初中数学_全等三角形的判定(二)教学设计学情分析教材分析课后反思

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学设计

1、复习提问

通过前两个问题复习巩固上一节所讲的知识,通过问题3引导学生认识到三角形全等是证明角相等、线段相等的重要方法,然后设疑,如何证明两个三角形全等?从而引出课题。

2、讲授新课

全等三角形的判定条件的探究

首先提出问题1:两个三角形三条边相等、三个角相等,这两个三角形全等吗?学生通过观察图形和课件演示,会很容易作出恳定的回答。

接着再提出问题2:两个三角形全等是不是一定要六个条件呢?若满足这六个条件中的一个、两个或三个条件它们是否全等呢?然后教师引导学生分别从“角”和“边”的角度分析一个条件、两个条件各有几种情形。引导全班同学首先共同完成满足一个条件的情况的探究,然后指导学生分组讨论,对满足两个条件的情况进行探究,并在组内交流,教师深入小组参与活动,倾听学生交流,并帮助学生比较各种情况。

最后由教师在投影上给出满足一个条件和两个条件的几组三角形,学生通过观察图形就会得到一结论:两个三角形若满足这六个条件中的一个或两个条件是不能保证两个三角形一定全等的。

3、提出问题

两个三角形若满足这六个条件中的三个条件能保证它们全等吗?满足三个条件有几种情形呢?由学生分组讨论、交流,最后教师总结,得出可分为四种情况,即三边对应相等、三角对应相等、两边一角对应相等、两角一边对应相等。告诉学生这一节先探究两个三角形满足三条边相等时,两个三角形是否全等?对于此问题我是这样引导学生探究的,先让学生在练习本上各画一个边长分别为2、3、4的三角形(当然在这里要先给学生讲清楚已知三边如何画三角形,并且让学生牢记此种画三角形的方法),学生画好之后剪下来,同桌之间进行比较、验证,看它们是否重合。同时教师在投影上给出两个边长为2、3、4的三角形,通过课件演示,学生会看到两个三角形的三边对应相等,它们是全等的。从而得到全等三角形的判定方法,即:有三条边对应相等的两个三角形是全等三角形。得到全等三角形的判定条件之后,还要给学生讲清楚证明三角形全等的书写格式,即:先要写出在那两个三角形中,然后用大括号把全等的三个条件括住,最后写出全等的结论。由于学生刚开始学习全等三角形的证明,对三角形全等的书写格式还不熟悉,所以教师在此要强调三角形全等的书写格式

以及应注意的问题。

3、题例训练

例1是两道填空题,需要补全三角形全等的条件,在讲解此题时关键是让学生看清图中两个三角形全等已具备哪些条件,还缺什么条件,把所缺的条件补上即可。通过此题要使学生进一步掌握三角形全等的判定条件及证明三角形全等的书写格式和应注意的问题,在讲解例2时首先要给学生指出证题的思路“要证明△ABD≌△ACD可以看这两个三角形的三条边是否对应相等,而由已知条件可知AB=AC,图中又有公共边AD=AD,关键是第三对边BD、CD 是否相等,由D是BC中点可知BD=CD,从而找全三个条件。”然后教师给出规范的证明格式。并且通过此题给学生总结证明三角形全等的书写步骤。所以,通过例2要使学生理解证明的基本过程,掌握证明三角形全等的书写步骤,例3是习题的拓展与提高,主要是利用三角形全等来证明角相等,通过此题要使学生认识到全等三角形性质的运用。在讲解此题时我是这样给学生分析思路的,“要证明∠A=∠C,首先要看这两个角在那两三角形中,由图中可知这两个角在△ABD和△CDB中,只要证它们全等就可以了,而已知中已给出两组边相等,图中还有一组公共边,从而可得证明这两个三角形全等的条件。”然后让学生口述此题的证明过程,教师给出规范的证明过程。

4、反馈练习:

为了检测学生对本节课的内容掌握情况,我又设计了反馈练习,

学生独立完成,教师评析,对其中出现的问题及时纠正。

5、课堂小结

从三个角度总结:

(1)本节课所讲的内容。

(2)如何用判定条件证明三角形全等。

(3)证明时应注意的问题。

6、布置作业及复习思考题

布置作业是用来巩固本节课所讲的内容,检验本节课的教学效果,同时本着面向全体学生因材施教的原则,布置一道思考题,使学有余力的同学得到锻炼,能力得到提高。

这是我对本节课的总的设计过程,具体过程将体现在我的课堂教学中。

学情分析

通过对前面知识的学习,学生已掌握了全等三角形定义、性质及“边边边”(SSS)公理,对本节课学习的三角形全等判定——“边角边”(SAS)有了一定的基础,但个别学生在理解、运用上还须借助教师、同学的帮助。从本章开始,学生在观察能力上要经历“单一图形”到“多个图形”的跨越,在推理能力上要经历“使用单个条件”到使用多个条件的跨越,因此在教学时要注意减缓坡度,循序渐进,引导学生有条理的思考,正确运用数学语言表述

证明过程。

效果分析

1.通过本堂课,学生理解并掌握了“边角边公理”的内容及含义,能初步运用“边角边公理”解决实际问题。

2. 学生经历了猜想-作图-验证“边角边”公理的过程,培养了学生的识图能力和动手能力。

3. 学生积极参与了观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会了成功的喜悦,以此激发求知欲望;通过渗透分类讨论的数学思想,学生的逻辑推理能力有了一定的提高。

教材分析

三角形是最常见的几何图形之一,在日常生活中有着广泛的应用。本课是探索三角形全等条件的第二课时,是在学习了全等三角形的判定1--SSS之后展开的。它不仅是下节课探索三角形全等其它条件的基础,还是证明线段相等、角相等的重要依据,同时也为今后探索直角三角形全等的条件以及三角形相似的条件提供很好的模式和方法。因此,本节课的知识具有承前启后的作用,占有相当重要的地位。

当堂测评

1.在下列图中找出全等三角形(连线)

A

C B F

E D

2.如图,已知AC=FE,BC=DE,点A,D,B,F 在一条直线上,要使△ABC ≌△FDE ,还需要添加一个条件,这个条件可以是

3.如图,线段AB 、CD 互相平分交于点O ,则下列结论错误..

的是( ) A .BC AD = B .D C ∠=∠ C .BC AD // D .OB OC =

4.已知:如图,AB=DC ,∠ABC = ∠DCB,

求证:AC=DB.

拓展延伸

1、如图,C 为线段AB 上一点,△ACD 和△CBE 都是等边三角形,求证:AE=BD

D E C A O A D C B A B C

相关文档
最新文档