信号的统计检测与估计理论

合集下载

信号检测与估计理论

信号检测与估计理论

平方检测算法是一种简单而有效的信 号检测算法,它通过比较输入信号的 平方和与阈值来判断是否存在信号。
信号估计理论
02
信号估计的基本概念
信号估计
利用观测数据对未知信号或系统状态进行推断或预测 的过程。
信号估计的目的
通过对信号的处理和分析,提取有用的信息,并对未 知量进行估计和预测。
信号估计的应用
在通信、雷达、声呐、图像处理、语音识别等领域有 广泛应用。
阈值设置
03
在信号检测中,阈值是一个关键参数,用于区分信号和噪声。
通过调整阈值,可以控制错误判断的概率。
信号检测的算法
最大后验概率算法
最大后验概率算法是一种常用的信号 检测算法,它基于贝叶斯决策准则, 通过计算后验概率来判断是否存在信 号。
平方检测算法
多重假设检验算法
多重假设检验算法是一种处理多个假 设的信号检测算法,它通过比较不同 假设下的似然比来确定最佳假设。
医学影像信号处理
X光影像处理
通过对X光影像进行去噪、增强、分割等处理,可以提取出 病变组织和器官的形态特征,为医生提供诊断依据。
MRI影像处理
磁共振成像(MRI)是一种无创的医学影像技术,通过对MRI 影像进行三维重建、分割、特征提取等技术处理,可以更准确
地诊断疾病。
超声影像处理
超声影像是一种实时、无创的医学影像技术,通过对超声影像 进行实时采集、动态分析、目标检测等技术处理,可以为临床
03
估计的精度和效率。
深度学习在信号检测与估计中的应用
01
深度学习是人工智能领域的一种重要技术,在信号检
测与估计中信号进行高效的特征
提取和分类,提高信号检测的准确性和稳定性。

统计信号处理基础估计与检测理论教学设计

统计信号处理基础估计与检测理论教学设计

统计信号处理基础估计与检测理论教学设计概述统计信号处理是一门涉及到概率、统计等数学知识的交叉学科,是处理信号的一种重要方法。

估计和检测是统计信号处理中的两个基础部分,在实际应用中有着广泛的应用。

本文主要讨论统计信号处理中的估计和检测理论教学设计,旨在提高学生的理论水平和实践能力。

教学目标1.了解估计与检测在统计信号处理中的基本概念及应用。

2.掌握最小二乘估计、最大似然估计等方法的原理和应用。

3.掌握随机信号检测的基本原理和应用。

4.能够运用所学知识解决实际问题。

教学内容估计理论1.估计的定义和分类。

2.参数估计方法,包括点估计和区间估计。

3.最小二乘估计、最大似然估计、贝叶斯估计等方法的原理和应用。

4.线性估计和非线性估计的概念和应用。

5.参数估计的实际应用场景。

检测理论1.检测的定义和分类。

2.二元信号检测理论的基本概念,包括假设检验、统计检验等。

3.统计检测方法的原理和应用,如信噪比检测、最大似然检测等。

4.随机信号检测的基本原理和应用,如平均功率检测、预测误差检测等。

5.检测理论的实际应用场景。

教学方法1.讲授理论知识,重点讲解估计和检测理论的基本概念和方法。

2.系统分析例子,将抽象的数学概念转化为实际问题进行分析和讨论,进一步加深学生对所学知识的理解。

3.实验教学,通过实际操作,帮助学生理解和应用所学知识,提高实践能力。

4.课堂讨论,鼓励学生积极参与,提出问题和分享思想,促进全班思想交流和合作。

教学评价1.期中、期末考试及课堂测试。

2.课程论文,要求学生结合实际应用场景,探究估计和检测方法在实际中的应用。

3.实验报告,要求学生独立完成实验并进行结果分析,提高实践能力。

总结本文主要讨论了统计信号处理基础理论——估计与检测理论的教学设计,涵盖了估计和检测的定义、分类和方法,以及实际应用场景和教学方法。

通过本文的讨论与分析,可以为教师以及相关从业人员提供一定的参考和借鉴,帮助他们更好地掌握估计和检测的基础理论和应用。

西邮 信号检测与估计理论 总结

西邮 信号检测与估计理论 总结

第四章1主要理论基础:信号的统计检测理论、统计估计理论、最佳滤波器理论。

a信号的统计检测理论:主要研究在受噪声干扰的随机信号中,信号有无或信号属于哪个状态的最佳判决的概念、方法、性能等问题,其数学基础就是统计判决理论,又称假设检验理论。

b信号统计估计理论:是研究在噪声背景中,通过对信号的观测,如何构造待估计参数的最佳估计量问题;c最佳滤波:是为了改善信号质量,研究在噪声干扰中所感兴趣的信号波形的最佳恢复问题,或离散状态下表征信号在各离散时刻状态的最佳动态估计问题。

2信号的序列检测:事先不规定观测次数,而视实际情况,采用边观测边判决的方式,如果观测到第k次还不能做出满意判决,则可以不做判决,而继续进行k+1次观测。

3信号的波形检测:根据性能指标要求,设计与环境相匹配的接收机(检测系统),以便从噪声污染的接收信号中提取有用的信号,或者在噪声干扰背景中区别不同特性、不同参量的信号。

4.(1)贝叶斯准则:就是在各假设H j的先验概率P(H j)已知,各种判决代价因子C ij给定的情况下,使平均代价C最小的准则。

(2)派生贝叶斯准则:对贝叶斯准则,各假设检验的先验概率P(H j)和各种判决的代价因子C ij作某些约束的情况下,得到其派生准则。

a最小错误概率准则:通常有C00 =C11=0,C10=C01=1,即正确判决不付出代价,错误判决的代价相同,平均代价恰好是平均错误概率pe=P(H0)P(H1|H0)+P(H1)P(H0|H1),使平均错误概率最小的准则。

b最大似然准则:如果各假设的先验概率相等,则似然比检验判决表式p(x/H1)大小于p(x/H0) 因此,称等先验概率下的最小平均错误概率准则为最大似然准则。

C最大后验概率准则:在贝叶斯准则中,当代价因子C10-C00=C01-C11时,判决式可转化为p(H1/x)大小于p(H0/x)不等式左右两边分别是在已经获得观测量x的条件下,假设H1和假设H0为真的概率,称为后验概率。

第五章 (1) 信号检测与估计

第五章 (1) 信号检测与估计

5.1.2 参量估计的数学模型和估计量的构造
概率映射: 建立观测矢量x的数学模型 由于存在观测噪声,所以x具有随机性;
观测矢量x中含有被估计量 的信息, x是以 为参数的随机 矢量,因此其概率密度函数为p(x | )。
由于 的值影响x的取值,因此我们可以从观测矢量x中推测 的值。
概率密度函数p(x|)完整地描述了含有被估计量 时观测矢 量x的统计特性,所以用来表示从参量空间 到观测空间R的概率
后验概率密度函数 p( | x)
条件概率密度函数为
N
p( x
|)
1
2
2 n
2
exp
N
k1
xk
2
2 n
2
先验概率密度函数为
1
p(
)
1
2
2
2
exp
2
2
2
5.2.2 贝叶斯估计量的构造
p( | x) p(x | ) p( )
p( x)
K3 exp
1
2
2 m
参量空间
P(x|)
观测空间R
估计规则
ˆ( x)
5.1.2 参量估计的数学模型和估计量的构造
参量空间
信源输出一组M个参量1, 2, , M,这M个参量构成M维矢 量 = [1, 2, , M]T可由M维参量空间的一个随机点或未知点来
表示;
如果信源输出的参量只有一个单参量,那么参量空间就是 一条一维的直线, 是该直线上的一个随机点或未知点。
0
估计值趋近与参量 的统计平均值( 的统计平均值为零),
因此先验知识比观测数据更有用。
如果2
2 n
/
N
ˆb

信号检测与估计教学资料 第三章 信号检测与估计1new-PPT精选文档

信号检测与估计教学资料 第三章 信号检测与估计1new-PPT精选文档

4 二元信号判决概率
P H | H pH x | d, x , i j 0 , 1 i j j
R i
P H | H pH x | j d, x , i j 0 , 1 i j
R i
5 M元信号检测模型
信源
概率转移机构
信源的输出称为假设 将信源的输出(假设)以一定的 概率关系映射到整个观察空间中 接收端所有可能观测量的集合 将观察空间进行合理划分,使每个观测量 对应一个假设判断的方法
H H
1 1
4 二元信号判决概率
判决 假设
H0
H1
H0 H P 0H 0
H P 1H 0
H P 1H 1
H1 H P 0H 1
3 二元信号判决结果
判决 假设
H0
H1
H0 H0 H0
H H
1 0
H1 H0 H1
H H
1 1
四种检测状态 ① 目标不存在,干扰信号没有超过门限,检测没有发生 ② 目标存在,合成的信号(目标和干扰)超过门限,检测发生 ③ 目标不存在,干扰信号超过了门限,虚假的检测产生 ④ 目标存在,合成的信号(目标和干扰)没有超过门限,检测没有发生
2 二元信号检测判决域 二元信号的检测问题,可归结为对观察空间的划分问题,即按照 一定的准则,将观察空间R分别划分为R0和R1两个子空间。
H 0 成立
R0
H 1 成立
R0
R1
2 二元信号检测判决域
3 二元信号判决结果
判决 假设
H0
H1
H0 H0 H0
H H
1 0
H1 H0 H1
观测量落入观测空间后,就可以用来推断哪一个

第三章 信号检测与估计

第三章 信号检测与估计
第三章 信号的统计检测理论
1
3.3 Bayes Criterion(贝叶斯准则)
基本要求: ① 充分理解平均代价(Average Risk)的概念 ② 贝叶斯准则的判决表达式 ③ 判决性能分析
贝叶斯准则的基本原理:在划分观察空间时,使平均风险最小.
2
1 平均代价的概念和贝叶斯准则
通信系统中,二元信号的平均解调错误概率:
PH1 c01 c11 px H1 0 PH0 c10 c00 px H0 0
因此,平均代价C的大小与判决区域R0有关。
把使被积函数取负值的观察值x值划分给R0区域,而把其余的观察值x值划分给R1,
即可保证平均代价最小。
12
1 平均代价的概念和贝叶斯准则
合并
C P H 0 c10 c00 p x H 0 dx c10 p x H 0 dx

P H1 c11 c01 p x H1 dx c11 p x H1 dx
R0 R0

R0
R0


11
合并
C c10 PH 0 c11 PH1 R PH1 c01 c11 p x H1 PH 0 c10 c00 p x H 0 dx 0
9
1 平均代价的概念和贝叶斯准则
3. 平均代价取到最小值的条件 C PH 0 c00 R px H 0 dx c10 R px H 0 dx 0 1 PH1 c01 R px H1 dx c11 R px H1 dx 0 1
注:一般假设
c10 c00 c01 c11
5
1 平均代价的概念和贝叶斯准则

信号检测与估计理论 第五章 统计估计理论 ppt课件

信号检测与估计理论 第五章 统计估计理论  ppt课件

PPT课件
7
5.1.2 数学模型和估计量构造
1




2


M

p(x )
x1
x


x2


xN
ˆ x g x g x1, x2,...xN
四个组成部分:参量空间、概率映射、观测空间和估计准则。 概率映射函数 p(x ) ,完整地描述了含有被估计矢量信息时观测 矢量的统计特性。
p( x
|

)


1
2
2 n
N

2
exp

N k 1
(xk
2
2 n
)2

ˆcon1 ˆmse
p( | x) p( x | ) p( ) p( x)
贝叶斯公式

1 1
p(
x)

2
2 n
N

2
1

2
2 θ
PPT课件
22
5.2.2 贝叶斯估计量的构造
2、条件中值估计(条件中值,代价函数参见图(b))

C x 0

称为条件中值估计,或条件中位数估计
(Conditional Median Estimation),
估计量 med 是
P
1 2
的点。
PPT课件
23
5.2.2 贝叶斯估计量的构造
ln p(x | )
0

ˆml
对比(5.2.19)式,
相当于最大似然估计用于估计没有任何先验知识的随机参量 , 假定 为均匀分布,上式第二项为零,最大后验概率估计转化

信号的统计检测与估计理论

信号的统计检测与估计理论

信号的统计检测与估计理论华侨大学信息科学与工程学院电子工程系电子程系E-mail:************.cnTel: 22692477T l22692477课程教学目的和方法目的通过本课程学习,使学生掌握信号的检测和估计的基本概念、基本理论和分析问题的基本方法,培养学生运用这些方法去解基本和分析问题的基本方法,培养学用这些方法去解决实际问题的能力。

方法本课程将通过重点讲授检测和估计的基本概念、基本原理和分析问题的基本方法入手,使同学们学会信号的检测与估计理论,析问题的基本方法入手使同学们学会信号的检测与估计理论将为进一步学习、研究随机信号统计处理打下坚实的理论基础,同时它的基本概念、理论和解决问题的方法也为解决实际应用,如信号处理系统设计等问题打下良好的基础。

2课程内容简介信号的统计检测与估计理论已成为现代信息理论的一个重要组成部分,它是现代通信、雷达、声纳以及自动控制技术的理论基础,它在许多领域或技术中有广泛的应用。

其主要内容有:信号的矢量与复数表示、噪声和干扰、假设检验、确知信号的检测、具有随机参量信号的检测、信号的参量估计、信号参量的最佳线性估计。

3教学基本内容及学时分配概论(0.5学时)第一章信号的矢量与复数表示(3.5学时)第二章噪声和干扰(2学时)第三章假设检验(4学时)第四章确知信号的检测(6学时)第五章具有随机参量信号的检测(6学时)第八章信号的参量估计(8学时)第九章信号参量的最佳线性估计(4学时)4教材教材¾《信号的统计检测与估计理论》(第二版),李道本著,科学出版社,2004年9月参考书《信号检测与估计理论》赵树杰赵建勋编著清华大¾《信号检测与估计理论》,赵树杰、赵建勋编著,清华大学出版社,2005年11月张明友吕明编著电子工业出版¾《信号检测与估计》张明友、吕明编著,电子工业出版社,2005年2月¾其他相关参考书籍5考试与要求选修课平时:60%-70%作业¾¾上课考勤期末考试40%30%期末考试:40%-30%6目录概论第一章信号的矢量与复数表示第二章噪声和干扰第三章假设检验第章第四章确知信号的检测第五章具有随机参量信号的检测第八章信号的参量估计第九章信号参量的最佳线性估计7信号的检测与估计理论的起源和发展检测与估计理论的基本概念检测与估计的分类8信号的统计检测与估计理论起源¾第二次世界大战( 20世纪40年代)¾战争对雷达和声纳技术的需求理论基础¾信息论(Information Theory)¾通信理论(Comm. Theory)数学工具¾概率论( Probability Theory)¾随机过程(Stochastic (random) Process)¾数理统计(Statistics)9信号的统计检测与估计理论发展¾现代信息理论的重要组成部分随机信号统计处论基¾随机信号统计处理的理论基础10检测与估计理论的应用现代通信雷达、声纳自动控制模式识别自动控制、模式识别射电天文学、航空航天工程遥感遥测资源探测天气预报精神物理学生物物理学精神物理学、生物物理学系统识别11无线通信系统无线通信系统原理框图12信息系统信息系统的主要工作¾信号的产生、发射、传输、接收、处理¾实现信息的传输最主要的要求¾高速率¾高准确性13信号的随机性 确知信号)(0s t t T ≤≤确信号 随机参量信号()()12(;)(0;[,,...,])T M s t t T θθθ≤≤=θθ 噪声加性噪声¾¾乘性噪声()n t 干扰¾一般干扰¾人为干扰 信号在信道传输中畸变14噪声和干扰噪声¾与有用信号无关的一些破坏性因素;如:通信中的各种工业噪声交流声脉冲噪声银河系¾如:通信中的各种工业噪声、交流声、脉冲噪声、银河系噪声、大气噪声、太阳系噪声、热噪声等;干扰与有用信号有关的些破坏性因素¾与有用信号有关的一些破坏性因素;¾如通信中的符号间干扰、共信道干扰、邻信道干扰、人为干扰等干扰等;15信号的随机性 处理的信号:()(0)v t t T ≤≤)0()()(),v t s t n t t T =+≤≤)()(;)(),0v t s t n t t T =+≤≤θ 接收信号或观测信号16信号的统计处理方法对信号的随机性进行统计描述概率密度函数、各阶矩、相关函数、协方差函数、功率谱密度等来描述随机信号的统计特性;基于随机信号统计特性所进行的各种处理和选择的相应准则均是在统计意义上进行的,并且是最佳的,如应准则均是在统计意义上进行的并且是最佳的如信号状态的统计判决、信号参量的最佳估计等;处理结果的评价即性能用相应的统计平均量来度量,如判决误差、平均代价、平均错误概率、均值、方差、均方误差等;17检测和估计理论检测估计¾参量估计¾波形估计(滤波理论)滤波理论:现代Wiener滤波理论和Kalman滤波理论18检测¾有限观测“最佳”区分一个物理系统不同状态的理论。

信号检测与估计理论

信号检测与估计理论

•信源
n~
图3.1 二元信号统计检测理论模型
信源
H0 : 信源输出为0, x(t) s0(t) n(t) H1:信源输出为1, x(t) s1(t) n(t)
信源的输出称为假设
•概率转移机构
n~
图3.1 二元信号统计检测理论模型
作用:概率转移机构的作用是在信源输出的一个假 设为真的基础之上,把噪声干扰背景中的假设 Hj( j=0,1)为真的信号,按照一定的概率关系映射 到观测空间中.
二元信数字通信系统 0 s0(t)=sin(0t) 0 t T 1 s1(t)=sin(1t) 0 t T
n~
图1.3 二进制数字通信系统原理框图
n~
图1.4 连续相位移频键控信号 (CPFM)
在[0,T],加性噪声为n(t),接收到信号x(t),
x(t) s0 (t) n(t), 0 t T x(t) s1(t) n(t), 0 t T
➢ 实际上不知道发射的是s0还是s1,因此,需要合理检测 准则,进行判断获得信号。
➢ 在某些情况下在对信号转台作出判断之后,还需要对 信号的参数进行估计,如振幅、相位、频率等;
➢ 如有必要,需要进一步恢复出信号的波形或者图形。
3.2.1 二元信号统计检测的信号模型
n~
图3.1 二元信号统计检测理论模型
所以, R1域中的积分可以表示为
这样平均代价C的分析式最后表示为
现在根据以上平均代价C的分析表示式,来 求使平均代价最小的贝叶斯准则的判决表示式.
3.3.3 最佳判决式 平均代价的分析表示式中,第一项、第二
项是固定代价,不影响 C 的极小化;
第三项是与 PH j ,cij,判决域 R0有关的可变项。当PH j

第五章 (2) 信号检测与估计

第五章 (2) 信号检测与估计

2 n
的独立同分布高斯随机噪声;被
估计量 是未知非随机参量。求 函数 exp 的最大似
然估计量ˆml 。
5.3.3 最大似然估计的不变性
解:根据观测方程与假设条件,似然函数为
p( x
|)
1
2
2 n
N /2
exp
N
k 1
xk
2
2 n
2
该函数中含有,因为在函数=exp()中, 是的一对一变
0
ˆml
解的,该方程称为最大似然方程。
最大似然估计也适用于概率密度函数未知的随机参量 的
估计,这时可假设 服从均匀分布。
最大后验估计方程
为均匀分布,p()为常数
ln
p(x | )
ln p( )
ˆmap
0
最大后验估计转化为最大似然估计
由于最大似然估计没有或不能利用被估计量的先验知识,其性能一般 比贝叶斯估计差。
将上式对求偏导
( -ˆ)p(x | )dx
-
=
p(x | )dx+
p(x | ) ( -ˆ)dx=0
-
-
p(x | )dx=1 -
p(x | ) = ln p(x | ) p(x | )
非随机参量情况
( -ˆ)p(x | )dx
-
=
p(x | )dx+
p(x | ) ( -ˆ)dx=0
利用先验概率的贝叶斯估计量的均方误差为(例5.2.1求得)
E
ˆb
2
2
2 n
N
2
2 n
N
1
2 n
/
2
2 n
由于
2 n

信号检测与估计理论 第一章 概论

信号检测与估计理论 第一章 概论

信号的随机性及其统计处理方法
1. 信号的随机性 信号的分类:

确知信号 随机(未知)参量信号
信号的随机性及其统计处理方法
确知信号与随机(未知)参量信号 举例
确知与“未确知”的转换:排水管网/污水流量……
信号的随机性及其统计处理方法
2. 信号的统计处理方法


对信号的随机特性进行统计描述;
P A B
P A P B A P B

0.001 0.95 0.0868 0.01094
检查结果为阳性,患病概率仅为8.68%。

示例3
Number 0: s0 t sin 0t , 0 t T Number1: s1 t sin 1t , 0 t T
连续相位移频键控(CPFM)信号
信号检测与估计理论概述

示例4
3 Times
片段
数字“0”和“1”的语言波形
本课程的主要内容

第一部分


信号检测与估计理论的研究对象


以概率论与数理统计为工具,为通信、雷达、声纳、自动控制等技术 领域提供理论基础。此外,它在模式识别、射电天文学、雷达天文学、 地震学、生物物理学以及医学等领域里,也获得了广泛的应用。 通信、雷达、自动控制系统等都是当代重要的信息传输和处理系统, 对它们的性能要求,总的说来有两个方面。 一是要求系统能高效率地传输信息,——系统的有效性; 二是要求系统能可靠地传输\处理信息,——系统的可靠性或抗干扰性。 使系统信息传输可靠性降低的主要原因有:
2 N 1 N 2 1 1 2 2 ( x )] E[( ˆ( x )) 2 ] E E[ ( nk ) E nk n N k 1 N k 1 N

信号检测与估计理论-PPT

信号检测与估计理论-PPT

x)
x
2
2
x
6
2
例3 随机变量 X 的分布函数为
0 x0
F
(
x)
x
2
0 x 1
1 x 1
(1)求 P(0.3 X 0.7)
(2)X得密度函数

(1) P(0.3 X 0.7) F (0.7) F (0.3) 0.72 0.32 0.4
(2)密度函数为
f
(x)
F ( x)
,简bx记 为

b
3 条件平均代价
利用概率论中得贝叶斯公式
p ,x p | xpx
26
平均代价C 可表示为
C
p
x
c
p
|
x
d
dx
式中, p | 就x 是后验概率密度函数。
由于 px与内积分都就是非负得,所以,使 C最小,等
价为使条件平均代价
C
|
x
c
p
|
x
d
最小,左边表示条件平均代价。
取 p | x 得自然对数,等价得估计量构造公式为
35
ln p | x
| 0
map
5.2.18
称为最大后验方程。利用 p | x px | p px,则有估
计量构造公式
ln p x | ln p
| 0
map
5.2.19
以上三个构造公式就是等价得,但(5、2、19)就是最方 便得。

mse
x
def
mse

为求得使 C | x 最小得估计量
mse
,令
28
Байду номын сангаас

信号检测与估计第一章

信号检测与估计第一章

1.2.5 极小极大准则
• 贝叶斯准则要求已知先验概率和各种代价函数;极小极大
准则应用于仅仅知道代价函数 Cij i, j 0 ,1 ,而先验概率 P H i i 0 ,1 未知的情况。
• 极小极大准则:把使最小平均代价(贝叶斯代价)取得最 大值所对应的概率当作先验概率使用。
Hi
Cii
i0
P
x i j 0, j i
Hj
Cij C jj
f x H j dx
定义
M 1
Ii x P H j Cij C jj f x H j
j0, ji

i x : Ii x I j x , j 0,1, , M 1, j i
• 记 x x1, x2 , , xN T 。贝叶斯判决的目标是将N维观测空间
划分为互斥的
N 0
,
N 两个区域,使平均代价
1
C
达到最小。
• 相应的判决规则为
x f
x H1
f
x1, x2 ,
f x H0 f x1, x2 ,
xN H1 H1 P H 0 C10 C00 th xN H 0 P H0 H1 C01 C11
设先验概率 P H 0 p ,则贝叶斯判决规则为
f x H1 H1
p C10 C00
f x H 0 H0 1 p C01 C11
贝叶斯代价为
Cmin p p C00 1 p C10 p 1 p C01 p C11 1 p
• M 元假设检验 • 连续信号的检测 • 离散信号的检测

信号检测与估计理论统计检测理论PPT

信号检测与估计理论统计检测理论PPT
率都是最大得,称为一致最大势检验。
4、 M元参量信号得统计检测
参量信号得统计检测
图3、17 m为正值时得判决域 图3、18 m为负值时得判决域 图3、19 双边检验得判决域
信号得序列检测
信号序列检测得基本概念
若观测到k次还不能作出满意得判决, 则先不作判决,继续进行第k+1次判决。 在给定得检测性能指标要求下, 平均检测时间最短。
信号得序列检测
信号序列检测得基本概念
信号得序列检测
信号序列检测得基本概念
满足 判决假设H1成立。 满足 判决假设H0成立。

则需要进行下一次观测后,根据 xN 1再 进行检验。
信号得序列检测
信号得序列检测
信号序列检测得平均观测次数
若序列检测到第 N 次观测终止,即满足
或者
(判决假设H1成立) (判决假设H0成立)
派生贝叶斯准则
极小化极大准则
先验概率未知,使极大可能代价极小化
由于先验概率未知,在无法选择最优解得情况下,设计算法, 选择不是“最坏”得结果!
若 c10 c00 c01 c11 ,极小化极大准则与等先验概率结果相同。
派生贝叶斯准则
极小化极大准则
例题 3、4、2
派生贝叶斯准则
奈曼-皮尔逊准则(N-P准则)
统计检测理论得基本概念
统计检测得结果和判决概率
1、 二元信号得情况——例3、2、1
x0 P(H0 | H0 )
x0 P(H1 | H1)
统计检测理论得基本概念
统计检测得结果和判决概率
2、 M元信号得情况
P(H i | H j ) Ri p(x | H j )dx
i, j 0,1,..., M 1

信号检测与估计理论

信号检测与估计理论


3.3.2 最佳判决式 直接极小化平均代价
C P( H j )cij P( H i | H j )
j 0i 0
1
1
(3.3.3)
得到最佳判决式是不方便的,为此利用如下关系式:
P( H i | H j ) Ri p( x | H j )dx
R p( x | H j )dx 1 j 0,1
(4) 判决规则:观测信号 x 是 ( x | H 0 ) 还是 ( x | H1 ) 需要 判决。为此,根据 ( x | H j )( j 0,1) 的统计特性, 将观测空 间 R 划分为两个子空间 R0 和 R1 , 对硬判决而言, 要满足:
R0 i, j 0,1 判决H1成立 R1 i j (3.2.1b) 如图3.2.2所示。 图3.2.2 判决空间划分
观测信号的概率密度函 数
判决域划分 Ri
p( x | H j )
j 0,1
判决结果 ( H i | H j )
i, j 0,1
判决概率 P( H i | H j ) Ri p( x | H j )dx
P( H1 | H j ) 1 P( H 0 | H j )
最佳检测 最佳划分判决域 Ri (i 0,1)
i, j 0,1
(3.3.4a )
(3.3.4b)
R0 p( x | H j )dx 1 R1 p( x | H j )dx
j 0,1
(3.3.4c)
第3章 信号状态检测 3.3 二元信号的贝叶斯检测准则-最佳判决

可将平均代价 C 式改写为
C c00 P ( H 0 ) c01 P ( H1 ) R1 P( H 0 )(c10 c00 ) p( x | H 0 ) P ( H1 )(c01 c11 ) p ( x | H1 )dx P ( H 0 )(c10 c00 ) p ( x | H 0 )dx (3.3.5a )

第五章 (3) 信号检测与估计

第五章 (3) 信号检测与估计

ˆ b
若对所有的 ,估计的偏矢量 b 的每一个分量都为零,则称为
无偏估计矢量。
非随机矢量情况
克拉美-罗界
如果ˆi 是被估计的M维非随机矢量 的第i个参量 i的任意无偏估计 量,则估计量的均方误差为
E
ˆi
2
2 ˆi
Var
ˆi
2 ˆi
,
i 1, 2,..., M
该估计量的均方误差满足
Mθˆ
ˆ
ˆ
T
克拉美-罗界
如果ˆ 是 的任意无偏估计矢量,利用柯西-施瓦兹不等式,估计
矢量的均方误差阵满足
Mˆ JT1
式中,信息矩阵 JT JD JP ,其元素分别为
2 ln p( x | )
J Dij
E
i j
, i, j 1, 2,..., M
2 ln p( )
随机矢量情况
如果被估计矢量 是M维随机矢量,则构造的估计矢量 ˆ是观
测矢量 x 的函数。x 和 的联合概率密度函数 p x,
无偏性
根据随机矢量估计无偏性的定义,如果满足:
E ˆ = E
就称 ˆ是 的无偏估计矢量。
估计量的误差矢量:
ˆ
1 2
ˆ1 ˆ2
M ˆM
估计量的均方误差阵
如果 p( | x) 最大值的解存在,则 ˆmap 可以由最大后验方程组解得,
该最大后验方程组为
ln p( | x)
0,
j
θ = θˆmap
M个方程组成的联立方程
j = 1,2,...,M
ln p( | x)
0
θ =θˆmap
其中
5.5.1非随机矢量的最大似然估计
如果被估计矢量 是非随机矢量,则应采用最大似然估计,求出 使似然函数 p(x | )为最大的 ,将它作为最大似然估计量 ˆml。 如果最大值的解存在,则ˆml 可以由最大似然方程组解得,该最大 似然程组为

信号检测与估计理论

信号检测与估计理论

信号检测与估计理论介绍信号检测与估计理论是数字通信和统计信号处理中的一个重要领域。

它研究的是如何准确地检测到信号的存在以及对信号进行估计。

该理论在许多实际应用中具有重要意义,包括雷达系统、通信系统、生物医学信号处理等。

信号检测在信号检测中,我们的目标是从观测到的信号中确定是否存在某个特定的信号。

通常情况下,我们将信号检测问题建模为一个假设检验问题,其中有两个假设:零假设H0表示没有信号存在,备择假设H1表示信号存在。

在信号检测中,我们通过设计一个检测器来根据观测到的信号样本进行决策。

常用的检测器包括最大似然检测器、贝叶斯检测器等。

这些检测器利用观测到的信号样本的统计特性,通过最大化某个准则函数(如似然比)来做出决策。

信号估计信号估计是根据观测到的信号样本,估计出信号的参数或者信号本身的过程。

信号估计有多种方法,包括参数估计和非参数估计。

在参数估计中,我们假设信号遵循某个已知的参数化模型,并通过观测到的信号样本去估计这些参数。

常用的参数估计方法有极大似然估计、最小二乘估计等。

这些方法基于最优准则来选择最优参数估计。

非参数估计不需要对信号满足某个特定的参数化模型的假设,它们通常利用样本的统计特性来进行估计。

常用的非参数估计方法有最小二乘法、核方法等。

检测与估计的性能评价在信号检测与估计中,我们需要对检测与估计的性能进行评价。

通常情况下,我们使用概率误差、均方误差等作为评价指标。

在信号检测中,我们常用的评价指标有误报概率和漏报概率。

误报概率指当信号不存在时,检测器判定信号存在的概率;漏报概率指当信号存在时,检测器未能正确判定信号存在的概率。

在信号估计中,我们常用的评价指标有均方误差和偏差方差平衡等。

均方误差指估计值和真实值之间的平均平方误差;偏差方差平衡则是指在估计和真实值之间平衡偏差和方差。

应用领域信号检测与估计理论在许多领域都有广泛的应用。

其中,雷达系统是一个重要的应用领域。

在雷达系统中,我们需要通过检测和估计来实现目标检测、目标定位等功能。

信号检测与估计理论 (复习题解)

信号检测与估计理论 (复习题解)
概率密度函数。
第2章 信号检测与估计理论的基础知识 内容提要
五. 线性时不变系统对平稳连续随机信号的响应
1. 输入平稳连续随机信号x(t),响应y(t)也是平稳的。
2. 响应y(t)均值 y H (0)x,自相关函数ry ( ) h( ) h( ) rx ( ), 功率谱密度Py () | H () |2 Px ()。
第2章 信号检测与估计理论的基础知识 内容提要
三. 离散随机信号的函数
1. 一维雅可比变换,特别是简单线性函数时的变换。 2. N维雅可比变换。
四. 连续随机信号
1. 任意tk时刻采样所得样本x(tk ) (xk;tk )(k 1,2, , N )的概率密度 函数描述。
2. 统计平均量:均值,均方值,方差,自相关函数,协方差函数及关系。
图2.1(a)
图2.1(b)
ab y
例2.2
设x ~
N(x
,
2 x
)。若y
2
x
b,
求p(
y)及
y和
2。
y
解:y
2x
b是线性变换,所以y
~
N(
y
,
2 y
)。
反函数 x ( y b) / 2, 雅可比 J d[(y b) / 2]/ dy 1/ 2。所以
p(
y)
1
2
2 x
1
2
exp
(
y
b) / 2
a x a 其他
(a 0)
如图2.1(a )所示。已知x的均值和方差分别为 x
0,
2 x
a2
/ 6。
设y x b,求p( y)及y的均值和方差;当a b 2a时,画出p( y)的函数

信号检测与估计理论

信号检测与估计理论

信号检测与估计理论
现代信号处理是一门涉及到研究信号及其处理的众多领域的复杂学科,它将信号检测
理论应用于数据的采集、分析和编码,以实现更高的信号保真和传输效率。

信号检测理论
是指以信号检测及其具体实现方法为内容的理论,是一门研究信号以及信号检测算法应用
于实践中新信号几率和信号模型、信号处理系统设计、系统评价指标和系统优化等问题的
理论。

信号检测理论包括信号检测和信号估计两个主要研究领域。

信号检测即在信号实际存
在且满足特定条件的情况下,将其从噪声中识别出来的技术。

信号检测的理论基础是概率
理论,研究的内容一般包括判决准则的设计、概率传输理论、灵敏度指标的计算、检测误
差最优化等。

信号估计是从检测信号中恢复信号参数值和状态信息的技术,它是根据信号
的内容和自身特性进行分析,重构信号形式,从而恢复和克服噪声干扰,最终使信号达到
某种需求尺度以达到预先设定的信号识别、显示、记录等目标。

信号检测和估计是现代信号处理理论的重要基础,应用于实际工程中,检测的精确性
和准确性,或估计的准确性,对信号处理结果的质量也是至关重要的。

因此,信号检测估
计理论的研究,涉及到信号检测的实现方法、检测决策的准则,以实现信号的恢复、显示、记录等操作,及信号估计指标计算、估计误差最优化等内容,是提高实际工程研究质量和
信号处理效率、增强应用竞争力的重要实现方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

¾
iii)已知在
代价 Cij (θ
)H。j为真时,且实际参数为
θ
时而选择了 Hi 的
目的是寻求一个最佳的判决策略 {πi (v)},i = 1, 2,..., M;
使付出的平均代价最小。
¾ πi (v) 是观测到 v 时判断 Hi 为真的概率;
M
∑ 0 ≤ {π j (v)} ≤ 1
π j (v) = 1
∑ ∫ = i =1
R ωi (v)πi (v)dv
8
复合假设检验观测模型
9
复合假设检验
p j (v /θ ) ~转移概率(决定于干扰和噪声)
v = [v1, v2 ,..., vN ]T ~观测数据, v ∈ R θ = [θ1,θ2 ,...,θk ]T ~随机参数, θ ∈ Η
i =1
ξj
j =1
dv
R
H dθπi (v)Cij (θ )z j (θ ) p j (v /θ )

令ωi (v) 是观测到
v
后选择
H
的警险函数,其定义为
i
M
∑ ∫ ωi (v)
ξj
j =1
H dθ Cij (θ )z j (θ ) p j (v /θ ),
i = 1, 2,..., M
7
复合假设检验: Bayes检验
∑ p0
(v)
=
[2πσ
2 n

]
N 2
exp−
1

2 n
N
vi2
i =1
∑ p1(v)
=
[2π

2 n
+
σ
2 m

)]
N 2
exp−
1
2(σ
2 n
+
σ
2 m
)
N i =1
vi2
18
具有随机参量信号的检测
第一节 复合假设检验 第二节 具有随机相位信号的检测 第三节 二元正交随机相位信号的检测 第四节 Rayleigh衰落信道二元正交随机相位信号
i =1
2 m

)
1 2
∞ −∞
exp−
1 2
σ
2 m

σ
m2σ
2 n
2 n
(m

σ
σ
2 m
v2 2
mi

2 n
)2
dm

exp

2 n
σ
2 m
vi2

2 m
+
σ
2 n
)
1
=
N⎛ Π⎜ i=1 ⎝
σ
2 n
σ
2 m
+
σ
2 n
⎞2 ⎟ ⎠
exp
σ
v2 2
mi

2 n

2 m
+
σ
2 n
)

则判决规则为: N
i =1
⎧ ⎨ ⎩
1 2
ln
σ
σ
2 n
2 m
+
σ
2 n
+

2 n
σ
2 m

2 m
+
σ
2 n
)
vi2
⎫ ⎬ ⎭
H1

H0
ln
Λ
0
16
例1:复合假设检验: Bayes检验

判决规则为:
N
H1
vi2 ≷l0
i=1 H0
¾ ¾
式请注中意:,l0由=于2σ:n2 (σσn2m2
+
σ
由于 ωi (v)与 πi (v) 均是非负函数,应用完全同于第三 章的方法,可知我们的Bayes判决规则应为
Hj
ω j (v) ≤ ωi (v) ∀i ≠ j ;i, j = 1, 2,..., M
10
复合假设检验: Bayes检验
对于二元检验,Bayes判决规则为:
∫ ∫ Λc (v)
yman-Pearson准则、最小最大准则、最小差错概率准 则等,这些都与第三章中的讨论相一致,不再重复。
13
例1:复合假设检验: Bayes检验
例1: 观测值 vi (i = 1, 2,..., N ) 是一些独立随机变量,
H1 : vi = m + ni H0 : vi = ni i = 1, 2,..., N
¾ 其中:s j (t /θ ) 是第j(j=1,2,…,M)个信号; ¾ θ = [θ1,θ2 ,...,θk ]T 是未知或随机参量矢量;
¾ n(t)是加性随机噪声。 显然,若 θ 在接收机处完全确知,则问题就退化为简
单假设检验问题,否则它就属于复合假设检验问题。
4
复合假设检验
为了简明,从离散观测数据开始;
平均似然比为:

∫ Λ(v) = −∞ p1(v / m)z1(m)dm
p0 (v)
∫ N
Π(2πσ
i =1
2 n

)
1 2
=

exp−
−∞
1

2 n
(vi

m)2

(2πσ
2 m

)
1 2
exp−
1

2 m
m2dm
N
Π(2πσ
i =1
2 n
)

1 2
exp−
1

2 n
vi2
∫ =
N
Π(2πσ
的频率漂移。
21
具有随机相位信号的检测
研究下列形式信号的检测问题,即:
s(t,ξ ) = Re AF (t)e jξ ⋅ e j2π f0t
其中:
¾ 设复信号的包络 F (t )是确知的(这里我们也已将到达时刻t0
视为已知)。
¾ 信号相位 ξ ∈[0, 2π ] 却是一个未知参量。
雷达信号检测问题就成为一个典型的复合假设检验问 题。
z(ξ
)
=
1

,
ξ ∈[0, 2π ]
它暗示 ξ 有具有最大的不定性。因为如果倾向于 ξ 的某些特
定值,就可以采用前章所描述的匹配于这些相位的匹配滤波器, 对这些匹配滤波器的输出进行适当的加权,就可以增大平均检 测概率。当所有信号的相位等可能时,可以肯定对它所知最少。
23
最佳接收机结构
在带通型信号中,检测统计量只决定于信号与噪声的复包络
[2π

2 n
+
σ
2 m

)]
1 2
exp−
1
2(σ
2 n
+
σ
2 m
)
N i =1
vi2
17
例1:复合假设检验: Bayes检验
即在 H1 为真时,{vi} 是一些独立高斯变量,其均值
为零,方差为
σ
2 n
+
σ
2 m

上述检验又是 p1 (v) 与 p0 (v)分别为下式的关于方差的
简单假设检验。
所付出的代价与实际参数 θ 无关。
11
复合假设检验: Bayes检验
代价似然比判决准则:
∫∫ Λ(v) =
H H
p1 (v p0 (v
/θ )z1(θ )dθ /θ )z0 (θ )dθ
H1
≷ Λ0
H0
式中:
Λ0
=
ξ0 (C10 − C00 ) (1− ξ0 )(C01 − C11)
称这样的检验为平均似然比检验ALRT(average likelih ood ratio rest)。
信号的统计检测与估计理论
华侨大学信息科学与工程学院 电子工程系
E-mail: edac@ Tel: 22692477
目录
概论 第一章 信号的矢量与复数表示 第二章 噪声和干扰 第三章 假设检验 第四章 确知信号的检测 第五章 具有随机参量信号的检测 第八章 信号的参量估计 第九章 信号参量的最佳线性估计
1 2
exp−
1

2 n
vi2
p1 (v
/
m)
=
N
Π(2πσ
i =1
)2
−1 2
n
exp−
1

2 n
(vi

m)2
z1 (m)
=
(2πσ
2 m
)

1 2
exp−
1

2 m
m2
¾ 平均似然比为:

∫ Λ(v) = −∞ p1(v / m)z1(m)dm p0 (v) 15
例1:复合假设检验: Bayes检验
5
复合假设检验: Bayes检验
条件: M ∑ ¾ i) 已知 H j 的先验概率为:ξ j , 0 ≤ ξ j ≤ 1, ξ j = 1 ¾ ii) 已知在 H j 为真时,参数 θ 的条件概率密j=1度 z j (θ ) ;
∫ 0 ≤ z j (θ ) ≤ 1; H z j (θ )dθ = 1
2
具有随机参量信号的检测
第一节 复合假设检验 第二节 具有随机相位信号的检测 第三节 二元正交随机相位信号的检测 第四节 Rayleigh衰落信道二元正交随机相位信号
的检测
3
复合假设检验
复合假设是指含有若干未知或随机参数的假设。 例如在信号检测问题中,被检验的假设可以是:
相关文档
最新文档