高中物理 运动学问题
高考物理经典题(运动学)
高考物理经典题汇编--运动学(一)一、选择题1.(全国卷Ⅱ·15)两物体甲和乙在同一直线上运动,它们在0~0.4s时间内的v-t图象如图所示。
若仅在两物体之间存在相互作用,则物体甲与乙的质量之比和图中时间t1分别为( B )A.和0.30s B.3和0.30sC.和0.28s D.3和0.28s2.(江苏物理·7)如图所示,以匀速行驶的汽车即将通过路口,绿灯还有2 s将熄灭,此时汽车距离停车线18m。
该车加速时最大加速度大小为,减速时最大加速度大小为。
此路段允许行驶的最大速度为,下列说法中正确的有( AC )A.如果立即做匀加速运动,在绿灯熄灭前汽车可能通过停车线B.如果立即做匀加速运动,在绿灯熄灭前通过停车线汽车一定超速C.如果立即做匀减速运动,在绿灯熄灭前汽车一定不能通过停车线D.如果距停车线处减速,汽车能停在停车线处3.如图所示,两质量相等的物块A、B通过一轻质弹簧连接,B足够长、放置在水平面上,所有接触面均光滑。
弹簧开始时处于原长,运动过程中始终处在弹性限度内。
在物块A上施加一个水平恒力,A、B从静止开始运动到第一次速度相等的过程中,下列说法中正确的有( BCD )A.当A、B加速度相等时,系统的机械能最大B.当A、B加速度相等时,A、B的速度差最大C.当A、B的速度相等时,A的速度达到最大D.当A、B的速度相等时,弹簧的弹性势能最大4.(广东物理·3)某物体运动的速度图像如图,根据图像可知( AC )A.0-2s内的加速度为1m/s2B.0-5s内的位移为10mC.第1s末与第3s末的速度方向相同D.第1s末与第4.5s末加速度方向相同5.一物体在外力的作用下从静止开始做直线运动,合外力方向不变,大小随时间的变化如图所示。
设该物体在和时刻相对于出发点的位移分别是和,速度分别是和,合外力从开始至时刻做的功是,从至时刻做的功是,则( AC )A.B.C.D.6.(海南物理·8)甲乙两车在一平直道路上同向运动,其图像如图所示,图中和的面积分别为和.初始时,甲车在乙车前方处。
高中物理运动学练习题
高中物理运动学练习题一、选择题1. 下列哪个物理量是标量?A. 速度B. 加速度C. 位移D. 动能2. 一个物体做匀速直线运动,下列哪个物理量是不变的?A. 速度大小B. 速度方向C. 加速度D. 位移3. 下列哪种运动是匀变速直线运动?A. 起始速度为零,末速度不为零的直线运动B. 速度随时间均匀变化的直线运动C. 位移随时间均匀变化的直线运动D. 加速度随时间均匀变化的直线运动二、填空题1. 物体在水平面上做匀速直线运动,速度为5m/s,运动了10秒,则物体通过的位移为______m。
2. 一个物体从静止开始做匀加速直线运动,加速度为2m/s²,经过5秒,物体的速度为______m/s。
3. 一辆汽车以20m/s的速度行驶,紧急刹车后,加速度为5m/s²,则汽车停止前行驶的距离为______m。
三、计算题1. 一辆汽车从静止开始做匀加速直线运动,加速度为4m/s²,求汽车在第3秒末的速度和位移。
2. 一物体从某高度自由下落,经过2秒后速度达到20m/s,求物体下落的初始高度。
3. 一物体沿直线运动,其速度时间图像如图所示(图像略),求物体在前4秒内的位移。
四、应用题1. 一列火车以20m/s的速度行驶,司机发现前方1000m处有一障碍物,立即紧急刹车,火车加速度为2m/s²。
问火车能否在撞到障碍物前停下来?2. 一物体从高度h自由下落,不计空气阻力。
当物体落地前1秒内的位移等于整个下落过程位移的1/4时,求物体下落的高度。
3. 一辆汽车在平直公路上行驶,速度时间图像如图所示(图像略)。
求汽车在06秒内的平均速度。
五、判断题1. 物体做匀速圆周运动时,速度大小不变,因此它是匀速运动。
()2. 物体做匀加速直线运动时,其速度随时间均匀增加,但位移的增加是随时间平方增加的。
()3. 在自由落体运动中,物体的速度与下落时间成正比。
()六、作图题物体从静止开始运动,加速度为3m/s²,持续5秒。
高一物理学习中的运动学与力学问题解析
高一物理学习中的运动学与力学问题解析运动学是物理学的一个重要分支,研究物体的运动规律、轨迹和速度等问题,而力学则关注物体受到的力的影响及其对物体运动的影响。
在高一物理学习中,学生常常会遇到一些关于运动学与力学的问题。
本文将针对高一物理学习中常见的运动学与力学问题进行解析,帮助学生更好地理解和应用这些知识。
一、直线运动的速度与加速度问题直线运动是运动学中最简单的一种情形,学生在学习过程中常常需要计算物体在直线运动中的速度和加速度。
首先,我们来看速度的计算。
速度是物体在单位时间内所经过的距离,可以用公式:速度(v)= 位移(s)/ 时间(t)其中,位移可以用物体的最终位置减去最初位置得到,时间可通过实验或问题描述获得。
利用这个计算公式,学生可以计算出物体在直线运动中的速度。
加速度是物体在单位时间内速度的变化率,可以用公式:加速度(a)= (末速度(v)- 初速度(u))/ 时间(t)在直线运动中,如果物体的速度在单位时间内发生改变,那么物体就受到了加速度的作用。
通过计算速度的变化量与时间的比值,学生可以计算出物体在直线运动中的加速度。
二、匀速直线运动问题的解析在学习直线运动时,经常会遇到匀速直线运动的问题。
匀速直线运动是指物体在同样时间内所运动的距离是相等的,速度保持不变。
对于匀速直线运动,学生可以利用以下公式进行解析:1. 位移(s)= 速度(v)x 时间(t)当学生已知速度和时间时,可以通过这个公式计算物体的位移。
2. 时间(t)= 位移(s)/ 速度(v)学生还可以通过已知位移和速度来计算运动所需的时间。
3. 速度(v)= 位移(s)/ 时间(t)当学生已知位移和时间时,可以通过这个公式计算物体的速度。
通过以上三种公式,学生可以更好地解决匀速直线运动的问题,为实际生活中的运动情况提供分析和解释。
三、运动过程中的力学问题解析力学是物体受力以及力对物体运动的影响的研究。
在高一物理学习中,学生会遇到一些关于力学的问题。
高中物理运动学练习题及讲解
高中物理运动学练习题及讲解一、选择题1. 一个物体从静止开始做匀加速直线运动,其加速度为2m/s²。
若物体在第3秒内通过的位移为9m,求物体在第2秒末的速度是多少?A. 2m/sB. 3m/sC. 4m/sD. 5m/s2. 一辆汽车以10m/s的速度行驶,突然刹车,产生一个-5m/s²的加速度。
求汽车在刹车后5秒内的位移。
A. 25mB. 31.25mC. 40mD. 50m二、填空题3. 某物体做自由落体运动,下落时间为3秒,忽略空气阻力,求物体下落的高度。
公式为:\[ h = \frac{1}{2} g t^2 \],其中\( g \)为重力加速度,\( t \)为时间。
假设\( g = 9.8 m/s^2 \)。
三、计算题4. 一个物体从高度为10米的平台上自由落下,求物体落地时的速度。
四、解答题5. 一辆汽车从静止开始加速,加速度为4m/s²,行驶了10秒后,汽车的速度和位移分别是多少?五、实验题6. 实验中,我们用打点计时器记录了小车的运动。
已知打点计时器的周期为0.02秒,记录了小车在第1、3、5、7、9点的位置。
位置数据如下(单位:米):1点:0.00,3点:0.20,5点:0.56,7点:1.08,9点:1.76。
请根据这些数据计算小车的加速度,并判断小车的运动类型。
六、论述题7. 论述在斜面上的物体受到的力有哪些,以及这些力如何影响物体的运动。
参考答案:1. B2. B3. 14.7m4. 根据公式\( v = \sqrt{2gh} \),落地速度为\( \sqrt{2 \times 9.8 \times 10} \) m/s。
5. 速度为40m/s,位移为200m。
6. 根据两点间的平均速度公式,可以求出加速度为0.8m/s²,小车做匀加速直线运动。
7. 斜面上的物体受到重力、支持力和摩擦力的作用。
重力使物体有向下运动的趋势,支持力和摩擦力则与重力的垂直和水平分量相平衡,影响物体的加速度和运动状态。
高中物理运动学问题的解题技巧
高中物理运动学问题的解题技巧在高中物理学习中,运动学是一个非常重要的部分,它研究物体的运动规律和运动状态。
解决运动学问题需要掌握一些解题技巧,本文将从几个常见的题型出发,为大家介绍一些解题技巧。
一、匀速直线运动问题匀速直线运动是最简单的一种运动形式,它的特点是物体在单位时间内运动的距离相等。
解决匀速直线运动问题时,我们可以利用以下公式:位移 = 速度 ×时间速度 = 位移 ÷时间时间 = 位移 ÷速度举个例子来说明,假设小明骑自行车以10 m/s的速度行驶了20秒,我们可以利用上述公式计算他的位移:位移 = 速度 ×时间 = 10 m/s × 20 s = 200 m所以小明的位移是200米。
二、自由落体问题自由落体是指物体在只受重力作用下自由下落的运动。
解决自由落体问题时,我们需要掌握以下公式:下落距离 = 初始速度 ×时间 + 1/2 ×重力加速度 ×时间的平方速度 = 初始速度 + 重力加速度 ×时间其中,重力加速度在地球上约为9.8 m/s²。
例如,一个物体从静止开始自由下落,经过3秒钟后,我们可以利用上述公式计算它的下落距离:下落距离 = 1/2 × 9.8 m/s² × (3 s)² = 44.1 m所以物体的下落距离是44.1米。
三、抛体运动问题抛体运动是指物体在水平方向上具有初速度的情况下,垂直方向上受重力作用自由运动的情况。
解决抛体运动问题时,我们需要利用以下公式:水平方向位移 = 水平方向初速度 ×时间垂直方向位移 = 垂直方向初速度 ×时间 + 1/2 ×重力加速度 ×时间的平方水平方向速度 = 水平方向初速度垂直方向速度 = 垂直方向初速度 + 重力加速度 ×时间其中,水平方向和垂直方向是相互独立的。
高三物理学习中的力学与运动学问题
高三物理学习中的力学与运动学问题在高三物理学习中,力学和运动学是重要的内容,它们关乎着物体的运动状态、受力分析和力的作用效果等。
本文将讨论一些高三物理学习中常见的力学和运动学问题,并提供解决方案。
一、直线运动中的力学问题直线运动是物体在同一直线上运动的过程,其力学问题主要涉及到物体的速度、加速度、位移、时间以及力的作用等方面。
1. 物体在匀速直线运动中的力学问题在匀速直线运动中,物体的速度保持恒定,加速度为零。
这时的力学问题主要包括:物体的位移与时间的关系、物体所受的合力以及对重新运动的制动力等。
解决方案:根据匀速直线运动的特点,可以利用速度等于位移除以时间的公式来解决位移与时间的关系问题。
合力为零时,物体将保持匀速直线运动,而制动力的大小可以通过实验或计算得出。
2. 物体在匀加速直线运动中的力学问题在匀加速直线运动中,物体的速度随时间的变化是匀速变化的,加速度保持恒定。
此时的力学问题涉及到:物体的位移、速度、加速度和时间之间的关系,以及物体所受的合力等。
解决方案:可以利用恒定加速度的运动方程(v = v0 + at, s = v0t + 0.5at^2, v^2 = v0^2 + 2as)来解决位移、速度、加速度和时间之间的关系问题。
对于合力问题,可以利用牛顿第二定律(F = ma)来计算物体所受的合力。
二、曲线运动中的力学问题曲线运动是物体在弯曲或曲线轨道上运动的过程,其力学问题主要涉及到物体在曲线上的受力、向心力和离心力等。
1. 物体在水平圆周运动中的力学问题在水平圆周运动中,物体保持相对于圆心的运动,其速度和加速度的大小保持不变,方向不断变化。
此时的力学问题包括:物体所受的向心力、向心加速度与半径的关系,以及物体所受的摩擦力等。
解决方案:物体在水平圆周运动中所受的向心力大小等于质量乘以向心加速度,可以利用公式 Fc = m * ac = m * v^2 / r 来计算。
而摩擦力则可以通过接触面之间的摩擦系数和垂直向心力的关系来计算。
高中物理运动学专题试卷
高中物理运动学专题试卷一、单选题(每题5分,共30分)1. 一物体做匀加速直线运动,初速度为v_0 = 2m/s,加速度为a = 1m/s^2,则3秒末的速度是()A. 5m/sB. 6m/sC. 7m/sD. 8m/s同学们,这题就像是在给物体的速度做加法呢。
我们知道匀加速直线运动的速度公式v = v_0+at。
这里v_0 = 2m/s,a = 1m/s^2,t = 3s,把这些数字往公式里一套,就是v=2 + 1×3=5m/s,所以答案是A啦。
2. 一个小球从高处自由下落,不计空气阻力,取g = 10m/s^2,在下落的前2秒内小球下落的高度是()A. 10mB. 20mC. 30mD. 40m这小球就像个勇敢的跳伞员,直直地往下落。
自由落体运动的高度公式h=(1)/(2)gt^2。
g = 10m/s^2,t = 2s,把它们代进去算,h=(1)/(2)×10×2^2=20m,答案就是B喽。
3. 一汽车以v = 10m/s的速度做匀速直线运动,突然发现前方有障碍物,开始以a=-2m/s^2的加速度刹车,则汽车刹车后5秒内的位移是()A. 25mB. 50mC. 100mD. 125m汽车刹车这事儿啊,就像一个奔跑的人突然想停下来。
先得看看汽车啥时候能停下来,根据v = v_0+at,当v = 0时,0 = 10-2t,解得t = 5s。
但是呢,这个车在4秒的时候就已经停了哦。
再根据位移公式x=v_0t+(1)/(2)at^2,v_0 = 10m/s,a=-2m/s^2,t = 5s(这里虽然算5秒,但是实际运动4秒就停了),算出来x = 10×4+(1)/(2)×(-2)×4^2=20m。
好像没有这个答案呢,我们再用平均速度来算,平均速度¯v=(v_0 +v)/(2)=(10 + 0)/(2)=5m/s,位移x=¯vt = 5×4 = 20m,答案是A。
高二物理学习中的运动学问题求解策略
高二物理学习中的运动学问题求解策略物理学是一门研究自然界物体运动和相互作用的科学,而运动学则是物理学中研究物体运动状态、速度、加速度和位移等的分支学科。
对于高二学生而言,物理学习中的运动学问题往往是较为基础且重要的内容之一。
在解决运动学问题时,学生需要掌握一些求解策略和方法,下面将介绍几种常用的策略。
一、运动图解法运动图解法是解决运动学问题最常用的方法之一。
它利用图像的直观性,将物体在不同时间点的位置、速度以及加速度等参数都绘制在图上,通过观察图像上的变化,来推断物体的运动规律。
在使用运动图解法时,首先需要绘制一个坐标系,用于表示物体的位置。
然后根据问题中给出的信息,确定物体的起始位置和起始速度,并利用运动学公式计算出物体在各个时间点的位置和速度。
将这些数据标在坐标系中,连接起来就得到了物体的运动图像。
通过观察运动图像,我们可以判断出物体的运动类型(匀速、匀变速、匀加速或非匀加速)、物体的最大速度、加速度等信息。
在进行计算时,学生可以根据需要使用诸如位移公式、速度公式、加速度公式等来求解。
二、向量分解法在解决某些特殊情况下的运动学问题时,向量分解法是一种简便有效的求解策略。
它适用于物体具有多个独立运动分量的情况,例如,一个物体在倾斜平面上沿斜面滑动时,可以将这个运动划分为垂直于斜面和平行于斜面两个独立的运动分量。
在使用向量分解法时,学生需要将物体的运动分解为两个垂直方向的运动分量,通常是沿着斜面方向和垂直斜面方向两个方向。
然后可以利用物体自由落体运动和斜面上平行运动的知识,分别对这两个分量进行求解。
最后,将求解结果合成,得到最终的答案。
此外,向量分解法还适用于解决其他类型的问题,比如抛体运动中的斜抛问题,将抛体的初速度分解为水平分量和竖直分量,可以简化计算过程,更容易求得所需结果。
三、微元法微元法是一种近似求解运动学问题的方法。
当问题中的物体运动过程相对复杂、无法直接求解时,可以将整个运动过程分解为许多微小的时间段,并假设每个时间段内物体的运动是匀速或匀变速的。
高一物理难题运动学知识点
高一物理难题运动学知识点运动学是物理学中的一个重要分支,研究物体的运动规律和运动状态,对于解决物理难题具有重要的作用。
本文将介绍几个高一物理常见的难题,并结合运动学知识点进行解析。
问题一:一辆汽车以15 m/s的速度匀速行驶了20 s,求汽车行驶的距离。
解析:根据题目中给出的速度和时间,我们可以使用运动学中的公式来计算汽车行驶的距离。
首先,我们知道匀速运动的速度保持不变,所以汽车的速度为15 m/s。
其次,题目给出的时间为20 s。
根据运动学公式:速度 = 距离 ÷时间,可得:距离 = 速度 ×时间。
代入已知的数值计算可得:距离 = 15 m/s × 20 s = 300 m。
所以,汽车行驶的距离为300米。
问题二:一个小球从地面上沿竖直上抛的轨迹飞起,求小球的最大高度和上升时间。
解析:对于这个问题,我们需要运用运动学中的竖直上抛运动的相关知识。
首先,我们假设小球从地面上抛的初速度为v0。
当小球达到最大高度时,它的速度为零。
根据上抛运动的运动学公式:v = v0 + at,其中v为最终速度,v0为初速度,a为加速度,t为时间。
由于最大高度时速度为零,代入相关数值可得:0 = v0 - 9.8t(重力加速度为9.8 m/s^2)。
解方程可得:t = v0 / 9.8。
所以,小球上升的时间为t = v0 / 9.8 s。
其次,利用竖直上抛运动的位移公式:h = v0t - (1/2)gt^2,其中h为位移(最大高度),将上升时间t代入可得:h = v0(v0 / 9.8) - (1/2)(9.8)(v0 / 9.8)^2。
化简后可得:h = (v0)^2 / (2 × 9.8)。
所以,小球的最大高度为h = (v0)^2 / (2 × 9.8)米。
问题三:一个自由下落的物体从100米高的位置下落,求物体落地的时间。
解析:对于自由下落的物体来说,我们可以利用重力加速度的概念来求解下落时间。
高中运动学试题及答案
高中运动学试题及答案一、选择题(每题3分,共30分)1. 一个物体做匀加速直线运动,初速度为v0,加速度为a,经过时间t后,其速度为:A. v0 + atB. v0 - atC. v0 + 2atD. v0 - 2at答案:A2. 根据牛顿第二定律,力和加速度的关系是:A. F = maB. F = ma^2C. F = m/aD. F = a/m答案:A3. 一个物体从静止开始做自由落体运动,其下落的距离s与时间t的关系是:A. s = 1/2gt^2B. s = 2gtC. s = gt^2D. s = gt答案:A4. 根据动量守恒定律,两个物体碰撞前后的总动量:A. 保持不变B. 增加C. 减少D. 无法确定答案:A5. 一个物体在水平面上做匀速圆周运动,其向心力的公式是:A. Fc = mv^2/rB. Fc = mv/rC. Fc = mrv^2D. Fc = mr答案:A6. 根据能量守恒定律,一个物体从高度h自由落体到地面,其重力势能转化为:A. 动能B. 势能C. 内能D. 热能答案:A7. 一个物体在斜面上做匀加速直线运动,其加速度与斜面倾角的关系是:A. 与倾角成正比B. 与倾角成反比C. 与倾角无关D. 与倾角的正弦成正比答案:D8. 根据牛顿第三定律,作用力和反作用力:A. 大小相等,方向相反B. 大小不等,方向相反C. 大小相等,方向相同D. 大小不等,方向相同答案:A9. 一个物体在水平面上做匀速直线运动,其摩擦力与:A. 物体的质量有关B. 物体的速度有关C. 物体的加速度有关D. 物体与地面的接触面积有关答案:C10. 根据功的定义,一个力做功的公式是:A. W = FdB. W = FdcosθC. W = Fd/cosθD. W = Fdcosθ/2答案:B二、填空题(每题2分,共20分)1. 一个物体的动能Ek与其质量m和速度v的关系是:Ek = ________。
高中物理《运动学》练习题
高中物理《运动学》练习题一、选择题1.下列说法中正确的是() A .匀速运动就是匀速直线运动B .对于匀速直线运动来说,路程就是位移C .物体的位移越大,平均速度一定越大D .物体在某段时间内的平均速度越大,在其间任一时刻的瞬时速度也一定越大2.关于速度的说法正确的是()A .速度与位移成正比B .平均速率等于平均速度的大小C .匀速直线运动任何一段时间内的平均速度等于任一点的瞬时速度D .瞬时速度就是运动物体在一段较短时间内的平均速度3.物体沿一条直线运动,下列说法正确的是()A .物体在某时刻的速度为3m/s,则物体在1s 内一定走3mB .物体在某1s 内的平均速度是3m/s ,则物体在这1s 内的位移一定是3mC .物体在某段时间内的平均速度是3m/s,则物体在1s 内的位移一定是3mD .物体在发生某段位移过程中的平均速度是3m/s ,则物体在这段位移的一半时的速度一定是3m/s4.关于平均速度的下列说法中,物理含义正确的是()A .汽车在出发后10s 内的平均速度是5m/sB .汽车在某段时间内的平均速度是5m/s ,表示汽车在这段时间的每1s 内的位移都是5mC .汽车经过两路标之间的平均速度是5m/sD .汽车在某段时间内的平均速度都等于它的初速度与末速度之和的一半5.火车以76km/h 的速度经过某一段路,子弹以600m /s 的速度从枪口射出,则()A .76km/h 是平均速度B .76km/h 是瞬时速度C .600m/s 是瞬时速度D .600m/s 是平均速度6.某人沿直线做单方向运动,由A 到B 的速度为1v ,由B 到C 的速度为2v ,若BC AB =,则这全过程的平均速度是()A .2/)(21v v -B .2/)(21v v +C .)/()(2121v v v v +-D .)/(22121v v v v +7.如图是A 、B 两物体运动的速度图象,则下列说法正确的是()A .物体A 的运动是以10m/s 的速度匀速运动B .物体B 的运动是先以5m /s 的速度与A 同方向C .物体B 在最初3s 内位移是10mD .物体B 在最初3s 内路程是10m8.有一质点从t =0开始由原点出发,其运动的速度—时间图象如图所示,则()A .1=t s 时,质点离原点的距离最大B .2=t s 时,质点离原点的距离最大C .2=t s 时,质点回到原点D .4=t s 时,质点回到原点9.如图所示,能正确表示物体做匀速直线运动的图象是()10.质点做匀加速直线运动,加速度大小为2m/s 2,在质点做匀加速运动的过程中,下列说法正确的是()A.质点的未速度一定比初速度大2m/sB.质点在第三秒米速度比第2s末速度大2m/sC.质点在任何一秒的未速度都比初速度大2m/sD.质点在任何一秒的末速度都比前一秒的初速度大2m/s11.关于加速度的概念,正确的是()A.加速度反映速度变化的快慢B.加速度反映速度变化的大小C.加速度为正值,表示物体速度一定是越来越大D.加速度为负值,表示速度一定是越来越小12.下列说法中正确的是()A.物体的加速度不为零,速度可能为零B.物体的速度大小保持不变时,可能加速度不为零C.速度变化越快,加速度一定越大D.加速度越小,速度一定越小13.一个做变速直线运动的物体,加速度逐渐减小,直至为零,那么该物体运动的情况可能是()A.速度不断增大,加速度为零时,速度最大B.速度不断减小,加速度为零时,速度最小C.速度的变化率越来越小D.速度肯定是越来越小的二、填空题14.如图所示为某一质点运动的速度图象,从图象可知:质点运动方向和第1s运动方向相同的是在______时间内,质点运动速度方向和第3s运动速度方向相同的是在______时间内.15.电磁打点计时器是一种使用______电源的_____仪器,它的工作电压是______V.50时,它每隔______S打一次点.使用时,纸带应穿过_____,复当电源的频率是Hz写纸片应套在______上,并要放在纸带的_____面;打点时应_____接通电源,_____释放纸带。
高中物理运动学测试题(卷)(附答题卷和答案解析)
运动学测试(附答案)一.不定项选择题(5分×12=60分)1. 一物体以初速度0v 、加速度a 做匀加速直线运动,若物体从t 时刻起,加速度a 逐渐减小至零,则物体从t 时刻开始 ( )A.速度开始减小,直到加速度等于零为止B.速度继续增大,直到加速度等于零为止C.速度一直增大D.位移继续增大,直到加速度等于零为止2.某人欲估算飞机着陆时的速度,他假设飞机停止运动前在平直跑道上做匀减速运动,飞机在跑道上滑行的距离为x ,从着陆到停下来所用的时间为t ,则飞机着陆时的速度为( )A.x tB.2x tC.x 2tD.x t 到2xt之间的某个值 3.2009年7月16日,中国海军第三批护航编队16日已从某军港启航,于7月30日抵达亚丁湾、索马里海域如图1-1-1所示,此次护航从启航,经东海、海峡、南海、马六甲海峡,穿越印度洋到达索马里海域执行护航任务,总航程五千多海里.关于此次护航,下列说确的是( )A .当研究护航舰艇的运行轨迹时,可以将其看做质点B .“五千多海里”指的是护航舰艇的航行位移C .“五千多海里”指的是护航舰艇的航行路程D .根据题中数据我们可以求得此次航行的平均速度 4.一质点沿直线Ox 方向做变速运动,它离开O 点的距离随时间变化的关系为x =5+2t 3(m),它的速度随时间t 变化关系为v =6t 2(m/s).该质点在t =0到t =2 s 间的平均速度和t =2 s 到t =3 s 间的平均速度大小分别为( )A .12 m/s ,39 m/sB .8 m/s ,38 m/sC .12 m/s ,19.5 m/sD .8 m/s ,12 m/s 5. 机车在高速公路上行驶,车速超过100 km/h 时,应当与同车道前车保持100 m 以上的距离.从驾驶员看见某一情况到采取制动动作的时间里,汽车仍要通过一段距离(称为反应距离);从采取制动动作到车完全停止的时间里,汽车又要通过一段距离(称为制动距离),如表所示给出了汽车在不同速度下的反应距离和制动距离的部分数据.如果驾驶员的反应时间一定,路面情况相同速度(m/s) 反应距离(m) 制动距离(m)10 15 25 14 X YA .驾驶员的反应时间为1.5 sB .汽车制动的加速度大小为2 m/s 2C .表中Y 为49D .表中X 为326. 在某可看做直线的高速公路旁安装有雷达探速仪,可以精确抓拍超速的汽车,以及测量汽车运动过程中的加速度.若B 为测速仪,A 为汽车,两者相距345 m ,此时刻B 发出超声波,同时A 由于紧急情况而急刹车,当B 接收到反射回来的超声波信号时,A 恰好停止,且此时A 、B 相距325 m ,已知声速为340 m/s ,则汽车刹车过程中的加速度大小为( ) A. 20 m/s 2 B. 10 m/s 2 C. 5 m/s 2 D. 1 m/s 27.一人看到闪电12.3 s 后又听到雷声.已知空气中的声速为330 m/s ~340 m/s ,光速为3×108 m/s ,于是他用12.3除以3很快估算出闪电发生位置到他的距离为4.1 km.根据你所学的物理知识可以判断( )A .这种估算方法是错误的,不可采用B .这种估算方法可以比较准确地估算出闪电发生位置与观察者间的距离C .这种估算方法没有考虑光的传播时间,结果误差很大D .即使声速增大2倍以上,本题的估算结果依然正确 8.某动车组列车以平均速度v 行驶,从甲地到乙地的时间为t .该列车以速度v 0从甲地出发匀速前进,途中接到紧急停车命令后紧急刹车,列车停车后又立即匀加速到v 0,继续匀速前进.从开始刹车至加速到v 0的时间是t 0,(列车刹车过程与加速过程中的加速度大小相等),若列车仍要在t 时间到达乙地.则动车组列车匀速运动的速度v 0应为( )A.vt t -t 0B.vt t +t 0C.vt t -12t 0D.vt t +12t 09.从同一地点同时开始沿同一直线运动的两个物体Ⅰ、Ⅱ的速度-时间图象如图所示.在0~t 2时间,下列说法中正确的是( )A .Ⅰ物体所受的合外力不断增大,Ⅱ物体所受的合外力不断减小B .在第一次相遇之前,t 1时刻两物体相距最远C .t 2时刻两物体相遇D .Ⅰ、Ⅱ两个物体的平均速度大小都是v 1+v 2210.如图所示,t =0时,质量为0.5 kg 物体从光滑斜面上的A 点由静止开始下滑,经过B 点后进入水平面(设物体经过B 点前后速度大小不变),最后停在C 点.测得每隔2 s 的三个时刻物体的瞬时速度记录在表格中,由此可2)( )t /s 0 2 4 6 v /m·s -10 8 12 8 B 点 C .t =10 s 的时刻物体恰好停在C 点 D .A 、B 间的距离大于B 、C 间的距离11.打开水龙头,水顺流而下,仔细观察将会发现连续的水流柱的直径在流下的过程中,是逐渐减小的(即上粗下细),设水龙头出口处半径为1 cm ,安装在离接水盆75 cm 高处,如果测得水在出口处的速度大小为1 m/s ,g=10 m/s 2,则水流柱落到盆中的直径( ) A .1 cm B .0.75 cm C .0.5 cm D .0.25 cm12.a 、b 两物体从同一位置沿同一直线运动,它们的速度图象如图所示,下列说确的是( )A .a 、b 加速时,物体a 的加速度大于物体b 的加速度B .20秒时,a 、b 两物体相距最远C .60秒时,物体a 在物体b 的前方D .40秒时,a 、b 两物体速度相等,相距200 m 二.实验题(3分×5)13.某同学在测定匀变速直线运动的加速度时,得到了几条较为理想的纸带,已在每条纸带上每5个计时点取好了一个计数点,即两计数点之间的时间间隔为0.1 s ,依打点先后编为0、1、2、3、4、5.由于不小心,纸带被撕断了,如图所示.请根据给出的A 、B 、C 、D 四段纸带回答:(填字母)(1)从纸带A上撕下的那段应该是B、C、D三段纸带中的________.(2)打A纸带时,物体的加速度大小是________m/s2.14.某学生用打点计时器研究小车的匀变速直线运动.他将打点计时器接到频率为50 Hz的交流电源上,实验时得到一条纸带如图实所示.他在纸带上便于测量的地方选取第一个计数点,在这点下标明A,第六个点下标明B,第十一个点下标明C,第十六个点下标明D,第二十一个点下标明E.测量时发现B点已模糊不清,于是他测得AC长为14.56 cm,CD长为11.15 cm,DE长为13.73 cm,则打C点时小车的瞬时速度大小为________ m/s,小车运动的加速度大小为________ m/s2,AB的距离应为________ cm.(保留三位有效数字)三.计算题(8+9+9+9=35分)15.建筑工人安装脚手架进行高空作业时,一名建筑工人不慎将抓在手中的一根长5 m的铁杆在竖直状态下由静止脱手,不计空气阻力.试问:(1)假设杆的下端离地面40 m,那么铁杆碰到地面时的速度大约是多少?(2)若铁杆在下落过程中经过某楼层面的时间为0.2 s,试求铁杆下落时其下端距离该楼层面的高度是多少?(g取10 m/s2,不计楼层面的厚度)16.2011年7月2日下午,在滨江区的白金海岸小区,一个2岁女童突然从10楼坠落,楼下30多岁的吴菊萍女士奋不顾身地冲过去用双手接住了孩子,其手臂骨折,受伤较重,被网友称为最美妈妈,接抱坠楼女童的“最美妈妈”吴菊萍引发了海外的集体感动.吴菊萍不计后果的爱心托举,不仅给坠楼女童妞妞带来了生的希望,也激发着全社会的向善力量.设女童从45 m高的阳台上无初速掉下,吴菊萍迅速由静止冲向女童下落处的正下方楼底,准备接住女童.已知吴菊萍到楼底的距离为18 m,为确保安全能稳妥接住女童,吴菊萍将尽力节约时间,但又必须保证接女童时没有水平方向的冲击,不计空气阻力,将女童和吴菊萍都看做质点,设吴菊萍奔跑过程中只做匀速或匀变速运动,g取10 m/s2(1)吴菊萍至少用多大的平均速度跑到楼底?(2)若吴菊萍在加速或减速的加速度大小相等,且最大速度不超过9 m/s,求吴菊萍奔跑时加速度需满足什么条件?17. 在竖直的井底,将一物块以11 m/s的速度竖直的向上抛出,物体冲过井口时被人接住,在被人接住前1s物体的位移是4 m,位移方向向上,不计空气阻力,g取10 m/s2,求:(1)物体从抛出到被人接住所经历的时间;(2)此竖直井的深度.18.2011年7月23日晚,甬温线永嘉站至南站间,南至D301次列车与至南D3115次列车发生追尾事故,造成特大铁路交通事故.若事故发生前D3115次动车组正以速度为v A=10 m/s匀速向前行驶,D301次列车在其后以速度v B=30 m/s同方向匀速行驶.因当天正在下雨能见度低,D301次列车在距D3115次列车700 m时,才发现前方有D3115次列车.这时D301次列车立即刹车,但要经过1800 m D301次列车才能停止.问:D3115次列车若仍按原速前进,两车是否会相撞?说明理由.附加题:甲、乙两质点同时开始在彼此平行且靠近的两水平轨道上同向运动,甲在前,乙在后,相距s,甲初速度为零,加速度为a,做匀加速直线运动;乙以速度v0做匀速运动,关于两质点在相遇前的运动。
高一物理运动学练习题及答案
高一物理运动学练习题及答案一、选择题1.小明以5m/s的速度向前奔跑,如果他跑了10秒钟,那么他的位移是多少?A. 50mB. 10mC. 5mD. 100m答案:A2.小红骑自行车以8m/s的速度匀速行驶了20秒钟,求她的位移?A. 160mB. 10mC. 40mD. 1000m答案:A3.甲、乙两车在同一直线上行驶,甲车做匀速运动,速度为20m/s;乙车做加速运动,起始速度为10m/s,加速度为4m/s²,求乙车在10秒钟后与甲车的相对位移?A. 150mB. 200mC. 490mD. 400m答案:C4.一辆汽车以20m/s的速度在100s内行驶了多少距离?A. 2000mB. 200mC. 20000mD. 200000m答案:C5.一个物体自由落体下落了5秒钟,求它下落的距离。
A. 25mB. 49mC. 10mD. 5m答案:B二、填空题1.直线运动中,速度为10m/s,加速度为2m/s²的物体在5秒钟内的位移是多少?答案:40m2.一个物体从静止开始,以5m/s²的加速度匀加速运动,经过10秒钟后的速度是多少?答案:50m/s3.一个物体以15m/s的速度运动,经过4秒后速度变为30m/s,求物体的加速度。
答案:3.75m/s²4.自由落体下落了3秒钟,物体下落的距离是多少?答案:44.1m5.一个物体以30m/s的速度上抛,经过5秒钟后它回到起始位置,求物体的最大高度。
答案:375m三、简答题1.请解释匀速直线运动与变速直线运动的区别,并给出相应的例子。
答:匀速直线运动是指物体在单位时间内位移的大小相等,比如小明以10m/s的速度匀速行驶10秒钟,位移为100m;而变速直线运动是指物体在单位时间内位移的大小不相等,比如小红以5m/s的速度加速行驶10秒钟,位移为125m。
2.什么是自由落体运动?请简要说明自由落体运动的特点。
答:自由落体运动是指物体在没有外力作用下,仅受重力作用下的运动。
物理力学中的运动学问题分析
物理力学中的运动学问题分析运动学是研究物体运动的学科,主要研究物体的位置、运动速度和加速度等问题。
在物理力学中,运动学问题是解决实际运动过程中的相关参数的重要方法。
本文将分析物理力学中的运动学问题,并探讨不同的解决方法。
一、匀速直线运动匀速直线运动是最简单的运动形式之一,其特点是物体在真空中以恒定速度沿着直线运动。
对于匀速直线运动,我们可以通过以下公式计算相关参数:(1)位移公式:位移=速度×时间(2)速度公式:速度=位移/时间(3)时间公式:时间=位移/速度二、变速直线运动变速直线运动是指物体在真空中以不同的速度沿直线运动的情况。
对于变速直线运动,我们需要考虑物体在不同时间点的瞬时速度和平均速度。
(1)瞬时速度:在物体运动过程中某一时刻的瞬时速度是物体通过该点的瞬时位移和瞬时时间的比值。
(2)平均速度:在物体运动过程中某一时间段内的平均速度是物体在该时间段内走过的总位移和总时间的比值。
对于变速直线运动,我们可以通过位移-时间图像、速度-时间图像和加速度-时间图像等方法来分析运动规律。
其中,位移-时间图像可以帮助我们观察物体的位移随时间的变化趋势,速度-时间图像可以帮助我们观察物体的速度随时间的变化趋势,加速度-时间图像可以帮助我们观察物体的加速度随时间的变化趋势。
这些图像的分析可以帮助我们理解物体的运动规律,并计算相关参数。
三、简谐振动简谐振动是物体受到一个恢复力作用下,以某个固有频率做周期性振动的运动形式。
简谐振动广泛应用于弹簧振子、摆锤等实际问题中。
对于简谐振动,我们可以通过以下公式计算相关参数:(1)周期公式:T=2π√(m/k),其中T表示周期,m表示质量,k表示弹簧常数。
(2)频率公式:f=1/T,其中f表示频率,T为周期。
(3)角频率公式:ω=2πf=√(k/m),其中ω表示角频率,m表示质量,k表示弹簧常数。
(4)位移公式:x=Acos(ωt+φ),其中x表示位移,A表示振幅,t 表示时间,φ表示初相位。
高中物理必修一运动学测试题4套(答案)
高中物理必修一运动学测试题4套(答案)一、选择题:1、正确选项为B。
加速度为零时,速度不一定为零,但速度不变。
2、描述匀加速直线运动的图像为甲、丁。
3、正确选项为C。
任意1s内的速度增量都是0.2m/s。
4、正确选项为A。
A的速度变化量为5m/s,B的速度变化量为10m/s,A的速度变化量比B小。
5、正确选项为B。
第1s末的速度为2m/s。
6、正确选项为A。
在t=0.5s时,质点离原点最远。
二、填空题:1、加速度的单位为m/s²。
2、匀加速直线运动的速度-时间图像为一条直线。
3、物体做匀加速直线运动时,速度的变化量等于加速度乘以时间。
4、匀加速直线运动的位移-时间图像为一个抛物线。
5、在匀加速直线运动中,速度和加速度的方向可以相同也可以相反。
6、匀加速直线运动的加速度为常数,速度的变化量与时间成正比。
A.一个钢球从高处自由下落,下落时间与下落高度无关B.骑车人在最初2秒内的平均速度等于最后2秒内的平均速度C.电火花计时器使用直流电源,电压为220VD.小车在A点时的瞬时速度大小为0.6m/s,加速度大小为0.6m/s²二、填空题7.这个钢球下落时间为4秒;钢球是从800米高处落下的。
8.骑车人在最初2秒内的平均速度是2米/秒;最后2秒内的平均速度是7米/秒。
9.电火花计时器使用交流电源,电压为220V。
当电源的频率为50Hz时打点计时器每隔0.02s打一个点,当交流电的频率小于50Hz时,仍按50Hz计算,则测量的速度的数值比真实的速度数值偏小。
10.打A点时瞬时速度的大小为6m/s,小车的加速度的大小是4m/s²。
三、计算题12.起飞时的速度为80米/秒,起飞前滑行的距离为800米。
13.(1)运动员在第1秒内下滑的距离为1.5米。
2)运动员在最后1秒内下滑了3米的距离。
1.一个物体在某一时刻速度很大,但加速度可能为零。
2.一个物体在某一时刻速度可能为零,但加速度可能不为零。
高中物理运动学单元检测题(附答案)一
德钝市安静阳光实验学校《运动学》检测题学号一、选择题1.关于速度和加速度的关系,以下说法中正确的是()A.加速度大的物体,速度一定大B.加速度为零时,速度一定为零C.速度不为零时,加速度一定不为零D.速度不变时,加速度一定为零2、一个物体作匀变速直线运动,下面说法中正确的是:()A. 物体的末速度必与时间成正比B. 物体的位移必与时间的平方成正比C. 物体速度在一段时间内的变化量与这段时间成正比D. 匀加速直线运动,位移和速度随时间增加,匀减速直线运动位移和速度随时间减少3. 根据给出的速度、加速度的正负,对下列运动性质的判断错误的是:()A. v0>0,a<0,物体做加速运动B. v0<0,a<0,物体做加速运动C. v0<0,a=0,物体做减速运动D. v0<0,a>0,物体做加速运动4. 运动物体的加速度方向与速度方向一致,当加速度逐渐减少时,物体的()A. 速度减小,位移增大B. 速度增大,位移减小C. 加速度减为零时速度最大D. 加速度减为零时速度为零5. 一物体作直线运动,前一半位移内的平均速度为3m/s,后一半位移内的平均速度为2m/s,则全部位移内的平均速度大小是()A. 2.3m/sB. 2.5m/sC. 1.2m/sD. 2.4m/s6、某同学身高1.6m,在运动会上他参加跳高比赛,起跳后身体横越过了1.6m高度的横杆,据此可估算出他起跳时竖直向上的速度大约为(g取10m/s2)()A.1.6m/sB.2m/sC.4m/sD.7.2m/s7. 下面四个图分别为四个质点作直线运动的速度—时间图象,在第2秒内,那些质点做加速运动:)8、a、b两物体同时、同地、同向做匀变速直线运动,若加速度相同,初速度不同,则在运动过程中,下列说法正确的是()A.a、b两物体速度之差保持不变B.a、b两物体速度之差与时间成正比C.a、b两物体位移之差与时间成正比s/t)s/m(vD11-12A1-012/tv(m/s))s/m(vB012)s/m(v11CD.a、b两物体位移之差与时间平方成正比 9. 一个作匀加速直线运动的物体,先后经过A 、B 两点时的速度分别为v 1和v 2,则下列结论中正确的是:( )A. 物体经过AB 中点时的速度大小为2/)v (v 2221+B. 物体经过AB 中点时的速度大小为(v 1+v 2)/2C. 物体通过AB 这段位移的平均速度为(v 1+v 2)/2D. 物体通过AB 这段位移所用时间的中间时刻的速度为(v 1+v 2)/2 10. 如图3所示,是A 、B 两质点在一条直线上作直线运动 的v —t 图像,则( ) A. 两个质点一定从同一位置出发 B. 两个质点一定同时由静止开始运动 C. t 2秒末两质点相遇D. 0~t 1秒的时间内B 质点可能在A 质点的后面11. 做匀变速直线运动的物体,它的加速度是a ,在时间t 内位移s ,末速度是v ,则a 、t 、s 、v 之间的关系为:( )A. s= vt+1/2at 2B. s= -vt+1/2at 2C. s= vt-1/2at 2D. s= -vt -1/2at 212. 一物体作匀变速直线运动,若运动时间之比为:t 1:t 2:t 3…=1:2:3…,下面有三种说法:1. 相应运动距离之比一定是s 1:s 2:s 3:…=1:4:9:…2. 相邻相同时间内位移之比一定是s 1:s 2:s 3:…=1:3:5:…3. 相邻相同时间内位移差值一定是a s =∆T 2,其中T 为相同时间间隔,以上说法中正确的是:( )A. 只有3正确B. 都是不正确的C. 只有2、3正确D. 都是正确的二、填空题1. 小球的自由下落可以看成是初速度为零的匀变速直线运动,已知,小球自由下落时在第1秒内通过的位移是5m ,则:(1). 小球1秒内、2秒内、3秒内、……n 秒内的位移之比为____________________(2). 小球第1秒内、第2秒内、第3秒内、……第n 秒内的位移之比为_________________;(3). 小球第1个1米末、第2个1米末、第3个1米末、……第n 个1米末的速度之比为_________________________;(4).小球第1个1米内、第2个1米内、第3个1米内、……第n 个1米内的平均速度之比为______________________;2. 一竖直的矿井深125米,在井口每隔一段相等的时间自由落下一个小球(已知小球自由下落的加速度为10m/s 2),当第11个小球刚从井口开始下落时,第1个小球刚好到达井底,则相邻两个小球开始下落的时间间隔为_______s ;第1个小球落至井底时,第5个小球与第7个小球相距___________m ,小球最后一秒内的位移为 ,小球落地时刻的速度为 。
高中物理力学运动学综合题型
高中物理力学运动学综合题型以下是高中物理力学运动学综合题型:1. 一个物体以2m/s的速度向东运动,另一个物体以3m/s的速度向北运动。
求它们的相对速度大小和方向。
解:相对速度 = |2m/s - 3m/s| = 1m/s,方向为北偏东45度。
2. 一个物体从静止开始沿水平面向西运动,经过5秒钟后,它的速度变为2m/s。
求它的加速度大小和方向。
解:加速度a = |v - u|/t = |2m/s - 0m/s|/5s = 0.4m/s²,方向为向西。
3. 一个物体以10m/s的速度向上抛出,经过4秒钟后,它的高度为20米。
求它的初速度和上升的时间。
解:初速度u = 10m/s,上升的时间t = (v^2 - u^2)/(2g) = (10^2 - 0^2)/(2 × 9.8) = 50秒。
4. 一个物体在水平面上做匀加速直线运动,经过6秒钟后,它的速度从8m/s增加到18m/s。
求它的加速度大小和位移大小。
解:加速度a = (v - u)/t = (18m/s - 8m/s)/6s = 1m/s²,位移x = u + at = 8m/s + 1m/s² × 6s = 14m。
5. 一个物体在斜面上做匀加速直线运动,经过5秒钟后,它的速度从6m/s增加到10m/s。
已知斜面与水平面的夹角为30度,求物体的加速度大小和位移大小。
解:加速度a = (v - u)/t = (10m/s - 6m/s)/5s = 0.8m/s²,位移x = u*t*cosθ + (1/2)at^2*sinθ = 6m/s * 5s * cos30° + (1/2) × 0.8m/s² × (5s)^2 × sin30° =15√3 + 10m(其中θ为斜面与水平面的夹角)。
高一必修1----运动学典型例题
高一必修1----运动学典型例题1.一辆汽车从静止开始由甲地出发,沿平直公路开往乙地,汽车先做匀加速运动,接着做匀减速运动,开到乙地刚好停止,其速度图象如图所示,那么在0~t ₀和t ₀~3t 。
两段时间内()2、骑自行车的人沿着直线从静止开始运动,运动后,在第1s 、2s 、3s 、4s 内,通过的路程分别为1m 、2m 、3m 、4m ,有关其运动的描述正确的是()A.4s 内的平均速度是2.5m/sB.在第3、4s 内平均速度是3.5m/sC.第3s 末的即时速度一定是3m/sD.该运动一定是匀加速直线运动3.汽车以20m/s 的速度做匀速直线运动,刹车后的加速度为5m/s2,那么开始刹车后2s 与开始刹车后6s 汽车通过的位移之比为()A.1:4B.3:5C3:4D.5:95.有一个物体开始时静止在O 点,先使它向东做匀加速直线运动,经过5s ,使它的加速度方向立即改为向西,加速度的大小不改变,再经过5s ,又使它的加速度方向改为向东。
但加速度大小不改变,如此重复共历时20s ,则这段时间内()A.物体运动方向时而向东时而向西B.物体最后静止在O 点C.物体运动时快时慢,一直向东运动D.物体速度一直在增大6.物体做匀变速直线运动,某时刻速度的大小为4m/s ,1s 后速度的大小变为A 加速度的大小之比为3:1B 位移大小比之为 1:3C 平均速度之比为 2:1D 平均速度之比为 1:14.如图所示为甲、乙两物体相对于同一参考系的x-t 图象.下列说法不正确的是( )A. 甲、乙两物体的出发点相距s 。
B.甲、乙两物体都做匀速直线运动C.甲物体比乙物体早出发的时间为t ₀D.甲、乙两物体向同一方向运动10m/s ,关于该物体在这1s 内的位移和加速度大小有下列说法①位移的大小可能小于4m②位移的大小可能大于10m③加速度的大小可能小于4m/s²④加速度的大小可能大于10m/s²其中正确的说法是()A.②④B.①④C.②③D.①③8.物体从斜面顶端由静止开始滑下,经1s 到达中点,则物体从斜面顶端到底端共用时间为()A.√2tsB.√tsC.2tsD.√22ts 9、做匀加速直线运动的物体,先后经过A 、B 两点时的速度分别为v 和7v ,经历的时间为1.则()A.前半程速度增加3.5vB.前t 2时间内通过的位移为11v/4C.后t 2时间内通过的位移为11v 丷D.后半程速度增加3v10.一观察者站在第一节车厢前端,当列车从静止开始做匀加速运动时()A.每节车厢末端经过观察者的速度之比是1:√2:√3:⋯:√nB.每节车厢末端经过观察者的时间之比是1:3:5:…:nC.在相等时间里经过观察者的车厢数之比是1:3:5:…D.在相等时间里经过观察者的车厢数之比是1:2:3:…7、如图所示为一物体做直线运动的 w/图象,根据图象做出的以下判断中,正确的是()A.物体始终沿正方向运动B.物体先沿负方向运动,在t=2s 后开始沿正方向运动C.在t=2s 前物体位于出发点负方向上,在t=2s 后位于出发点正方向上D.在t=2s 时,物体距出发点最远。
高中运动学试题及答案
高中运动学试题及答案一、选择题(每题3分,共30分)1. 一个物体从静止开始做匀加速直线运动,经过时间t后,其速度为v。
若物体继续以这个速度做匀速直线运动,经过时间t后,其位移为:A. vtB. 2vtC. 3vtD. 4vt2. 根据牛顿第二定律,若物体的质量为m,受到的合力为F,则物体的加速度a为:A. F/mB. m/FC. a = FD. a = m3. 一个物体在竖直方向上做自由落体运动,其下落的高度h与时间t的关系为:A. h = 1/2gtB. h = gtC. h = 1/2gt^2D. h = gt^24. 一个物体在水平面上做匀速圆周运动,其线速度大小保持不变,角速度ω与半径r的关系为:A. ω = v/rB. ω = vrC. ω = 1/vD. ω = r/v5. 根据动量守恒定律,若两个物体碰撞后粘在一起,碰撞前后系统的总动量保持不变。
若碰撞前物体1的速度为v1,物体2的速度为v2,碰撞后速度为v,质量分别为m1和m2,则有:A. m1v1 + m2v2 = (m1 + m2)vB. m1v1 - m2v2 = (m1 + m2)vC. m1v1 + m2v2 = m1vD. m1v1 - m2v2 = m1v6. 根据能量守恒定律,若一个物体从高度h自由落体到地面,其重力势能转化为动能,其落地时的动能Ek为:A. Ek = mghB. Ek = 1/2mghC. Ek = mgh/2D. Ek = 2mgh7. 一个物体在斜面上做匀加速直线运动,若斜面的倾角为θ,物体的加速度a与重力加速度g的关系为:A. a = gB. a = gsinθC. a = gcosθD. a = gtanθ8. 一个物体在水平面上做匀减速直线运动,直到静止。
若物体的初始速度为v0,减速度为a,经过时间t后速度变为v,那么:A. v = v0 - atB. v = v0 + atC. v = at - v0D. v = at + v09. 根据牛顿第三定律,作用力与反作用力的关系是:A. 方向相同,大小相等B. 方向相反,大小相等C. 方向相同,大小不等D. 方向相反,大小不等10. 一个物体在水平面上做匀速直线运动,若摩擦力为Ff,物体的质量为m,重力加速度为g,那么物体所受的摩擦力Ff与重力Fg的关系为:A. Ff = FgB. Ff = mgC. Ff = Fg - mgD. Ff = Fg / mg答案:1. A2. A3. C4. A5. A6. B7. B8. A9. B10. B二、填空题(每题2分,共20分)11. 一个物体的加速度是2m/s²,经过4秒后,其速度变化量为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通用推导公式4
∆x=aT2 为设V1第,一第段二位段移位开移始末时端速速度度为为VV02,,第则一有段:位移末段速度 X1=V0T+1/2aT2 X2=V1T+1/2aT2 ∆X=V1T-V0T =T(V1-V0) =aT2
对于V0=0的三个重要推论
1、1s末、2s末、3s末··· V1s:V2s:V3s···=1:2:3:··· S1s:S2s:S3s···=1:22:32:··· V=at S=1/2at2
样,有位移差。
追击相遇问题模型1
前面匀速后面刹车模型
1. 当v1=v2时,A末追上B,则A、B永不相遇,此时两者间有最小距离 2. 当v1=v2时,A恰好追上B,则A、B相遇一次,也是避免相撞刚好追上的临
界条件; 3. 当v1>v2时,A已追上B,则A、B相遇两次,且之后当两者速度相等时,两
者间有最大距离
某课外兴趣小组在探究小车的速度随时间变化规律的实验 中,得到如图所示的实验纸带,实验中打点计时器交流电 的频率为50Hz,纸带前面的几个点较模糊,因此从A点开始 每打五个点取一个计数点,其中B、C、D、E点的对应速度
vB=_____m/s, vC=_____m/s, vD=_____m/s, vE=_____ m/s,由此推得F点的速度vF=_____m/s。小车从B运动到C 的加速度a1=________m/s2,从C运动到D的加速度 a2=_______m/s2,从D运动到E的加速度 a3=________m/s2。
1.固定:把长木板平放在实验桌上,并使定滑轮伸出桌面, 把打点计时器固定在长木板上远离滑轮的一端。
2.连接:纸带穿过打点计时器,连接到小车的尾端,小车另一 端系好细绳,细绳跨过定滑轮,并在细绳的另一端挂上合适 的钩码 。
3.实验:把小车停在靠近打点计时器处,接通电源后,放 开小车,让小车运动,打点计时器就在纸带上打出一系列 的点,关闭电源取下纸带,换上新纸带,重复实验三次。
运动学问题
物理学习的几个能力
理解能力 推理能力 实验能力 应用能力 概念→规律→应用
基本概念
质点 参考系 坐标系 时刻、时间间隔 路程和位移 矢量和标量
速度:平均速度和瞬时速度 速度和速率 加速度 打点计时器
参考系和时间时刻
甲速度向右V甲=2m/s 乙速度向右V乙=6m/s 甲为参考系,乙的速度?
解决方法
基本公式法
1. 以地面为参考系 2. 根据运动学公式,把时间关系渗透到位移关系和速度关
系中列式求解。 图象法 1. 正确画出物体运动的v--t图象 2. 根据图象的斜率、截距、面积的物理意义结合三大关系
求解
解决方法
相对运动法 1. 巧妙选择参考系(如匀速运动的物体) 2. 根据所选参考系分析运动过程、临界状态,根
实验:V-t规律
打点计时器、频闪照片 频率=时间 T一定 公式 ∆x=aT2 误差分析、减小误差 纸带处理、时间间隔、光滑、加速度适当大些、数据处
理
实验:数据处理
• V1=(x1+x2)/2 • a=(V2-V1)/t • ∆x=aT2
实验步骤
实验目的 实验原理 实验器材 实验步骤
在相同的时间间隔T内
S1T:S2T:S3T:···
=1:3:5:···
S=1/2at2
t换成T即可
在相同的位移S所用时间
t1s:t2s:t3s···= 1:√2-1:√3-√2···
S=1/2at2
图像问题S-t图像
斜率 截距 交点
图像问题V-t图像
斜率 面积 截距 交点
自由落体运动
自由落体运动是物体只在重力作用下从静止开始的运动
V0=0,a=g=10m/s2 V=gt,h=gt2/2 竖直上抛运动 V=V0-gt h=V0t-gt2/2 对称性、多解性
练习
练习
如图所示,滑块由斜面底端以D点V0=12m/s速度 滑上光滑斜面,途径A、B。其中A点速度是B点 速度的2倍,由B点经过1s到达C点,此时物体速 度为零。已知AB=4.5m,求滑块在斜面上的加速 度a,B点速度VB ,滑块在斜面上运动的时间t。
一长木板静止在水平地面上,在t=0时刻,一小滑 块以某一速度滑到木板上表面,进过2s滑块和木 板同时停下来,滑块始终在木板上。木板运动的
速度随时间变化的图像如图所示,已知木板和滑 块质量均为0.1kg,重力加速度g取10m/s2,最大静 摩擦力等于滑动摩擦力,根据图像信息解答下面 问题: (1)求出木板和滑块之间的动摩擦因数; (2)滑块滑到木板上的速度; (3)求整个过程中滑块和木板之间的相对位移; (4)求整个过程中滑块和木板之间产生的热量。
基本公式
Vt=V0+at x=V0t+1/2at2
通用的推导公式
vt2-v02=2as
vt2-v02=(v0+at)2-v02
=a2t2+2atv0
=2a(v0t+1/2at2)
=2as
通用的推导公式2
• vt/2=(vo+vt)/2=s/t
如图所示,阴影部分面积为S,则由 梯形面积公式易得:
S=t(vo+vt)/2 由图像易得:Vt/2=(vo+vt)/2
所以vt/2=(vo+vt)/2=s/t
通用公式3
Vx/2=√(v02+vt2)/2
设距离为2x,则vx2-v02=2ax
v2x2-vx2=2ax
vx2-v02=v2x2-vx2
Vx=√(v02+v2x2)/2
对于距离为X有Vx/2=√(v02+vt2)/2
乙为参考系,甲的速度?
3s内 第3s内 3s末
速度、速率、位移、路程
如图所示,甲、乙两人同时从圆形轨道的A点出发,以相同的速率分别沿顺 时针和逆时针方向行走,在C点两人相遇,则以下说法正确的是( )
A.两人从出发到第一次相遇,位移相同,路程不相同 B.两人从出发到第一次相遇,平均速度相同 C.甲在D点、乙在B点时两人速度相同 D.两人在C点相遇时速度相同 E.两人在C点相遇时速率相同
据运动学公式列式求解
练习
.A、B两辆汽车在笔直的公路上同向行驶。当 B车在A车 前84 m处时,B车速度为4 m/s,且正以2 m/s2的加速度 做匀加速运动;经过一段时间后,B车加速度突然变为零。 A车一直以20 m/s的速度做匀速运动。经过12 s后两车相 遇。问B车加速行驶的时间是多少?
如图所示很薄的木板在水平地面上向右滑行,可视为 质点的物块b以水平速度V0从右端向左滑上木板。二 者按原方向一直运动直至分离,分离时木板的速度为 Va,物块的速度为Vb,所有接触面均粗糙,则( )
解决实际问题
第一步:画出运动过程示意图 第二步:选择V-t图像还是S-t图像 第三步:根据题意画图解题
追击与相遇问题
追击与相遇问题的本质:
研究两物体在相同的时刻到达相同的空间位置的问题。 1. 相同的时刻:如果同时运动,则两物体运动时间t相同,
如果两物体一前一后运动,则两物体运动时间t不相同。 2. 相同的空间位置:终点位置相同,注意起始点位置不一
A.V0越大,Va越大 B.木板下表面越粗糙,Vb越小 C.物块质量越小,Va越大 D.木板质量越大,Vb越小。
ma mb μ1 μ2 V1 向左为正方向:
b:V0 -μ1g t Va a:-V1 μ2g+(μ1+μ2)mbg/ma t Vb 相对位移:L
b相对a:
V0+V1 - μ1g-μ2g-(μ1+μ2)mbg/ma t L
追击相遇问题模型2
前面匀速直线运动后面加速追
1. 当 v1=v2 时,A、B距离最大 2. 当两者位移相等时,有 v1=2v2 且A追上B。A追上B所用的时间等于它们
之间达到最大距离时间的两倍
追击相遇问题模型3
汽车过红绿灯,过火车匝道,防止相撞 1. 火车匀速行驶 2. 汽车匀速通过 3. 警戒线距离