网络系统可靠性研究现状与展望

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

网络系统可靠性研究现状与展望

姓名:杨玉

学校:潍坊学院

院系:数学与信息科学学院

学号:10051140234

指导老师:蔡建生

专业:数学与应用数学

班级:2010级二班

摘要

伴随着人类社会的网络化进程,人类赖以生存的网络系统规模越来越庞大、结构越来越复杂,这导致网络系统可靠性问题越来越严峻。本文首先探讨了网络系统可靠性的发展历程、概念与特点,进而从度量参数、建模、分析、优化四个方面系统综述了网络系统可靠性的研究现状,最后对网络系统可靠性研究未来的发展进行了展望。

关键词:可靠性;网络系统;综述;现状;展望

三、引言

21 世纪以来,以信息技术的飞速发展为基础,人类社会加快了网络化进程。交通网络、通信网络、电力网络、物流网络……可以说,“我们被网络包围着”,几乎所有的复杂系统都可以抽象成网络模型,这些网络往往有着大量的节点,节点之间有着复杂的连接关系。自从小世界效应[1]和无标度特性[2]发现以来,复杂网络的研究在过去10 年得到了迅速发展,其研究者来自图论、统计物理、计算机、管理学、社会学以及生物学等各个不同领域,仅发表在《Nature》和《Science》上的相关论文就达百篇。对复杂网络系统结构、功能、动力学行为的深入探索、科学理解以及可能的应用,已成为多个学科领域共同关注的前沿热点[3-14]。

随着复杂网络研究的兴起,作为复杂网络最重要的研究问题之一,网络系统可靠性研究的重大理论意义和应用价值也日益凸显出来[15, 16]。人们开始关注:这些复杂的网络系统到底有多可靠?2003 年8 月美加大停电事故导致美国的8 个州和加拿大的2 个省发生大规模停电,约5000 万居民受到影响,损失负荷量61800MW,经济损失约300 亿美元;2005 年12 月台湾海峡地震造成多条国际海底通信光缆发生中断,导致整个亚太地区的互联网服务几近瘫痪,中国大陆至台湾地区、美国、欧洲等方向国际港澳台通信线路受此影响亦大量中断;2008 年 1 月,南方冰雪灾害导致我国十余个省市交通瘫痪、电力中断、供水停止、燃料告急、食物紧张……这些我们赖以生存的网络系统规模越来越庞大,结构越来越复杂,但越来越频繁发生的事故也将一系列严峻的问题摆在我们面前:一些微不足道的事故隐患是否会导致整个网络系统的崩溃?在发生严重自然灾害或者敌对势力蓄意破坏的情况下,这些网络系统是否还能正常发挥作用?这些正是网络系统可靠性研究需要面对的问题。

四、正文

1 网络系统可靠性的发展历程、概念及特点

1.1 网络系统可靠性的发展历程可靠性作为专门课题始于二战期间对电子元件可靠性的研究。从20 世纪60 年代开始,可靠性研究从单个电子元件可靠性逐步扩展到一般产品的可靠性(例如电视机、洗衣机、计算机等)以及更为复杂的关联系统可靠性(例如火箭发

射系统、核反应控制系统,军事指挥控制系统),同时还逐步形成了可靠性数学、可靠性物理、可靠性工程等重要研究领域与分支学科[17]。

网络系统作为一类特殊的系统,其可靠性研究最早可追溯到1955 年Lee 对电信交换网络的研究,早期主要集中于通信网络领域。其中,20 世纪70 年代以前主要是以网络的连通作为网络可靠性规定功能来研究。20 世纪80 年代,由于通信网络规模的迅速扩张,使用频度、网络负载的快速增加以及动态路由技术的采用等原因,网络拥塞和延时逐渐成为了网络可靠性主要考虑的因素。这一时期,网络系统可靠性研究主要集中于通信网络基于性能的可靠性。20 世纪90 年代后,伴随着人类社会网络化进程加快,网络系统可靠性逐渐成为可靠性研究领域的热点,研究对象从通信网络扩展到电力网络、交通网络、物流网络等。

1.2 网络系统可靠性的概念及特点从系统学的观点来看,网络系统是一类特殊的系统形态,其中网络节点是系统的组成元素,网络的边体现了元素之间相互作用、互相依赖[18]。系统可靠性指系统在规定条件下和规定时间内完成规定功能的能力[19]。网络作为一类特殊的系统形态,其基本可靠性可定义为在规定条件下和规定时间内保持连通的能力,其任务可靠性可定义为在规定条件下和规定时间内完成规定的物质流、信息流、能量流传输任务的能力。

网络系统可靠性相对于一般系统可靠性具有以下特点:1)复杂性。一般系统中组成单元(子系统)之间逻辑关系简单、明确,而网络系统中节点之间的相互关系复杂,不能用简单的串联、并联、混连或者表决系统模型来刻画,系统结构呈网络状。这意味着传统的可靠性框图、故障树分析方法很难适用于网络系统可靠性研究。2)网络流。网络系统的主要任务是在网络节点之间通过网络的边传输物质流、信息流、能量流,网络系统可靠性研究不仅关注网络系统保持连通的基本能力,还关注网络系统完成传输网络流任务的能力,例如基于传输时延的可靠性、基于传输容量的可靠性等等。3)动态性。在一般系统可靠性研究中,研究对象大多是静态的、确定的,系统组成单元的数量、组成单元之间的关联方式基本保持不变。但网络系统,特别是大规模复杂网络系统,例如因特网、交通网等,往往都是动态的、不确定的,网络中节点数量会随着时间不断增减,网络结构也会随着时间不断演化。4)分布性。在一般系统可靠性研究中,无论是单个元件、产品,还是复杂的关联系统,整个系统在空间上都相对集中。但网络系统往往都具有很强的分布特性,网络节点分散在大范围的空间中,每个节点是一个相对集中的元件、产品或者子系统。这种空间上的分布特性导致了网络系统功能的特殊性,在网络系统中常常出现局域故障或者部分功能缺失的现象。

2 网络系统可靠性研究现状下面,我们从可靠性度量参数、可靠性分析方法、网络可靠性优化方法综述目前网络系统可靠性研究现状。

2.1 网络系统可靠性度量参数

2.1.1 基本可靠性

1)抗毁性网络抗毁性(Invulnerability)是基于拓扑结构的可靠性参数,不考虑网络节点和边的可靠度,衡量的是在网络中的节点或边发生自然失效或遭受故意攻击的条件下,网络拓扑结构保持连通的能力[20]。目前,网络抗毁性研究主要基于两大理论:图论和统计物理。

基于传统图论的网络抗毁性参数。图论是组合数学领域最活跃的分支之一,图的抗毁性是图论的重要研究内容。目前,在图论中有很多图的不变量被用来刻画图的抗毁性。例如,连通度(connectivity),坚韧度(toughness)[21],完整度(integrity)[22],粘连度(tenacity)

相关文档
最新文档