级数:是指制备种子需逐级扩大培养的次数,取决于菌种生长特性、孢子发芽及菌体繁殖速度、所采用发酵罐的容积;种子罐级数受发酵规模、菌体生长特性、接种量的影响;级数大,难控制、易染菌、易变异,管理困难,一般2~4级;4、种子制备分两个阶段:实验室种子制备阶段生产车间种子制备阶段5、种龄:是指种子罐中培养的菌丝体开始移入下一级种子罐或发酵罐时的培养时间;接种量:是指移入的种子液体积和接种后培养液体积的比例;通常接种量:细菌1-5%,酵母菌5-10%,霉菌7-15%,有时20-25%青霉素生产的种子制备过程:安瓿管→斜面孢子→大米孢子→一级种子→二级种子→发酵第八章发酵工艺控制1、微生物发酵的生产水平取决于生产菌种本身的性能和合适的环境条件;2、发酵过程的代谢变化从产物形成来说,代谢变化就是反映发酵中的菌体生长、发酵参数的变化培养基和培养条件和产物形成速率这三者之间的关系;在分批培养过程中根据产物生成是否与菌体生长同步的关系,将微生物产物形成动力学分为①生长关联型和②非生长关联型;3、发酵方式1补料-分批发酵:指分批培养过程中,间歇或连续地补加新鲜培养基的培养方法;优点在于使发酵系统中维持很低的基质浓度;低基质浓度的优点:①可以除去快速利用碳源的阻遏效应,并维持适当的菌体浓度,使不至于加剧供氧的矛盾;②克服养分的不足,避免发酵过早结束;2半连续发酵:是指在补料-分批发酵的基础上,间歇地放掉部分发酵液的培养方法;优点:①可以除去快速利用碳源的阻遏效应,并维持适当的菌体浓度,使不至于加剧供氧的矛盾;②克服养分的不足,避免发酵过早结束;③缓解有害代谢产物的积累;3连续发酵:指培养基料液连续输入发酵罐,并同时放出含有产品的发酵液的培养方法;在这样的环境中培养,菌的生长就受到所提供基质的限制,培养液中的菌体浓度能保持一定的稳定状态;与传统的分批发酵相比,连续培养有以下优点:①维持低基质浓度:可以除去快速利用碳源的阻遏效应,并维持适当的菌体浓度,使不至于加剧供氧的矛盾;②避免培养基积累有毒代谢物;③可以提高设备利用率和单位时间的产量,节省发酵罐的非生产时间;④便于自动控制;4、发酵控制参数按性质分类:物理参数、化学参数、生物参数按检测手段分类:①直接参数:⑴在线检测参数⑵离线检测参数②间接参数5、发酵热发酵热就是发酵过程中释放出来的净热量;Q发酵=Q生物+Q搅拌-Q蒸发-Q显-Q辐射生物热biologicalheat是菌体生长过程中直接释放到体外的热能,使发酵液温度升高;搅拌热agitationheat是搅拌器引起的液体之间和液体与设备之间的摩擦所产生的热量;6、发酵过程pH值的一般变化规律1生长阶段:菌体产生蛋白酶水解培养基中的蛋白质,生成铵离子,使pH上升至碱性;随着菌体量增多,铵离子的消耗也增多,另外糖利用过程中有机酸的积累使pH 值下降;2生产阶段:这个阶段pH值趋于稳定;3自溶阶段:随着养分的耗尽,菌体蛋白酶的活跃,培养液中氨基氮增加,致使pH又上升,此时菌体趋于自溶而代谢活动终止;7、引起发酵液pH值异常波动的因素pH值的变化决定于所用的菌种、培养基的成分和培养条件pH下降:①培养基中碳、氮比例不当;碳源过多,特别是葡萄糖过量,或者中间补糖过多加上溶氧不足,致使有机酸大量积累而pH下降;②消泡剂加得过多;③生理酸性物质的存在,铵被利用,pH下降;pH上升:①培养基中碳、氮比例不当;氮源过多,氨基氮释放,使pH上升;②生理碱性物质存在;③中间补料氨水或尿素等碱性物质加入过多;8、临界氧浓度criticalvalueofdissolvedoxygenconcentration:指不影响菌的呼吸所允许的最低氧浓度;如对产物形成而言便称为产物合成的临界氧浓度;呼吸强度又称氧比消耗速率,是指单位质量的干菌体在单位时间内所吸取的氧量,以QO2表示,单位为mmolO2/g干菌体·h;耗氧速率又称摄氧率,是指单位体积培养液在单位时间内的吸氧量,以r表示,单位为mmolO2/L·h;9、引起溶氧异常下降,可能有下列几种原因:①污染好气性杂菌,大量的溶氧被消耗掉,可能使溶氧在较短时间内下降到零附近,如果杂菌本身耗氧能力不强,溶氧变化就可能不明显;②菌体代谢发生异常现象,需氧要求增加,使溶氧下降;③某些设备或工艺控制发生故障或变化,也可能引起溶氧下降,如搅拌功率消耗变小或搅拌速度变慢,影响供氧能力,使溶氧降低;10、泡沫的形成及其对发酵的影响在大多数微生物发酵过程中,通气、搅拌以及代谢气体的逸出,再加上培养基中糖、蛋白质、代谢物等表面活性剂的存在,培养液中就形成了泡沫;形成的泡沫有两种类型:一种是发酵液液面上的泡沫,气相所占的比例特别大,与液体有较明显的界限,如发酵前期的泡沫;另一种是发酵液中的泡沫,又称流态泡沫fluidfoam,分散在发酵液中,比较稳定,与液体之间无明显的界限大量的泡沫引起的负作用:发酵罐的装料系数减少、氧传递系统减小;增加了菌群的非均一性;造成大量逃液,增加染菌机会;严重时通气搅拌无法进行,菌体呼吸受到阻碍,导致代谢异常或菌体自溶;消泡剂的添加将给提取工序带来困难;泡沫的消除调整培养基中的成分如少加或缓加易起泡的原料或改变某些物理化学参数如pH 值、温度、通气和搅拌或者改变发酵工艺如采用分次投料来控制,以减少泡沫形成的机会;采用菌种选育的方法,筛选不产生流态泡沫的菌种,来消除起泡的内在因素;采用机械消泡或消泡剂来消除已形成的泡沫;常用的消泡剂有4大类:天然油脂类、脂肪酸和酯类、聚醚类、硅酮类11、造成染菌的主要原因设备渗漏空气带菌种子带菌灭菌不彻底技术管理不善第十章下游加工过程概论1、下游技术工程downstreamprocessing:对于由生物界自然产生的或由微生物菌体发酵的、动植物细胞组织培养的、酶反应等各种生物工业生产过程获得的生物原料,经提取分离、加工并精制目的成分,最终使其成为产品的技术;2.发酵液的特点1含水多,产物含量低;2含菌体蛋白;3溶有原来培养基成分;4相当多的副产物和色素;5易被杂菌污染或使产物进一步分解;6易起泡,粘性物质多;3、整个下游加工过程应遵循下列四个原则1时间短;2温度低,选择在生物物质的温度范围内;3pH适中;4严格清洗消毒包括厂房、设备及管路,注意死角;4、一般下游加工过程可分为4个阶段1培养液发酵液的预处理和固液分离;2初步纯化提取;3高度纯化精制;4成品加工;5、下游加工过程的一般流程第十二章发酵液的预处理和固液分离方法1、改善发酵液过滤特性的物理化学方法:调酸等电点、热处理、电解质处理、添加凝聚剂、添加表面活性物质、添加反应剂、冷冻-解冻及添加助滤剂等;2、凝聚——指在电解质作用下,由于胶粒之间双电层电排斥作用降低,电位下降,而使胶体体系不稳定的现象;常用的凝聚剂电解质有:硫酸铝Al2SO4318H2O明矾;氯化铝AlCl36H2O;三氯化铁FeCl3;硫酸亚铁FeSO4·7H2O;石灰;ZnSO4;MgCO3絮凝——指在某些高分子絮凝剂存在下,基于桥架作用,使胶粒形成较大絮凝团的过程;工业上使用的絮凝剂可分为三类:1有机高分子聚合物,如聚丙烯酰胺类衍生物、聚苯乙烯类衍生物;2无机高分子聚合物,如聚合铝盐、聚合铁盐等;3天然有机高分子絮凝剂,如聚糖类胶粘物、海藻酸钠、明胶、骨胶、壳多糖、脱乙酰壳多糖等;目前最常见的高分子聚合物絮凝剂有机合成的聚丙烯酰胺polyacrylamide类衍生物3、杂蛋白的去除方法有沉淀法、变性法、吸附法4、固液分离的方法:重力沉降、浮选、旋液分离、介质过滤、离心;5、根据过滤机理,过滤操作可分为澄清过滤和滤饼过滤;第十三章细胞破碎1、细胞破碎的阻力:细菌破碎的主要阻力:肽聚糖的网状结构,网状结构越致密,破碎的难度越大,革兰氏阴性细菌网状结构不及革兰氏阳性细菌的坚固;酵母细胞壁破碎的阻力:主要决定于壁结构交联的紧密程度和它的厚度;霉菌细胞壁中含有几丁质或纤维素的纤维状结构,其强度比细菌和酵母菌的细胞壁有所提高;2、常用破碎方法机械法:珠磨法固体剪切作用、高压匀浆法液体剪切作用、超声破碎法液体剪切作用、X-press法固体剪切作用;非机械法:酶溶法酶分解作用、化学渗透法改变细胞膜的渗透性、渗透压法渗透压剧烈改变、冻结融化法反复冻结-融化、干燥法改变细胞膜渗透性3、破碎率的测定方法1直接测定法2目的产物测定法3导电率测定法第十四章沉淀法Precipitation1、固相析出技术:通过加入某种试剂或改变溶液条件,使生化产物溶解度降低,以固体形式沉淀和晶体从溶液中沉降析出的分离纯化技术;结晶法:在固相析出过程中,析出物为晶体称为结晶法;沉淀法:在固相析出过程中,析出物为无定形固体称为沉淀法;常用的沉淀法:盐析法、有机溶剂沉淀法和等电点沉淀法等;2、盐析Saltinducedprecipitation:在高浓度的中性盐存在下,蛋白质酶等生物大分子物质在水溶液中的溶解度降低,产生沉淀的过程;原因如下:1无机离子与蛋白质表面电荷中和,形成离子对,部分中和了蛋白质的电性,使蛋白质分子之间的排斥力减弱,从而能够相互靠拢;2中性盐的亲水性大,使蛋白质脱去水化膜,疏水区暴露,由于疏水区的相互作用导致沉淀;Ks盐析法:在一定pH和温度下,改变体系离子强度进行盐析的方法;β盐析法:在一定离子强度下,改变pH和温度进行盐析;常用的盐析用盐:硫酸铵、硫酸钠,磷酸盐,柠檬酸盐;3、有机溶剂沉淀:在含有溶质的水溶液中加入一定量亲水的有机溶剂,降低溶质的溶解度,使其沉淀析出;原理:1降低了溶质的介电常数,使溶质之间的静电引力增加,从而出现聚集现象,导致沉淀;2有机溶剂的水合作用,降低了自由水的浓度,降低了亲水溶质表面水化层的厚度,降低了亲水性,导致脱水凝聚;常用的有机溶剂沉析剂:乙醇:沉析作用强,挥发性适中,无毒常用于蛋白质、核酸、多糖等生物大分子的沉析;丙酮:沉析作用更强,用量省,但毒性大,应用范围不广;4、等电点沉淀:调节体系pH值,使两性电解质的溶解度下降,析出的操作称为等电点沉淀;原理:蛋白质是两性电解质,当溶液pH值处于等电点时,分子表面净电荷为0,双电层和水化膜结构被破坏,由于分子间引力,形成蛋白质聚集体,进而产生沉淀;第十五章膜过滤法1、膜过滤法指以压力为推动力,依靠膜的选择性,将液体中的组分进行分离的方法;基本原理是筛孔分离过程;在压差的推动下,原料液中的溶剂和小的溶质粒子从高压的料液侧透过膜到低压侧,所得到的液体一般称为滤出液或透过液,而大的粒子组分被膜截留;包括微滤MF、超滤UF、纳滤NF和反渗透RO四种过程;在工业上用得最广的膜材料是醋酸纤维素和聚砜;浓差极化:当溶剂透过膜,而溶质留在膜上,使膜面浓度增大,并高于主体中浓度,这种浓度差导致溶质自膜面反扩散至主体中,这种现象称为浓差极化;在超滤中,为减少浓差极化,通常采用错流操作;膜的污染:膜在使用中,尽管操作条件保持不变,但通量仍逐渐降低的现象;污染原因:膜与料液中某一溶质的相互作用;吸附在膜上的溶质和其它溶质的相互作用;。
工业微生物菌种3篇
工业微生物菌种第一篇:工业微生物菌种的分类与应用工业微生物菌种是指能够利用化学物质或有机物质转化成特定化合物,以达到一定目的的微生物菌株。
依据其代谢能力和异质化位置,可分为原核菌和真核菌,其中原核菌包括细菌、古细菌;真核菌包括酵母菌、放线菌等。
在工业上,微生物菌种具有广泛的应用,与生活息息相关,主要包括以下几个领域:1. 食品工业:微生物菌种常用于食品生产中,如酵母菌用于发酵生面团糕点,用于制作面包、饮料和乳制品等。
2. 医药工业:微生物菌种还常用于生产药品,如链霉菌可以生产许多抗生素,烟酸噻唑可以生产类固醇药品,还有其他微生物菌株用于生产胰岛素、维生素等。
3. 化工工业:微生物菌株也可以生产某些有机化合物,如酪氨酸或芳香族氨基酸等。
4. 冶金工业:微生物菌株可以生产有色金属和稀土,提高金属矿物的回收率和分离纯度。
5. 废水处理:微生物菌株可以用于废水处理,将污染物转化为无害物质。
总之,微生物菌株在工业生产中发挥了极为重要的作用,能够提高工业生产效率,减少资源浪费,发挥环保作用,同时也推动了生态文明建设。
第二篇:工业微生物菌种的筛选与改良不同的工业微生物菌种在特定条件下具有不同的代谢能力和异质化位置,因此为了实现特定的工业目的,需要筛选合适的微生物菌株进行改良。
常用的微生物菌株改良方法包括自然选择、基因重组、适应性进化等。
1. 自然选择:生境中的微生物菌株不断进行自然选择和适应性进化,这种方式可以得到一定程度的微生物菌株改良,但改良效果较为有限。
2. 基因重组:通过DNA重组技术,将外源基因植入到微生物菌株中,使其获得特定的代谢能力。
这种方式可针对单一化合物进行改良,但同时也会增加微生物菌株的复杂度和不稳定性。
3. 适应性进化:通过连续的培养和筛选,逐步培育出筛选出符合特定目的的微生物菌株,此方式是较为广泛和有效的微生物菌株改良方法。
总之,针对不同的工业目的,需要选取不同的微生物菌株进行改良,以得到更加适应工业要求的工业微生物菌株,在最大限度的发挥微生物菌株的作用的同时,也提高了工业的生产效率和产品质量。
常用13类微生物菌种介绍
常用13类微生物菌种介绍一、枯草芽孢杆菌1、在芽孢状态下稳定性好,耐氧化、耐挤压、耐高温,能长期耐 60℃高温,在 120 ℃温度下能存活 20 分钟以上;耐酸碱,在酸性环境中能保持活性,可以耐唾液和胆汁的攻击。
2、枯草芽胞杆菌以芽孢状态进入土壤中后,迅速由休眠状态复活,在短期内繁殖成高含菌量的优势种群,并能产生大量抑菌物质,建立微生态平衡,抑制有害病原菌的生长。
3、在快速繁殖过程中,还可以产生大量多种维生素、有机酸、氨基酸、蛋白酶(特别是碱性蛋白酶)、糖化酶、脂肪酶、淀粉酶等活性产品,能降解土壤中复杂的有机物,从而促进作物吸收,提高肥料利用率。
4、安全高效,无药残,无毒副作用,能减少抗菌性农药的使用,增强植物免疫力。
5、对果树、瓜类、茄果类、姜、马铃薯、麻山药、三七、人参等作物的枯黄萎病、根腐病及马铃薯晚疫病、香蕉巴拿马病等土传病害有很好的防治效果。
二、侧孢短小芽孢杆菌1、侧孢短芽孢杆菌可促进植物根部有益菌大量生长,抑制病原菌繁殖,促进植物根系生长,增强根系吸收能力,并能活化土壤养分(固氮、解磷、解钾),提高作物产量,改善品质。
2、由于侧孢短芽孢杆菌具有耐高、耐盐、耐酸碱的特点,适合工业生产(与生产复合肥条件相同)。
使用侧孢芽孢杆菌生产复合肥的无机养分可以达到30%,且可以减少氮肥施用量。
3、它的抗病能力非常强,尤其对真菌性病害和线虫病非常明显。
有“抗重茬金刚”之美誉。
4、菌种在 12 个月之内衰减率低于 20%。
三、胶冻样类芽孢杆菌1、可促进磷酸根离子和钾离子溶解,有利于矿质元素从难溶态转化为可溶态,丰富土壤中有效态的磷和钾。
2、作为植物根及微生物,它能够产生生长素、细胞分裂素等生物活性物质刺激植物生长。
3、能够产生抗生素类物质,有效降低作物病害,胶胨芽孢杆菌在作物根际形成优势菌群能够抑制病原菌生长。
4、产生大量的胞外多糖,促进土壤团粒结构形成,改善土壤质地,改良土壤。
5、以胶冻样类芽孢杆菌为主要成份的生物钾肥在缺钾土壤上对各种农作物表现出较好的增产效果。
微生物菌种
虽然遗传工程等新的育种方法迅速发展,但诱变育种仍是目 前广泛使用的育种手段。
《发酵工程》
第二章 微生物菌种选育
原始菌株(出发菌株)
活细胞计数 诱变剂处理 活细胞计数 中间培养
突变株分离
诱变预备处 理
初筛 复筛 生产性能试验
工业微生物来源
想菌种保藏机构索取有关的菌株,从中筛选所需
菌株。
从自然界采集分离。
从一些发酵制品中分离目的菌株。
《发酵工程》
第二章 微生物菌种选育
微生物菌种的选择性分离
工业化菌种的要求
能够利用廉价的原料,简单的培养基,大量高效地合 成产物; 有关合成产物的途径尽可能地简单,或者说菌种改造 的可操作性要强;
分离耐高渗透压酵母菌,可到甜果、蜜饯、甘蔗渣堆积处采样
《发酵工程》
第二章 微生物菌种选育
目的微生物富集的一些基本方法
让目的微生物在种群中占优势,使筛选变 富集的目的: 得可能。
富集的三种方案:
定向培养:采用特定的有利于目的微生物富集的
条件(加热、膜过滤等),进行培养。
当不可能采用定向培养时,则可设计在一个分
能分解底物的微生物便会在菌落周围产生透明 圈,圈的大小初步反应菌株利用底物的能力。
分离水解酶产生菌时较多采用,如蛋白酶、淀粉酶、 脂肪酶、核酸酶等;
《发酵工程》
第二章 微生物菌种选育
例如用此法分离产生碱性蛋白酶的芽孢杆菌 土壤经巴氏消毒,以减少不产芽孢的微生物;然 后铺在pH8-9的琼脂培养基(含有均匀的不溶性蛋白 质)表面;碱性蛋白酶产生菌能消化平板上的不溶性 蛋白质,产生一透明圈。
遗传性能要相对稳定;
不易感染它种微生物或噬菌体; 产生菌及其产物的毒性必须考虑(在分类学上最好与 致病 菌无关); 生产特性要符合工艺要求。
发酵工业菌种
I
II
无试样时(不含棒酸时),I对II菌作用不大 有试样时(含棒酸时),I对II菌恢复药效,棒酸抑制水解酶活性
试验菌
金黄色葡萄球菌209p 枯草杆菌6633 大肠杆菌 耻垢分枝杆菌607 白色念珠菌 青霉菌
代表微生物类型
革兰氏阳性球菌 革兰氏阳性杆菌 革兰氏阴性肠道细菌
结核杆菌 酵母状真菌 丝状真菌
菌种不易变异退化; 对放大设备的适应性强; 菌种不是病原菌,不产生任何有害的生
物活性物质和毒素。
1. 筛选的两种指导思想
先分离纯化,再结合工艺要求进行筛选。 分离纯化同时富于筛选条件,一步得出所需菌株。
结果有两种可能:
▪ 获得适于工业发酵菌株 ▪ 只获得选育所需的出发菌株
2.分离筛选工作在实际中应用的几个方面
选择性分离
无选择性特征 根据产物的特征进行
随机分离
▪ 选择性分离的关键:生长培养条件的选择与控 制,从而实现定向富集筛选。
选择性分离原理和技术
生长条件的选择与控制原理 控制营养成分 控制培养基酸碱度 添加抑制剂 控制培养温度 控制通气条件
选择性分离技术 富集液体培养技术 施加选择压力,进行定向筛选 固体培养技术
在分离平板上生长获得多个单菌落 复印平板(copy 法)
平板培养,其中有产生氨基酸的菌落分泌氨基酸 u.v线杀死长好的菌落
随机分离方法
(用筛选方案- 检测系统进行间接分离)
富集液体培养 固体培养基条件培养 (初筛)
菌种纯化
复筛
菌种纯化
初步工艺条件摸索
再复筛 生产性能测试
较优菌株1-3株
保藏及进一步做生产试验 或作为育种的出发菌株
某些必要试验和 毒性试验等
含微生物样品的采集
酒精发酵相关的微生物
2 大肠杆菌
• 分类:大肠埃希氏菌属; 分类:大肠埃希氏菌属; • 细胞杆状、宽0.5um、长1-3um、为 3um、 细胞杆状、 0.5um、 单细胞原核生物; 单细胞原核生物; • 周生鞭毛,运动; 周生鞭毛,运动; • 无荚膜、无芽孢 无荚膜、 • 菌落呈现白色到污白色 • 发酵葡萄糖产酸产气,可以发酵乳糖 发酵葡萄糖产酸产气,
4 北京棒状杆菌
• 分类:棒状杆菌属; 分类:棒状杆菌属; • 细胞短杆状或小棒状,直径0.5-0.8um,长 细胞短杆状或小棒状,直径0.5-0.8um, 2-9um • 无芽孢,不能运动; 无芽孢,不能运动; • G+ ,对牛奶无作用; 对牛奶无作用; • 发酵葡萄糖、麦芽糖、蔗糖产酸不产气 发酵葡萄糖、麦芽糖、 • 好氧性或兼性,26-27oC 好氧性或兼性,26• 补加生物素 用途:该菌用于生产谷氨酸 用途:该菌用于生产谷氨酸
• 生长在麦芽汁平板上为乳白色、有光 生长在麦芽汁平板上为乳白色、 泽,平坦边缘整齐 • 细胞形状:圆形、卵圆形、椭圆形和 细胞形状:圆形、卵圆形、 腊肠形 •株 南阳酵母(1300及 ①南阳酵母(1300及1308) 拉斯2号酵母、拉斯12号酵母 ②拉斯2号酵母、拉斯12号酵母 ③K字酵母 酵母(Hefe M)、 ④M酵母(Hefe M)、 日本发研1 ⑤日本发研1号 卡尔斯伯酵母等。 ⑥卡尔斯伯酵母等。 利用糖质原料的酒母除啤酒酵母 啤酒酵母外 还有粟 利用糖质原料的酒母除啤酒酵母外,还有粟 酒裂殖酵母和克鲁维酵母等 酒裂殖酵母和克鲁维酵母等
黑曲霉电镜下观察的结果
顶囊
分生孢子梗
黄曲霉显微镜下观察的结果
• 我国 20 世纪 70 年代选育出 黑曲霉新菌 我国20世纪70年代选育出黑曲霉新菌 20世纪70年代选育出 As. 4309(UV 11) (UV株 As.3.4309(UV-11) , 该菌株性能优 良 。 我国很多酒精厂和酶制剂厂都以 该菌种生产麸曲、 该菌种生产麸曲 、 液体曲以及糖化酶 等 , 新的糖化菌株也都是 As.3.4309 的变异菌株。 的变异菌株。 • 根霉和毛霉 也是常用的糖化菌 。 著名 根霉和毛霉也是常用的糖化菌 也是常用的糖化菌。 阿米诺法, 的 阿米诺法 , 即是以根霉作糖化菌的 酒精生产方法。 酒精生产方法 。 著名的根霉菌有东京 根霉(又叫河内根霉) 根霉 (又叫河内根霉 ) 、 鲁氏毛霉和 爪哇根霉等。 爪哇根霉等。
发酵工程试题及答案
、名词解释1、分批发酵:在发酵中,营养物和菌种一次加入进行培养,直到结束放出,中间除了空气进入和尾气排出外,与外部没有物料交换。
2、补料分批发酵:又称半连续发酵,是指在微生物分批发酵中,以某种方式向培养系统不加一定物料的培养技术。
3、絮凝:在某些高分子絮凝剂的作用下,溶液中的较小胶粒聚合形成较大絮凝团的过程。
二、填空1、生物发酵工艺多种多样,但基本上包括菌种制备、种子培养、发酵和提取精制等下游处理几个过程。
2、根据过滤介质截留的物质颗粒大小的不同,过滤可分为粗滤、微滤、超滤和反渗透四大类。
3、微生物的育种方法主要有三类:诱变法,细胞融合法,基因工程法。
4、发酵培养基主要由碳源,氮源,无机盐,生长因子组成。
5、青霉素发酵生产中,发酵后的处理包括:过滤、提炼,脱色,结晶。
6、利用专门的灭菌设备进行连续灭菌称为连消,用高压蒸汽进行空罐灭菌称为空消。
7、可用于生产酶的微生物有细菌、真菌、酵母菌。
常用的发酵液的预处理方法有酸化、加热、加絮凝剂。
8、根据搅拌方式的不同,好氧发酵设备可分为机械搅拌式发酵罐和通风搅拌式发酵罐两种。
9、依据培养基在生产中的用途,可将其分成孢子培养基、种子培养基、发酵培养基三种。
10、现代发酵工程不仅包括菌体生产和代谢产物的发酵生产,还包括微生物机能的利用。
11、发酵工程的主要内容包括生产菌种的选育、发酵条件的优化与控制、反应器的设计及产物的分离、提取与精制。
12、发酵类型有微生物菌体的发酵、微生物酶的发酵、微生物代谢产物的发酵、微生物转化发酵、生物工程细胞的发酵。
13、发酵工业生产上常用的微生物主要有细菌、放线菌、酵母菌、霉菌。
14、当前发酵工业所用的菌种总趋势是从野生菌转向变异菌,从自然选育转向代谢调控育种,从诱发基因突变转向基因重组的定向育种。
15、根据操作方式的不同,液体深层发酵主要有分批发酵、连续发酵、补料分批发酵。
16、分批发酵全过程包括空罐灭菌、加入灭过菌的培养基、接种、发酵过程、放罐和洗罐,所需的时间总和为一个发酵周期。
工业发酵菌种选育
纯种分离的方法有稀释分离法、划线分离法等
现代发酵技术
稀释分离法
现代发酵技术
平皿划线分离法
a.分区划线分离法
b.连续划线分离法
现代发酵技术
菌种筛选(初筛+复筛)
(1)平板筛选(初筛)
从产物角度出发
根据产物的性质有目的地设计培养基来筛选菌种
从形态角度出发
现代发酵技术
抑菌圈法
测试菌苔 含药物滤纸
抑菌圈
琼脂培养基
现代发酵技术
其他鉴定—毒性试验
自然界天然微生物可能产生毒素
据规定,微生物中除啤酒酵母、脆壁酵母、黑曲霉、米曲
霉和枯草杆菌作为食用无须作毒性试验外,其他微生物作 为与食品工业有关的菌种,均需通过两年以上的毒性试验。
现代发酵技术
2、诱变育种
从野生菌转向变异菌 自然选育转向代谢育种 从诱发基因突变转向基因重组的定向育种。
现代发酵技术
二、菌种选育的主要目的
提高产量
改进质量
增加新品种 改善工艺条件
现代发酵技术
实
例
工业生产菌
不再分泌黄色色素
原始产生菌 青霉素产生菌产黄色色素
土霉素产生菌产大量泡沫
泡沫减少
红霉素产生菌不耐噬菌体
2、工业化菌种的要求
能够利用廉价的原料,大量高效地合成产物 有关合成产物的途径尽可能地简单
遗传性能相对稳定 不易感染它种微生物或噬菌体
产生菌及其产物的毒性低
生产特性要符合工艺要求
现代发酵技术
3、理想的生产菌种
生长繁殖迅速; 产量高; 易培养; 发酵周期短; 耐噬菌体; 纯种。
如氨基酸、核苷酸、多糖、脂类、维生素等。
工业用霉菌分类
工业用霉菌分类凡生长在营养基质上形成绒毛状、网状或絮状菌丝的真菌统称为霉菌。
霉菌在自然界分布很广,大量存在于土壤、空气、水和生物体内外等处。
霉菌喜偏酸性环境。
大多数为好氧性微生物。
多腐生,少数寄生。
工业上常用的霉菌有藻状菌纲的根霉、毛霉、犁头霉;子囊菌纲的红曲霉;半知茵类的曲霉、青霉等。
1,根霉(Rhizopus)根霉在自然界分布很广,是一种常见的霉菌。
它对环境的适应性很强,生长极迅速。
幼龄菌落为白色,棉絮状。
中期为灰黑色。
老熟后菌丝丛中密布黑色小点,即孢子囊。
菌丝无横隔,为单细胞真菌。
在培养基上生长时,由营养菌丝体产生弧形生长的匍匐菌丝,向四周蔓延。
匍匐菌丝接触培养基处,分化成一丛假根。
从假根着生处向上生出直立的孢子囊柄,其顶端膨大形成圆形的囊,称为孢子襄。
裹内生有许多孢子。
成熟后的孢子囊壁破裂,释放出孢子。
根霉在生命活动中分泌的淀粉酶,能将淀粉转化为糖。
因此,根霉可作为常用的糖化菌种。
我国民间酿制甜酒用的小曲主要含有根霉。
由于根霉能分泌丰富的淀粉酶,而且又含有酒化酶,所以在生产中可边糖化边发酵。
又因为根酶生长要求的温度较高,因而适于在高温季节使用。
根霉的应用十分广泛。
目前常用的菌种有米根霉、华根霉、河内根霉和甘薯根霉。
(1)米根霉(Rhizopus oryzae) 米根霉的最适温度37℃,41℃时还能生长。
米根霉的淀粉酶活力极强,多作糖化菌使用。
也具有酒精发酵能力及蛋白质分解能力。
大量存在于酒药与酒曲中。
此菌由于耐高温,特别为在夏季生产豆腐乳提供了方便条件,解决了豆腐乳旧法生产只能在冬季进行的困难。
(2)华根霉(Rhizopus chinentis) 华根霉的最适温度为30℃。
当发酵温度达45℃时,一般还能生长。
此种菌淀粉液化力强,有溶胶性。
能产生酒精、芳香脂类等物质。
在酒药与酒曲中大量存在。
它是酿酒所必需的主要霉菌,也是酸性蛋白酶和豆腐乳生产中的主要菌种。
2,毛霉(Mucor)毛霉分布亦较广,在基质表面生成灰色、白色或黄褐色的棉絮状菌落。
第二章工业微生物及其培养
实例:碱性纤维素酶产生菌的筛选(国家七五攻关项目) 文献:产生菌为中性芽孢杆菌,嗜碱芽孢杆菌、放线菌及霉菌 →80度30分钟处理 ↓ 0.0075%曲利本蓝+1%CMC(羧甲基纤维素),pH10.5 培养3~4天,选择有凹陷圈的菌落 采样(造纸厂) 26株为组成型 从285个土样中获得62株 36株为诱导型
自然选育在工业生产上的意义 问题: 高产菌株是正突变高,还是负突变高?
回复突变:高产菌株在传代的过程中,由于自然突变导致 高产性状的丢失,生产性能下降,这种情况我们称为回复 突变。 自然选育虽然突变率很低,但却是工厂保证稳产高产的 重要措施。
自然选育操作步骤: 一般习惯上将自然选育称为菌种的分离纯化。 单细胞(孢子)悬液的制备 平板分离 挑选单菌落(注意形态的观察) 发酵试验
XXX
XX
XXX
XX X
X
XX
X
X
XX
X
X
XX X
XX
X
XX
X
XX
X
Repeat for multiple cycles
DNA Shuffling与常规定向进化的比较
项目 进化速度 进化对象 进化 周期 影响对象 突变效率
常规定 向进化
缓慢进化
整个基因组
多年 完整基因组
低
特定基因/ DNA 几天 部分基因组 快速进化 操纵子/病毒 Shuffling
产氨短杆菌
它是氨基酸、 核苷酸工业 生产中常用 的菌种,也 是生产辅酶 A的菌种。
(四)放线菌
因菌落呈放射状而得名。 放线菌最大的价值在于能 产生各种抗生素。能产生 许多抗生素的链霉菌属 (Streptomyces),为放线菌 的代名词。
工业生产常用的微生物及要求
工业生产常用的微生物及要求工业生产常用得微生物及要求摘要:世界上得微生物种类多样,数目众多,在生物界来说就是极其丰富得。
同时,微生物对于人类又有着巨大得贡献,如食品、药品、各种各样得产品都里就有大量微生物产品。
关键词:微生物;工业发酵;细菌自然界中微生物无所不在,我们实际上生活在一个充满着微生物得环境中。
在空气中、土壤中、水等环境中生长存在得微生物就是各种各样得,种类繁多,且都就是混合在一起得。
尤其土壤就是微生物得大本营,种类之多,数量之大。
比如酵母菌多分布在土壤中,并且在海洋与淡水中都有一定数量得分布。
在比如在人体得肠道中、植物得叶片上等都存在大量得微生物。
由此可见,微生物在自然界中得数量之庞大令人所惊奇。
我们通过菌种选育得方法,从中筛选出所需要得菌株,满足一定得生产要求后,才可以扩大培养应用到工业发酵生产当中。
1工业生产常用微生物得种类在发酵工业生产上,我们所选择得用于生产产品得微生物大致有四类:细菌、放线菌、酵母菌与霉菌,这四种菌也就是我们所熟悉得。
现在由于发酵工程本身发展迅速,科技手段越来越先进,藻类、病毒等也正在逐步成为工业生产所应用得微生物得一员。
工业发酵常用得微生物种类大致如下:1、1细菌细菌就是单细胞原核生物,其繁殖方式一般就是无性繁殖,主要得繁殖方式就是裂殖。
裂殖分为三个阶段:核分裂、形成横隔、子细胞分离。
细菌染色体复制后,复制后得核物质髓细胞得生长向细胞得两级移动,质膜由外而内推进,形成间隔,细胞膜发生内陷,母细胞得细胞壁向内生长,将细胞质隔膜分成两层,细胞壁横隔也分成两层,由此形成两个相同得子细胞。
细菌就是自然界分布最广、数量最多得一类微生物。
细菌得形状大致分为杆状、球状、螺旋状,其中杆状最多,球状次之,螺旋状较少。
而工业生产中常用得细菌,应用较多得为杆状与球状,其中还就是以杆状居多。
比如保加利亚乳杆菌可以用来发酵酸奶;醋酸杆菌可以制作果醋;乳酸杆菌、乳酸球菌制优格;乳脂链球菌可以制作干酪、酸制奶油发酵剂得菌种;肠膜状明串珠菌生产酸泡菜及右旋糖苷;嗜盐片球菌酿造酱油。
发酵工程期末复习题
七. 种子质量的判断
1、细胞或菌体
2、生化指标
通常测定的参数有:
1)pH
2)培养基灭菌后磷、糖、氨基氮的含量变化
3)菌体形态、菌体浓度和培养液外观(色素、颗粒等)
4)其它参数,如某种酶的活力
3、产物生成量
4、酶活力
第四章 发酵工业原料及其处理
..
一. 培养基基本要求: 1)都必须含有作为合成细胞组成的原料。 2)满足一般生化反应的基本条件,如碳源、氮源、无机盐、生长因子; 3)一定的 pH 等条件。 4)工业生产培养基所用的原材料必须来源丰富、价格低廉、质量稳定。
..
优点: 1.产物结构复杂性和特异性: 手性或光学活性 2. 过程安全性:水相、常温、常压、中性、不燃不爆 3.主要原料可再生性:阳光和土地 4.原料可替换性 5.反应自控性 6.设备通用性 7.副产物可综合利用性 8.生产能力可提高性:突变与基因扩增 9.产物类型可塑性:突变与转基因
..
自然选育的一般程序: 制备单孢子(单细胞)悬液 ∨ 适当稀释 ∨ 在固体平板上分离 ∨ 挑取部分单菌落进行生产能力测定 ∨ 经反复筛选以确定生产能力更高的菌株替代原来的菌株 七.诱变育种
表型迟延现象: 遗传物质经诱变处理后发生的突变,必须经复制才能表现出来。
..
第三章 种子扩大培养
一. 种 子 扩 大 培 养: 定义:菌种的扩大培养就是把保藏在砂土管、冷冻干燥管中处于休眠状态的生产 菌种接入试管斜面活化,再经过扁瓶或摇瓶和种子罐,逐级扩大培养后达到一定 的数量和质量的纯种培养过程。这些纯种的培养物称为种子。
二. 尽管工业用微生物菌种多种多样,但作为大规模生产,选择菌种应遵循以 下原则: 1、能在廉价原料制成的培养基上迅速生长,并形成所需的代谢产物,产量高; 2、培养条件易于控制; 3、生长速度和反应速度较快,发酵周期较短; 4、满足代谢控制的要求; 5、选育抗噬菌体和杂菌能力强的菌株; 6、菌种纯粹,不易变异退化,以保证发酵生产和产品质量的稳定性。 7、菌种不是病原菌,不产生有害的生物活性物质和毒素,以保证安全。 8、发酵过程中产生的泡沫少,有利于提高装料系数和单罐产量,降低生产成本; 9、对需要添加的前体物质有耐受能力,且不能将前体物质作为碳源使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
展开青霉 ( P. patulum ): 又名寻麻青霉,主要用于生产灰黄霉素(一种 有效的可口服抗生素,用于治疗真菌性皮肤病、痢 疾及灰指甲) 橘青霉 ( P. citrinum ) : 许多菌系可产生橘霉素,也能产生脂肪酶、葡 萄糖氧化酶和凝乳酶 有的菌系产生5`-磷酸二酯酶,可用它生产5`核苷酸 (肌苷酸和鸟苷酸具有很强的助鲜作用)
可制作豆豉
3、曲霉 ( Aspergillus )
米曲霉 ( Aspergillபைடு நூலகம்s oryzae )
有较强的蛋白分解能力,同时又具有糖化能力
酿酒中的糖化菌;蛋白酶和淀粉酶的生产菌
黑曲霉 ( Aspergillus niger )
◇具有多种强大的酶系,如淀粉酶、蛋白酶、果 胶酶、纤维素酶和葡萄糖氧化酶等; ◇还能产生多种有机酸,如抗坏血酸、柠檬酸、 葡萄糖酸和没食子酸等 ◇是生产柠檬酸和葡萄糖酸的重要菌种
10、假单胞菌 (Pseudomonas)
能发酵生产维生素B12、丙氨酸、谷氨酸、葡萄 糖酸、色素、果胶酶;也能进行类固醇(甾体) 转化;有些菌株可利用烃类生产单细胞蛋白。
(二) 放线菌
因其菌落呈放射状而得名
属原核微生物类群,在自 然界中分布很广,尤其在 有机质丰富的微碱性土壤 中较多。
大多腐生,少数寄生。 产生多种抗生素(12 000 余种,60%左右来自放线 菌),经济价值大
多种可产抗生素,如 棘孢小单胞菌 (M. echinospora)产庆大霉素
3、游动放线菌属 (Actinoplanes) 一般不形成气生菌丝,孢囊在基内菌丝上形成,孢 囊孢子在孢囊内盘卷或呈直线排列;孢子球形,有时 端生1-40根鞭毛,能运动。 济南游动放线菌 (Actinoplanes tsinanesis) 产创新 霉素(creatmycin; 1964)
第三组 长宽比大于2
耐高渗透压,供发酵甘蔗糖蜜生产酒精用
啤酒酵母在液体培养基中的生长行为有两类:
上面酵母——发酵度较高,不易凝集沉淀,浮于上面 下面酵母——发酵度较低,易凝集沉淀
啤酒酵母的应用非常广,常用于传统的发酵行业, 如啤酒、白酒、果酒、酒精、药用酵母、面包制作, 故又称酿酒酵母。
近年来,利用啤酒酵母提取核酸、麦角固醇、细 胞色素C、凝血质和辅酶A等;生产单细胞蛋白 (SCP)可食用、药用和作为饲料;它的转化酶可用 于转化蔗糖,制造酒心巧克力。
1、链霉菌属 ( Streptomyces )
灰色链霉菌(Streptomyces griseus) 生产链霉素 金霉素链霉菌 (Streptomyces aureofaciens)
在PDA培养基上生长时,基内菌丝产生金黄 色色素
生产金霉素 红霉素链霉菌 (Streptomyces erythreus) 产红霉素
6、醋酸菌 (Acetobacter)
不形成芽孢,G-,好气性
分两群:1)只将乙醇氧化成醋酸 2)将产生的醋酸继续氧化成CO2和水
可生产醋酸
7、棒状杆菌 (Corynebacterium)
以葡萄糖为原料发酵产生酸,是谷氨酸和其他氨基酸 的高产菌 生产谷氨酸等 如北京棒杆菌AS1.299钝齿棒杆菌AS1.542
(四)霉菌
1、根霉 (Rhizopus)
米根霉 ( Rhizopus oryzae ) 淀粉酶活力极强,多作糖 化酶使用;又由于具有较强的 蛋白质分解能力,也可用于制 造腐乳。 华根霉 ( Rhizopus chinentis )
是酿酒所必须的重要霉菌,也 是酸性蛋白酶和腐乳生产中的重要 菌种。
微生物工程产品类型
1、微生物菌体的发酵
SCP、药用真菌(冬虫夏草、茯苓等) 生物防治制剂(如苏云金杆菌) 活性乳制剂
细胞的生长与产物的积累成平行关系,
生长速率最大的时期也是产物合成最高阶段
2、微生物酶发酵
各种酶制剂 糖化酶、氨基酰化酶(DL氨基酸光学拆分)、 蛋白酶、脂肪酶等
3、微生物代谢产物发酵
5、白地霉 ( Geotrichum candidum )
节孢子单个或连接成链 白地霉菌体蛋白营养价值很高,可供食用和饲 料用,也可用来提取核酸,在废料废水的利用上很 用价值
6、产黄头孢霉 ( Cephalosporium chrysogen ) 头孢霉素、先锋霉素 营养菌丝分隔; 分生孢子梗短,大多从 气丝上生出; 分生孢子从顶端长出后 推至侧旁,靠黏液连成 假头状,遇水散开
4、青霉 ( Penicillum )
产黄青霉 ( Penicillum chrysogenum ) 生产青霉素,也可用来生产葡萄 糖氧化酶、葡萄糖酸、柠檬酸和抗坏 血酸
娄地青霉 ( Penicillum roqueforti )
属不对称青霉组,具有分解油 脂和蛋白质的能力,可用于制造干 酪;该菌孢子能将甘油三酯氧化为 甲基酮
龟裂链霉菌 (Streptomyces rimosus)
菌落灰白色,表面后期有皱折,呈龟裂状 生产土霉素
2、小单胞菌属 (Micromonospora) 与一般放线菌不同,菌丝体长 入培养基内,不形成气生菌丝, 而在基内菌丝体上长出 孢子梗, 其顶端生一个球形、椭圆形孢子。
菌落致密,与培养基紧密结合 在一起,表面凸起,多崎岖,疣 状;菌落常为橙黄色、红色、深 褐色、黑色和兰色。
2、葡萄汁酵母 (Saccharomyces uvarum) 与酿酒酵母相似,主要的区别在于葡萄汁酵母能发酵 棉子糖和蜜二糖 葡萄汁酵母常用于啤酒酿造的底层发酵,也可食用、 药用或作饲料。 3、汉逊酵母 (Hansenula) 此属酵母多能产生乙酸乙酯,从而增加产品的香 味,可用于酿酒和食品工业。 但由于它能利用酒精作碳源,又能在饮料表面产 生干皱的菌膜,所以又是酒精生产的有害菌。
4、球拟酵母 (Toruiopsis)
此属酵母有些种能产生不同比例的甘油、赤藓糖、阿 拉伯糖;有的能利用烃类生产蛋白质。 5、假丝酵母 (Candida) 能形成假丝,液体培养时能形成浮膜 可生产SCP、甘油、脂肪酶
6、红酵母 (Rhodotorula)
有明显的红色或黄色色素,很多种因生荚膜而形 成粘质状菌落
芽孢卵形,中生或次端生,使芽孢囊膨大成梭状 或鼓槌形 专性厌氧 发酵生产丙酮丁醇
5、肠膜状明串珠菌 (Leuconostoc mesenteroides)
G+、微需氧至兼性厌氧,生长需要缬氨酸和谷氨酸 在蔗糖液中形成特征性葡聚糖黏液(20~25º C促使形成) 可生产葡聚糖
使糖汁变粘而无法加工,为糖厂有害菌
(三)酵母菌
单细胞真核,主 分布于含糖质较 多的偏酸性环境 中,如水果、蔬 菜、花蜜和植物 叶子上,以及果 园土壤中。
1、啤酒酵母 (Saccharomyces cerevisiae)
根据长与宽的比例,分三组:
第一组 长宽比为1~2
细胞多为圆形、卵圆形; 主要供生产啤酒、白酒和酒精及面包 第二组 长宽比为2 多供生产葡萄酒、果酒用
2、毛霉 ( Mucor ) 鲁氏毛霉 ( Mucor rouxianus ) 从我国小曲中分离出来; 能糖化淀粉且能生成少量酒精; 能产生蛋白酶,有分解大豆蛋白的能力, 常用来制作腐乳 总状毛霉 ( Mucor racemosus )
是毛霉中分布最广的一种,几乎在各地 土壤中、一些生霉的材料上、空气中都能找到; 酒曲中常见
初级代谢产物:
与菌体生长相伴随的产物,
氨基酸、核苷酸、维生素、有机酸、溶剂
菌体对其合成反馈控制严密,一般不过量积累
次级代谢产物:
与菌体生长不相伴随,以初级代谢产物为原料而合成
抗生素、生物碱、毒素、胞外多糖等 结构常较复杂对环境条件敏感
微生物工程菌种
第一节 发酵工业常用微生物
4、诺卡氏菌属 (Norcadia)
一般无气丝,基丝培养十几小时形成横隔,并 断裂成杆状或球状孢子。 菌落较小,边缘多呈树根毛状。 生产利福霉素、蚊霉素 等
5、孢囊链霉菌属 (Streptosporangium)
孢子丝盘卷成球形孢囊,内形成孢囊孢子,孢囊孢 子无鞭毛 产多霉素、创新霉素
腐生菌;
在酱油、酱类和白酒制曲时,如果水分含
量大,温度较高,就容易造成枯草杆菌迅速 繁殖;不仅消耗原料蛋白质和淀粉,而且生 成刺眼鼻的氨味,造成曲子发粘发臭,使制 曲失败。
能产生大量淀粉酶和蛋白酶
AS1.393 蛋白酶 BF7658 -淀粉酶
2、大肠杆菌 (Escherichia coli)
第二节
第三节
菌种来源
菌种选育
第四节
菌种保藏
第一节 发酵工业常用的微生物p69
一、发酵工业对微生物菌种的要求
尽管工业用微生物菌种多种多样,但作为大规模生 产,选择菌种应遵循以下原则: 1、能在廉价原料制成的培养基上迅速生长,并形成 所需的代谢产物,产量高。 2、可以在易于控制的培养条件下迅速生长和发酵, 且所需酶活力高。 3、根据代谢控制的要求,选择单产高的营养缺陷型突 变株或调节突变株或野生菌株。
4、选育抗噬菌体能力强的菌株,使其不易感染噬菌体。 5、菌种纯粹,不易变异退化,以保证发酵生产和产品质 量的稳定性。 6、菌种不是病原菌,不产生有害的生物活性物质和毒 素,以保证安全。
二、发酵工业中常用微生物菌种
(一) 细菌
1、枯草芽孢杆菌 (Bacillus subtilis)
分布广,常存在于枯草、土壤等,一般为
8、短杆菌 (Brevibacterium) 氨基酸、核苷酸工业生产中常用的菌种,也 是酶法合成生产辅酶A的菌种
9、黄单胞菌 (Xanthomonas)
细胞直杆状,G-,无芽孢,极生鞭毛
在含蔗糖的琼脂平板上形成圆形、边缘整齐、粘稠光滑的黄 色菌落;液体培养形成黄色粘稠的胶状物——荚膜多糖,其黄 色为一种水溶性色素 野油菜黄单胞菌(X. campestris) 可以淀粉生产黄原胶 (Xanthan gum)