金属晶体结构

合集下载

第一章-金属的晶体结构(共118张PPT)可修改全文

第一章-金属的晶体结构(共118张PPT)可修改全文
(3) 不需最小整数化; (4) 〔1 1 1〕
B面:
(1) 该面与z轴平行,因此x=1,y=2, z=∞; (2) 1/x=1,1/y=1/2,1/z=0; (3) 最小整数化1/x=2,1/y=1,1/z=0; (4) 〔2 1 0〕
C面:
(1) 该面过原点,必须沿y轴进行移动,因此x= ∞ ,y=-1,z=∞ (2) 1/x=0,1/y=-1,1/z=0; (3) 不需最小整数化;(4) 〔0 1 0〕
晶胞在三维空间的重复构成点阵
〔4〕晶格常数
在晶胞中建立三维坐标体系, 描述出晶胞的形状与大小
晶胞参数- 晶格常数:a、b、c 棱间夹角:α、β、γ
2 晶系与布拉菲点阵
依据点阵参数 的不同特点划分为七种晶系
(1) 三斜晶系
α≠β≠γ≠90° a≠ b≠ c
复杂单胞 底心单斜
(2) 单斜晶系
α=γ=90°≠β a≠ b≠ c
3 原子半径: r 2 a
4 配位数= 12
4
5 致密度= nv/V=(4×3πr3/4)/a3=0.74
γ-Fe(912~1394℃)、Cu、Ni、Al、Ag 等
——塑性较高
面心立方晶胞中原子半径与晶 格常数的关系
a
r 2a 4
(三)密排六方结构〔 h.c.p〕 〔 了解〕
金属:Zn、Mg、Be、α-Ti、α-Co等
具有光泽:吸收了能量从被激发态回到基态时所 产生的幅射;
良好的塑性:在固态金属中,电子云好似是 一种流动的万能胶,把所有的正离子都结合 在一起,所以金属键并不挑选结合对象,也 无方向性。当一块金属的两局部发生相对位 移时,金属正离子始终“浸泡〞在电子云中, 因而仍保持着金属键结合。这样金属便能经 受较大的变形而不断裂。

金属的晶体结构

金属的晶体结构

金属的晶体结构
晶格结构
金属的晶格结构可以分为几种常见类型:
1. 立方晶格:包括面心立方晶格和体心立方晶格两种。

面心立方晶格中,每个原子占据正方形的每个面的中心和每个角的一半位置。

体心立方晶格中,每个原子位于立方体的中心。

2. 六角密排晶格:每个原子占据六边形密集堆积的每个角和每个孔的一半位置。

3. 其他晶格:还有一些金属存在其他的非常规晶格结构,如密排立方和简单立方等。

应用
金属的晶体结构对其性能和性质具有重要影响。

通过改变金属
的晶体结构,可以调节金属的硬度、强度、导电性、热导性等特性。

同时,晶体结构也决定了金属的晶界、位错等缺陷的分布和性质。

在金属加工中,了解金属的晶体结构可以帮助工程师选择合适
的加工方法和工艺参数,以获得所需的金属性能。

结论
金属的晶体结构是金属固体内原子或离子的有序排列方式。


同的晶格结构决定了金属的性能和性质。

通过了解金属的晶体结构,可以更好地设计和加工金属材料。

金属的晶体结构

金属的晶体结构

面心立方晶胞特征: ①晶格常数:a=b=c,α=β=γ=90° ②晶胞原子数:
③原子半径
面心立方晶格示意图
具有面心立方晶格 的金属有铝、铜、镍、 金、银、γ-铁等。
④致密度:0.74(74%)
第一节 金属的晶体结构
(2)密排六方晶格(胞)
金属原子分布在立方体的八个角上和六个面的中心。 面中心的原子与该面四个角上的原子紧靠。
体心立方晶胞特征: ①晶格常数:a=b=c,α=β=γ=90° ②晶胞原子数:一个体心立方晶胞所 含的原子数为2个。
体心立方晶格示意图 具有体心立方晶格
的金属有钼、钨、钒、 α-铁等。
第一节 金属的晶体结构
(1)体心立方晶格(胞)
体心立方晶胞特征: ③原子半径:晶胞中相距最近的两个原子之间距离的一半,或晶胞中原子 密度最大的方向上相邻两原子之间距离的一半称为原子半径(r原子)。
1.增大金属的过冷度 原理:一定体积的液态金属中,若成核速率N越大,则结晶后的晶粒
越多,晶粒就越细小;晶体长大速度G越快,则晶粒越粗。 随着过冷度的增加,形核速率和长大速度均会增大。但当过冷度超
过一定值后,成核速率和长大速度都会下降。对于液体金属,一般不会 得到如此大的过冷度,通常处于曲线的左边上升部分。所以,随着过冷 度的增大,成核速率和长大速度都增大,但前者的增大更快,因而比值 N/G也增大,结果使晶粒细化。
二、纯金属的晶体结构
晶体中原子(离子或分子)规则排列的方式称为晶体结构。 通过金属原子(离子)的中心划出许多空间直线,这些直线将形成空间格架。 这种格架称为晶格。晶格的结点为金属原子(或离子)平衡中心的位置。
晶体
晶格
第一节 金属的晶体结构
二、纯金属的晶体结构

金属晶体的常见结构

金属晶体的常见结构

金属晶体的常见结构
金属晶体的常见结构有以下几种:
1. 面心立方(FCC)结构:在这种结构中,金属原子分别位于正方形面的角点和中心,以及正方形面的中心。

每个原子都与12个邻近原子相接触,形成一个紧密堆积的结构。

典型的例子是铜、铝和金。

2. 体心立方(BCC)结构:在这种结构中,金属原子分别位于正方体的角点和正方体的中心。

每个原子都与8个邻近原子相接触,形成一个比较紧密的结构。

铁和钨是常见的具有BCC结构的金属。

3. 密排六方(HCP)结构:在这种结构中,金属原子以一定的方式排列,形成六边形的密排层,其中每个层的原子位于前一层原子的空隙上。

这些层之间存在垂直堆叠,形成一个紧密堆积的结构。

典型的例子是钛和锆。

除了以上三种常见的金属晶体结构外,还有其他特殊的结构,如体心立方密堆积(BCC HCP)和面心立方密堆积(FCC HCP)等。

这些不同的结构对于金属的性质和行为有着重要的影响。

1。

常见的晶体结构

常见的晶体结构
Ti4+离子填充1/2八面体空隙;
晶胞分子数:Z=2;
晶胞中:2个八面体空隙 4个四面体空隙;
(2)质点坐标:
111 Ti : 000, 222
4
1 1 1 1 1 1 O : uuo, 1 u 1 u 0, u u , u u 2 2 2 2 2 2
1、金刚石结构
——立方晶系
(1)金刚石是面心立方格子
(2)碳原子位于立方体的8个
顶点,6个面心及立方体内4个
小立方体的中心。 (3)单位晶胞原子数:n=8
(4)晶胞内各原子的空间坐标: 000, ½ ½ 0, ½ 0 ½ , 0 ½ ½ , ¼ ¼ ¾ , ¼ ¾ ¼, ¾ ¼ ¼ , ¾ ¾ ¾
体结构中,每一个负离子电荷数等于或近似等于相邻正离 子分配给这个负离子的静电键强度的总和,其偏差1/4 价”。
静电键强度
S=
正离子电荷数 Z , 正离子配位数 n
Z Z Si i ni i i
则负离子电荷数

电价规则有两个用途: 其一,判断晶体是否稳定;
其二,判断共用一个顶点的多面体的数目。
离子半径、电中性、阴离子多面体之间的连接
1、NaCl型结构
(1)密堆积情况: Cl- 离子面心立方堆积; Na+离子填充八面体空隙;
——立方晶系
晶胞分子数:Z=4;
晶胞中:4个八面体空隙
8个四面体空隙;
Na+离子填充全部八面体空隙
(2)质点坐标:
11 1 1 11 Cl : 000 , 0, 0 ,0 22 2 2 22
连接(2个配位多面体共用一个顶点),或者和另外3个[MgO6]八面体

常见九种典型的晶体结构

常见九种典型的晶体结构

二八面体结构的O层
每个配位离子被两个八 面体共用,分给每个八 面体样子-1/2价电荷,6 个共-3价,因此八面体 阳离子为+3价。
结构单元层及基本类型 T层和O层的不同堆积方式构成了层状结构硅酸盐的结构单元层: 1∶1型(TO型):1层T层和1层O层,代表矿物是高岭石。 2∶1型(TOT型):2层T层夹1层O层,代表矿物是滑石。
LiMn2O4锂电材料
9 层状硅酸盐结构
四面体层(T)和八面体层(O) T层 [SiO4]共3个角顶成六方网层,第4个角顶(活性氧)朝向 同一方向;在六方网孔中心、与活性氧同高度处存在一个OH。
半径 1.3A
O层 两个T层活性氧相向、错开一定距离做紧密堆积,阳离 子充填八面体孔隙,形成O层。
反萤石型结构
球键图
阳离子四面体配位 阴离子立方体配位
反萤石型结构可看作:阴离子做立方最紧密堆积,阳离 子充填在全部的四面体空隙中。
结构类型 物质名称 萤石(CaF2)
萤石型结 氯化锶(SrCl2)

氯化钡(BaCl2)
氟化铅(PbF2)
氧化钾(K2O)
反萤石型 结构
氧化钠(Na2O)
氧化锂(Li2O)
物质名称 化学式
a0/nm
H D / g/cm3
颜色 熔点(℃)
主要用途
特点
金刚石
单晶硅

α锡
C
Si
Ge
Sn
0.3567 0.5431 0.5623
0.6489
10
7
6
5
3.51
2.336
5.47
5.77
无色
黑色
淡灰色
白色
3550

金属的晶体结构

金属的晶体结构
不管原子以哪种方式进行堆垛,在原子刚球之间都必然存在 间隙,这些间隙对金属的性能以及形成合金后的晶体结构都 有很重要的影响。分析间隙的数量、大小及位置对了解材料 的相结构、扩散、相变等问题都很重要。
间隙半径:间隙中所能容纳的最大圆球的半径。
体心立方晶格中的间隙
八面体间隙: 6个×0.067a
四面体间隙: 12个×0.126a
体心立方晶格(body-centred cubic)
体心立方金属有:-Fe、Cr、V、W、Mo 等30种 。体心立方晶胞Z Nhomakorabeac
a a 2r
a
bY
X
晶格常数:a=b=c; ===90
晶胞原子数: 2
1+8*1/8=2
原子半径:
致密度:0.68
致密度= Va/Vc,其中 Vc:晶胞体积a3 Va=nV1 =24r3/3 配位数:8 配位数越大,原子排列 越紧密。
四、金属晶体中的晶面和晶向
Z
c
b a
晶面─晶体点阵中,通 过阵点的任一平面,代 Y 表晶体的原子平面,称 为晶面。
第1章 金属的晶体结构
1.1 金属 1.2 金属的晶体结构 1.3 实际金属的晶体结构
本章重点与难点
• ①金属键;建立金属原子的结构模型 。 • ②建立晶格和晶胞的概念;最常见的晶体结构:
体心立方结构、面心立方结构、密排六方结构; 立方晶系的晶向指数和晶面指数。 • ③晶体中存在的缺陷:点缺陷、线缺陷(位错)、 面缺陷。
晶胞的棱边长度一般称为晶格常数或点阵常数,用a、b、 c表示。晶胞的棱间夹角叫轴间夹角。用α、β、γ表示。
2、七大晶系和十四种布拉菲点阵
依据空间点阵的基本特点划分为七大晶系:

金属的晶体结构

金属的晶体结构

金属的晶体结构1、金属的晶体结构金属在固态下原子呈有序、有规则排列。

晶体有规则的原子排列,主要是由于各原子之间的相互吸引力与排斥力相平衡。

晶体特点:(1)有固定熔点,(2)原子呈规则排列,宏观断口有一定形态且不光滑(3)各向异性,由于晶体在不同方向上原子排列的密度不同,所以晶体在不同方向上的性能也不一样。

三种常见的晶格及分析(1)体心立方晶格:铬,钒,钨,钼,α-Fe。

1/8*8+1=2个原子(2)面心立方晶格:铝,铜,铅,银,γ-Fe。

1/8*8+1/2*6=4个原子(3)密排六方晶格:镁,锌。

6个原子•用以描述原子在晶体中排列的空间格子叫晶格体心立方晶格面心立方晶格密排六方晶格2、金属的结晶结晶的概念:金属材料通常需要经过熔炼和铸造,要经历有液态变成固态的凝固过程。

金属由原子的不规则排列的液体转变为规则排列的固体过程称为结晶。

结晶过程:不断产生晶核和晶核长大的过程冷却曲线:过冷现象:实际上有较快的冷却速度。

过冷度:理论结晶温度与实际结晶温度之差,过冷度。

金属结晶后晶粒大小一般来说,晶粒越细小,材料的强度和硬度越高,塑性韧性越好为了提高金属的力学性能,必须控制金属结晶后晶粒的大小。

细化晶粒的根本途径:控制形核率及长大速度。

细化晶粒的方法:(1)增大过冷度,增加晶核数量(2)加入不熔物质作为人工晶核(3)机械振动、超声波振动和电磁振动金屬晶體缺陷:金屬材料以肉眼觀察其外表似乎是完美的;實際不然,金屬晶體含有許多缺陷,這些缺陷可分類為點缺陷、線缺陷及面缺陷。

這些缺陷對金屬材料的性質有很重要的影響。

點缺陷:金屬最簡單形式的點缺陷就是空孔空孔是最簡單形式的點缺陷,原子在結晶格子位置上消失间隙原子置代原子線缺陷:線缺陷一般通稱為「差排」(dislocation) 。

差排的產生主要與金屬在機機加工時的塑性變形有關;亦即金屬塑性變形量愈大,差排也就愈多。

面缺陷金屬的缺陷有:外表面、晶粒界面(簡稱晶界)及疊差等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原子半径r= 3 a 4
配位数CN=8 八面体空隙和四面体
空隙
13
体心立方空隙
14
体心立方点阵四面体间隙
15
体心立方点阵八面体间隙
16
致密度
ξ=
nv
2 4r3 3
V
a3
2 4 (
3 a )3
34
a3
0 . 68
17
密排六方晶体结构
结构特点:质点位于角顶、上下底面面心及 体内
典型物质:Mg、Zn、Cd等
18
密排六方晶体结构几何特征
晶胞原子数n=1212136 62
原子半和四
面体空隙
19
密排六方空隙
20
密排六方点阵四面体间隙
21
密排六方点阵八面体间隙
22
致密度
ξ=
nv V
6 4r3 3
61a 3a
8a
22
3
6 4 (1 a )3
32 3 2a3
26
4.金属键的结构特征及金属的特性
1)金属或合金在组成上不遵守定比或倍比定律
金属键和离子键都没有方向性和饱和性。在离子晶体中, 为了保持电中性,正负离子在数目上具有一定比例,即离子 晶体中的正负离子在数目上符合化学中的定比或倍比定律。 在金属或合金中,电中性并不取决于各种原子的相对数目, 因此,金属往往很容易形成成分可变、不遵守定比或倍比定 律的金属化合物 。如: Cu5Zn8、 MgCu2等
IB族的铜、银、金在其最外层电子4s1、5s1、6s1内都有d10 的电子构型,即d轨道五个方向全被电子占满。这些不参与成键的 d轨道在原子进一步靠近时产生斥力,使原子不能进一步接近,因 此,接触距离较大的A1型结构就比较稳定。
25
A1和A3型最紧密堆积结构之间也有差异。在两种结构中 每个原子周围均有12个最近邻原子,其距离为 r;有6个次近邻 原子,其距离为 2 r;从第三层近邻起,两种堆积有一定差别。 根据计算,这种差别可以导致六方最紧密堆积的自由焓比面心 立方最紧密堆积的自由焓低0.01%左右。所以,有些金属常温 下采用六方最紧密堆积,而在高温下由于A1的无序性比A3大, 即A1型比A3型具有更高的熵值,所以由A3型转变到A1型时,熵 变S0。温度升高,TS增大,G=H-TS0,因此,高 温下A1型结构比较稳定。
30
在金属晶体中,其延展性也有差异。铜、银、金等金属的延展 性非常好,这是因为铜、银、金晶体中存在完整的d电子层,d电子层 有互斥作用,使s电子重叠时不能进一步靠近,从而形成接触距离较 大的A1型结构。而A1型结构比A2、A3型结构和其它更复杂的结构有更 多的滑移系统。A1型金属具有12个滑移系统,即4个{111}面、3个滑 移方向<110>,故共有4×3=12个滑移系统。该面上原子堆积密度最 大,相互平行的原子面间距离也最大。非金属晶体,如刚玉(-Al2O3) 只有1个滑移面(001)和2个滑移方向,塑性变形受到严格限制,表 现出脆性。
6
7
面心立方空隙
8
面心立方点阵四面体间隙
9
面心立方点阵八面体间隙
10
致密度
ξ= nv V
4 4r3 3
a3
4 4 (
2 a )3
34
a3
0 . 74
11
体心立方晶体结构
结构特点:质点位于角顶及体心 典型物质:Cr、V、Mo等
12
体心立方晶体结构几何特征
晶胞原子数n= 81 1 2 8
28
(a)变形前
(b)变形后
单晶试棒在拉伸应力作用下的变化(宏观)
29
晶体中的原子面在外力作用下能否顺利实现滑移,取决于 晶体中滑移系统(由一个滑移面和一个滑移方向构成一个滑 移系统)的多少。滑移系统越多,越容易产生塑性变形。反 之,滑移系统越少,材料的脆性越大。
典型的金属结构,由于结合力没有方向性和饱和性、配位 数高、结构简单等原因,易产生滑移。共价晶体(如金刚石) 结构,要使滑移方向、键角方向、滑移周期都刚好一致是比 较困难的。在离子晶体中,虽然离子键也没有方向性和饱和 性,但滑移过程中在许多方向上有正负离子吸引、相邻同号 离子排斥,使滑移过程难以进行。
3
(a)面心立方 (A1型)
(b)体心立方 (A2型)
常见金属晶体的晶胞结构
(c)密排六方 (A3型)
4
(A)面心立方晶体结构
结构特点:质点位于角顶及面心 典型物质:Al、Cu、Ag、Au等
5
面心立方晶体结构几何特征
晶胞原子数n= 8816124
原子半径r=
2a 4
配位数CN=12
八面体空隙和四 面体空隙
2
2.常见金属晶体结构
典型金属的晶体结构是最简单的晶体结构。由于金属键的 性质,使典型金属的晶体具有高对称性,高密度的特点。常见
的典型金属晶体是面心立方、体心立方和密排六方三种
晶体,其晶胞结构如图所示。另外,有些金属由于其键的性质 发生变化,常含有一定成分的共价键,会呈现一些不常见的结 构。锡是A4型结构(与金刚石相似),锑是A7型结构等。
0 . 74
23
24
3.金属原子形成晶体时结构上的差异
为什么有的金属形成A1型结构,而有的形成A2或A3型结构?
周期表中IA族的碱金属原子最外层电子皆为ns1,为了实现
最大程度的重叠,原子之间相互靠近一些较为稳定,配位数为8的 一圈其键长比配位数为12的一圈之键长短一些,即A2型(体心堆积) 结构。
27
2) 金属或合金在力学性能上表现出良好的塑性和延展性 金属的范性变形起因于金属中的原子面在外力作用下
沿某个特定原子面的某个特定方向的滑移。实验发现,铝 晶体受拉力作用后,晶体变长,并不是原子间距离增大, 而是晶体中各部分沿(111)晶面在[110]方向上移动了原 子间距的整数倍(详细情况请参阅位错的运动)。所以, 晶体虽然变长,但晶体中原子间距仍然保持原来的周期性 而未改变。
第三节 单质晶体结构
同种元素组成的晶体称为单质晶体。 一、金属晶体的结构 二、非金属元素单质的晶体结构
1
一、金属晶体的结构
1.金属中原子紧密堆积的化学基础
由于金属元素的最外层电子构型多数属于S型,而S 型轨道没有方向性,它可以与任何方向的相邻原子的S轨道 重叠,相邻原子的数目在空间几何因素允许的情况下并无严 格的限制,因此,金属键既没有方向性,也没有饱和性。当 由数目众多的S轨道组成晶体时,金属原子只有按紧密的方 式堆积起来,才能使各个S轨道得到最大程度的重叠,使晶 体结构最为稳定。
相关文档
最新文档