热力学统计物理 课后习题 答案09571
热力学统计物理第四版汪志诚答案
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。
解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为 11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p - 即000p V pV C T T ==(常量), 或.p VC T = (5)式(5)就是由所给11,T T pακ==求得的物态方程。
确定常量C 需要进一步的实验数据。
1.8 满足n pV C =的过程称为多方过程,其中常数n 名为多方指数。
热力学和统计物理的答案解析第二章
第二章 均匀物质的热力学性质2.1 已知在体积保持不变时,一气体的压强正比于其热力学温度. 试证明在温度保质不变时,该气体的熵随体积而增加.解:根据题设,气体的压强可表为(),p f V T = (1)式中()f V 是体积V 的函数. 由自由能的全微分 dF SdT pdV =--得麦氏关系.T VS p V T ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 将式(1)代入,有().T VS p p f V V T T ∂∂⎛⎫⎛⎫=== ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 由于0,0p T >>,故有0T S V ∂⎛⎫>⎪∂⎝⎭. 这意味着,在温度保持不变时,该气体的熵随体积而增加.2.2 设一物质的物态方程具有以下形式:(),p f V T =试证明其内能与体积无关.解:根据题设,物质的物态方程具有以下形式:(),p f V T = (1)故有().Vp f V T ∂⎛⎫= ⎪∂⎝⎭ (2) 但根据式(2.2.7),有,T VU p T p V T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 所以()0.TU Tf V p V ∂⎛⎫=-= ⎪∂⎝⎭ (4) 这就是说,如果物质具有形式为(1)的物态方程,则物质的内能与体积无关,只是温度T 的函数.2.3 求证: ()0;HS a p ⎛⎫∂< ⎪∂⎝⎭ ()0.U S b V ∂⎛⎫> ⎪∂⎝⎭解:焓的全微分为.dH TdS Vdp =+ (1)令0dH =,得0.HS Vp T ⎛⎫∂=-< ⎪∂⎝⎭ (2) 内能的全微分为.dU TdS pdV =- (3)令0dU =,得0.U S p V T∂⎛⎫=> ⎪∂⎝⎭ (4)2.4 已知0T UV ∂⎛⎫= ⎪∂⎝⎭,求证0.TU p ⎛⎫∂= ⎪∂⎝⎭ 解:对复合函数(,)(,(,))U T P U T V T p = (1)求偏导数,有.T T TU U V p V p ⎛⎫⎛⎫∂∂∂⎛⎫= ⎪⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (2) 如果0TU V ∂⎛⎫=⎪∂⎝⎭,即有0.TU p ⎛⎫∂= ⎪∂⎝⎭ (3) 式(2)也可以用雅可比行列式证明:(,)(,)(,)(,)(,)(,)T U U T p p T U T V T V T p T ⎛⎫∂∂= ⎪∂∂⎝⎭∂∂=∂∂.T TU V V p ⎛⎫∂∂⎛⎫=⎪ ⎪∂∂⎝⎭⎝⎭ (2)2.5 试证明一个均匀物体的在准静态等压过程中熵随体积的增减取决于等压下温度随体积的增减.解:热力学用偏导数pS V ∂⎛⎫⎪∂⎝⎭描述等压过程中的熵随体积的变化率,用pT V ∂⎛⎫⎪∂⎝⎭描述等压下温度随体积的变化率. 为求出这两个偏导数的关系,对复合函数(,)(,(,))S S p V S p T p V == (1)求偏导数,有.p p p p pC S S T T V T V T V ∂∂∂∂⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (2) 因为0,0p C T >>,所以p S V ∂⎛⎫⎪∂⎝⎭的正负取决于pT V ∂⎛⎫⎪∂⎝⎭的正负. 式(2)也可以用雅可经行列式证明:(,)(,)(,)(,)(,)(,)P S S p V V p S p T p T p V p ∂∂⎛⎫= ⎪∂∂⎝⎭∂∂=∂∂P PS T T V ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2)2.6 试证明在相同的压强降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程中的温度降落.解:气体在准静态绝热膨胀过程和节流过程中的温度降落分别由偏导数S T p ⎛⎫∂ ⎪∂⎝⎭和HT p ⎛⎫∂ ⎪∂⎝⎭描述. 熵函数(,)S T p 的全微分为 .P TS S dS dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 在可逆绝热过程中0dS =,故有.T P p SPS V T p T T Sp C T ⎛⎫∂∂⎛⎫⎪ ⎪∂⎛⎫∂∂⎝⎭⎝⎭=-= ⎪∂∂⎛⎫⎝⎭ ⎪∂⎝⎭ (1) 最后一步用了麦氏关系式(2.2.4)和式(2.2.8).焓(,)H T p 的全微分为.P TH H dH dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 在节流过程中0dH =,故有.T PpH PH V T V p T T H p C T ⎛⎫∂∂⎛⎫- ⎪ ⎪∂⎛⎫∂∂⎝⎭⎝⎭=-= ⎪∂∂⎛⎫⎝⎭ ⎪∂⎝⎭ (2) 最后一步用了式(2.2.10)和式(1.6.6). 将式(1)和式(2)相减,得0.pSH T T V p p C ⎛⎫⎛⎫∂∂-=> ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 所以在相同的压强降落下,气体在绝热膨胀中的温度降落大于节流过程中的温度降落. 这两个过程都被用来冷却和液化气体.由于绝热膨胀过程中使用的膨胀机有移动的部分,低温下移动部分的润滑技术是十分困难的问题,实际上节流过程更为常用. 但是用节流过程降温,气体的初温必须低于反转温度. 卡皮查(1934年)将绝热膨胀和节流过程结合起来,先用绝热膨胀过程使氦降温到反转温度以下,再用节流过程将氦液化.2.7 实验发现,一气体的压强p 与体积V 的乘积以及内能U 都只是温度的函数,即(),().pV f T U U T ==试根据热力学理论,讨论该气体的物态方程可能具有什么形式.解:根据题设,气体具有下述特性:(),pV f T = (1)().U U T = (2)由式(2.2.7)和式(2),有0.T VU p T p V T ∂∂⎛⎫⎛⎫=-= ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 而由式(1)可得.Vp T df T T V dT ∂⎛⎫= ⎪∂⎝⎭ (4) 将式(4)代入式(3),有,dfTf dT= 或.df dT f T= (5) 积分得ln ln ln ,f T C =+或,pV CT = (6)式中C 是常量. 因此,如果气体具有式(1),(2)所表达的特性,由热力学理论知其物态方程必具有式(6)的形式. 确定常量C 需要进一步的实验结果.2.8 证明2222,,p V T Vp TC C p V T T V T p T ∂⎛⎫⎛⎫⎛⎫∂∂∂⎛⎫==- ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭并由此导出0020222,.VV VV Vp p p p pp C C T dV T p C C T dp T ⎛⎫∂=+ ⎪∂⎝⎭⎛⎫∂=- ⎪∂⎝⎭⎰⎰根据以上两式证明,理想气体的定容热容量和定压热容呈只是温度T 的函数.解:式(2.2.5)给出.V VS C T T ∂⎛⎫= ⎪∂⎝⎭ (1) 以T ,V 为状态参量,将上式求对V 的偏导数,有2222,V T VC S S S T T T V V T T VT ⎛⎫⎛⎫⎛⎫∂∂∂∂⎛⎫===⎪ ⎪ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (2) 其中第二步交换了偏导数的求导次序,第三步应用了麦氏关系(2.2.3). 由理想气体的物态方程pV nRT =知,在V 不变时,p 是T 的线性函数,即220.Vp T ⎛⎫∂= ⎪∂⎝⎭ 所以 0.V TC V ∂⎛⎫= ⎪∂⎝⎭这意味着,理想气体的定容热容量只是温度T 的函数. 在恒定温度下将式(2)积分,得0202.VV VV Vp C C T dV T ⎛⎫∂=+ ⎪∂⎝⎭⎰ (3) 式(3)表明,只要测得系统在体积为0V 时的定容热容量,任意体积下的定容热容量都可根据物态方程计算出来.同理,式(2.2.8)给出.p pS C T T ∂⎛⎫= ⎪∂⎝⎭ (4)以,T p 为状态参量,将上式再求对p 的偏导数,有2222.p p TC S S S T T T p p T T p T ∂⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂===- ⎪ ⎪ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (5)其中第二步交换了求偏导数的次序,第三步应用了麦氏关系(2.2.4). 由理想气体的物态方程pV nRT =知,在p 不变时V 是T 的线性函数,即220.pV T ⎛⎫∂= ⎪∂⎝⎭ 所以0.p TC p ∂⎛⎫= ⎪∂⎝⎭ 这意味着理想气体的定压热容量也只是温度T 的函数. 在恒定温度下将式(5)积分,得0202.pp pp pV C C T dp T ⎛⎫∂=+ ⎪∂⎝⎭⎰ 式(6)表明,只要测得系统在压强为0p 时的定压热容量,任意压强下的定压热容量都可根据物态方程计算出来.2.9 证明范氏气体的定容热容量只是温度T 的函数,与比体积无关.解:根据习题2.8式(2)22,V T VC p T V T ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 范氏方程(式(1.3.12))可以表为22.nRT n a p V nb V=-- (2) 由于在V 不变时范氏方程的p 是T 的线性函数,所以范氏气体的定容热容量只是T 的函数,与比体积无关.不仅如此,根据2.8题式(3)0202(,)(,),VV V V Vp C T V C T V T dV T ⎛⎫∂=+ ⎪∂⎝⎭⎰ (3)我们知道,V →∞时范氏气体趋于理想气体. 令上式的0V →∞,式中的0(,)V C T V 就是理想气体的热容量. 由此可知,范氏气体和理想气体的定容热容量是相同的.顺便提及,在压强不变时范氏方程的体积V 与温度T 不呈线性关系. 根据2.8题式(5)22,V T VC p V T ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 这意味着范氏气体的定压热容量是,T p 的函数.2.10 证明理想气体的摩尔自由能可以表为,,00,002ln ln V m m V m m m m V m m m mC F C dT U T dT RT V TS TdTT C dT U TS RT V T=⎰+-⎰--=-⎰⎰+--解:式(2.4.13)和(2.4.14)给出了理想气体的摩尔吉布斯函数作为其自然变量,T p 的函数的积分表达式. 本题要求出理想气体的摩尔自由能作为其自然变量,m T V 的函数的积分表达式. 根据自由能的定义(式(1.18.3)),摩尔自由能为,m m m F U TS =- (1)其中m U 和m S 是摩尔内能和摩尔熵. 根据式(1.7.4)和(1.15.2),理想气体的摩尔内能和摩尔熵为,0,m V m m U C dT U =+⎰ (2),0ln ,V m m m m C S dT R V S T=++⎰(3)所以,,00ln .V m m V m m m m C F C dT T dT RT V U TS T=--+-⎰⎰(4)利用分部积分公式 ,xdy xy ydx =-⎰⎰令,1,,V m x Ty C dT ==⎰可将式(4)右方头两项合并而将式(4)改写为,002ln .m V mm m m dTF T C dT RT V U TS T=--+-⎰⎰ (5)2.11 求范氏气体的特性函数m F ,并导出其他的热力学函数. 解:考虑1mol 的范氏气体. 根据自由能全微分的表达式(2.1.3),摩尔自由能的全微分为,m m m dF S dT pdV =-- (1)故2,m m m m TF RT ap V V b V ⎛⎫∂=-=-+ ⎪∂-⎝⎭ (2) 积分得()(),ln ().m m m maF T V RT V b f T V =---+ (3) 由于式(2)左方是偏导数,其积分可以含有温度的任意函数()f T . 我们利用V →∞时范氏气体趋于理想气体的极限条件定出函数()f T . 根据习题2.11式(4),理想气体的摩尔自由能为,,00ln .V m m V m m m m C F C dT dT RT V U TS T=--+-⎰⎰(4)将式(3)在m V →∞时的极限与式(4)加以比较,知,,00().V m V m m m C f T C dT T dT U TS T=-+-⎰⎰(5)所以范氏气体的摩尔自由能为 ()(),,00,ln .V m m m V m m m m mC aF T V C dT T dT RT V b U TS TV =----+-⎰⎰(6) 式(6)的(),m m F T V 是特性函数范氏气体的摩尔熵为(),0ln .V m mm m m C F S dT R V b S T T∂=-=+-+∂⎰ (7)摩尔内能为,0.m m m V m m maU F TS C dT U V =+=-+⎰ (8)2.12 一弹簧在恒温下的恢复力X 与其伸长x 成正比,即X Ax =-,比例系数A 是温度的函数. 今忽略弹簧的热膨胀,试证明弹簧的自由能F ,熵S 和内能U 的表达式分别为()()()()()()2221,,0,2,,0,21,,0.2F T x F T Ax x dAS T x S T dT dA U T x U T A T x dT =+=-⎛⎫=+- ⎪⎝⎭ 解:在准静态过程中,对弹簧施加的外力与弹簧的恢复力大小相等,方向相反. 当弹簧的长度有dx 的改变时,外力所做的功为.dW Xdx =- (1)根据式(1.14.7),弹簧的热力学基本方程为.dU TdS Xdx =- (2)弹簧的自由能定义为,F U TS =-其全微分为.dF SdT Xdx =--将胡克定律X Ax =-代入,有,dF SdT Axdx =-+ (3)因此.TF Ax x ∂⎛⎫= ⎪∂⎝⎭ 在固定温度下将上式积分,得()()0,,0xF T x F T Axdx =+⎰()21,0,2F T Ax =+(4) 其中(),0F T 是温度为T ,伸长为零时弹簧的自由能.弹簧的熵为()21,0.2F dAS S T x T dT∂=-=-∂ (5) 弹簧的内能为()21,0.2dA U F TS U T A T x dT ⎛⎫=+=+- ⎪⎝⎭(6) 在力学中通常将弹簧的势能记为21,2U Ax =力学 没有考虑A 是温度的函数. 根据热力学,U 力学是在等温过程中外界所做的功,是自由能.2.13 X 射线衍射实验发现,橡皮带未被拉紧时具有无定形结构;当受张力而被拉伸时,具有晶形结构. 这一事实表明,橡皮带具有大的分子链.(a )试讨论橡皮带在等温过程中被拉伸时,它的熵是增加还是减少;(b )试证明它的膨胀系数1ST L L α∂⎛⎫= ⎪∂⎝⎭是负的.解:(a )熵是系统无序程度的量度.橡皮带经等温拉伸过程后由无定形结构转变为晶形结构,说明过程后其无序度减少,即熵减少了,所以有0.TS L ∂⎛⎫< ⎪∂⎝⎭ (1) (b )由橡皮带自由能的全微分dF SdT JdL =-+可得麦氏关系.T LS J L T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 综合式(1)和式(2),知0.LJ T ∂⎛⎫> ⎪∂⎝⎭ (3)由橡皮带的物态方程(),,0F J L T =知偏导数间存在链式关系1,L J TJ T L T L J ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 即.J L TL J L T T J ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (4) 在温度不变时橡皮带随张力而伸长说明0.TL J ∂⎛⎫> ⎪∂⎝⎭ (5) 综合式(3)-(5)知0,JL T ∂⎛⎫< ⎪∂⎝⎭ 所以橡皮带的膨胀系数是负的,即10.JL L T α∂⎛⎫=< ⎪∂⎝⎭ (6)2.14 假设太阳是黑体,根据下列数据求太阳表面的温度;单位时间内投射到地球大气层外单位面积上的太阳辐射能量为3211.3510J m s --⨯⋅⋅(该值称为太阳常量),太阳的半径为86.95510m ⨯,太阳与地球的平均距离为111.49510m ⨯.解:以s R 表示太阳的半径. 顶点在球心的立体角d Ω在太阳表面所张的面积为2s R d Ω. 假设太阳是黑体,根据斯特藩-玻耳兹曼定律(式(2.6.8)),单位时间内在立体角d Ω内辐射的太阳辐射能量为42.s T R d Ωσ (1)单位时间内,在以太阳为中心,太阳与地球的平均距离se R 为半径的球面上接受到的在立体角d Ω内辐射的太阳辐射能量为321.3510.se R d Ω⨯令两式相等,即得132421.3510.ses R T R σ⎛⎫⨯⨯= ⎪⎝⎭(3)将,s R σ和se R 的数值代入,得5760.T K ≈2.15 计算热辐射在等温过程中体积由1V 变到2V 时所吸收的热量. 解:根据式(1.14.3),在可逆等温过程中系统吸收的热量为.Q T S =∆ (1)式(2.6.4)给出了热辐射的熵函数表达式34.3S aT V =(2) 所以热辐射在可逆等温过程中体积由1V 变到2V 时所吸收的热量为()4214.3Q aT V V =- (3)2.16 试讨论以平衡辐射为工作物质的卡诺循环,计算其效率. 解:根据式(2.6.1)和(2.6.3),平衡辐射的压强可表为41,3p aT = (1) 因此对于平衡辐射等温过程也是等压过程. 式(2.6.5)给出了平衡辐射在可逆绝热过程(等熵过程)中温度T 与体积V 的关系3().T V C =常量 (2)将式(1)与式(2)联立,消去温度T ,可得平衡辐射在可逆绝热过程中压强p 与体积V 的关系43pV C '=(常量). (3)下图是平衡辐射可逆卡诺循环的p V -图,其中等温线和绝热线的方程分别为式(1)和式(3).下图是相应的T S -图. 计算效率时应用T S -图更为方便.在由状态A 等温(温度为1T )膨胀至状态B 的过程中,平衡辐射吸收的热量为()1121.Q T S S =- (4)在由状态C 等温(温度为2T )压缩为状态D 的过程中,平衡辐射放出的热量为()2221.Q T S S =- (5) 循环过程的效率为()()2212211211111.T S S Q TQ T S S T η-=-=-=-- (6)2.17 如图所示,电介质的介电常量()DT Eε=与温度有关. 试求电路为闭路时电介质的热容量与充电后再令电路断开后的热容量之差.解:根据式(1.4.5),当介质的电位移有dD 的改变时,外界所做的功是đ,W VEdD = (1)式中E 是电场强度,V 是介质的体积. 本题不考虑介质体积的改变,V 可看作常量. 与简单系统đW pdV =-比较,在变换,p E V VD →-→ (2)下,简单系统的热力学关系同样适用于电介质.式(2.2.11)给出.p V V pp V C C T T T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ (3)在代换(2)下,有,E D D EE D C C VT T T ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭ (4) 式中E C 是电场强度不变时介质的热容量,D C 是电位移不变时介质的热容量. 电路为闭路时,电容器两极的电位差恒定,因而介质中的电场恒定,所以D C 也就是电路为闭路时介质的热容量. 充电后再令电路断开,电容器两极有恒定的电荷,因而介质中的电位移恒定,所以D C 也就是充电后再令电路断开时介质的热容量.电介质的介电常量()DT Eε=与温度有关,所以 ,ED dE E T dT ∂⎛⎫= ⎪∂⎝⎭2,DE D d T dT εε∂⎛⎫=- ⎪∂⎝⎭ (5) 代入式(4),有2E D D d d C C VT EdT dTεεε⎛⎫⎛⎫-=-- ⎪⎪⎝⎭⎝⎭223.D d VT dT εε⎛⎫= ⎪⎝⎭(6)2.18 试证明磁介质H C 与M C 之差等于20H M M TH M C C T T H μ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭解:当磁介质的磁化强度有dM 的改变时,外界所做的功是0đ,W V HdM μ= (1)式中H 是电场强度,V 是介质的体积.不考虑介质体积的改变,V 可看作常量. 与简单系统đW pdV =-比较,在变换0p H,V VM μ→-→ (2)下,简单系统的热力学关系同样适用于磁介质. 式(2.2.11)给出.p V V pp V C C T T T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ (3)在代换(2)下,有0H M M HH M C C T T T μ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭ (4)式中H C 是磁场强度不变时介质的热容量,M C 是磁化强度不变时介质的热容量. 考虑到1H M TM T H T H M ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (5) (5)式解出HM T ∂⎛⎫⎪∂⎝⎭,代入(4)式,得 20H M M TH M C C T T H μ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭2.19 已知顺磁物质遵从居里定律:().CM H T=居里定律 若维物质的温度不变,使磁场由0增至H ,求磁化热.解:式(1.14.3)给出,系统在可逆等温过程中吸收的热量Q 与其在过程中的熵增加值∆S 满足.Q T S =∆ (1)在可逆等温过程中磁介质的熵随磁场的变化率为(式(2.7.7))0.T HS m H T μ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 如果磁介质遵从居里定律(),CVm H C T=是常量 (3)易知2Hm CV H T T ∂⎛⎫=- ⎪∂⎝⎭, (4) 所以0.TCV H S H T μ∂⎛⎫=- ⎪∂⎝⎭2(5) 在可逆等温过程中磁场由0增至H 时,磁介质的熵变为202.2HTCV H S S dH H T μ∂⎛⎫∆==- ⎪∂⎝⎭⎰(6) 吸收的热量为20.2CV H Q T S Tμ=∆=- (7)2.20 已知超导体的磁感强度0()0B H M μ=+=,求证: (a )M C 与M 无关,只是T 的函数,其中M C 是磁化强度M 保持不变时的热容量.(b )200.2M M U C dT U μ=-+⎰(c )0.MC S dT S T=+⎰解:先对超导体的基本电磁学性质作一粗浅的介绍.1911年昂尼斯(Onnes )发现水银的电阻在4.2K 左右突然降低为零,如图所示. 这种在低温下发生的零电阻现象称为超导电性. 具有超导电性质的材料称为超导体. 电阻突然消失的温度称为超导体的临界温度. 开始人们将超导体单纯地理解为具有无穷电导率的导体. 在导体中电流密度e J 与电场强度E 满足欧姆定律.e JE σ= (1)如果电导率σ→∞,导体内的电场强度将为零. 根据法拉第定律,有,BV E t∂⨯=-∂ (2) 因此对于具有无穷电导率的导体,恒有0.Bt∂=∂ (3) 下图(a )显示具有无穷电导率的导体的特性,如果先将样品降温到临界温度以下,使之转变为具有无穷电导率的导体,然后加上磁场,根据式(3)样品内的B 不发生变化,即仍有0B =但如果先加上磁场,然后再降温到临界温度以下,根据式(3)样品内的B 也不应发生变化,即0.B ≠这样一来,样品的状态就与其经历的历史有关,不是热力学平衡状态了. 但是应用热力学理论对超导体进行分析,其结果与实验是符合的. 这种情况促使人们进行进一步的实验研究.1933年迈斯纳(Meissner )将一圆柱形样品放置在垂置于其轴线的磁场中,降低到临界温度以下,使样品转变为超导体,发现磁通量完全被排斥于样品之外,即超导体中的B 恒为零:()00.B H M μ=+= (4)这一性质称为完全抗磁性. 上图(b )画出了具有完全抗磁性的样品在先冷却后加上磁场和先加上磁场后冷却的状态变化,显示具有完全抗磁性的超导体,其状态与历史无关.1953年弗·伦敦(F.London )和赫·伦敦(H.London )兄弟二人提出了一个唯象理论,从统一的观点概括了零电阻和迈斯纳效应,相当成功地预言了超导体的一些电磁学性质.他们认为,与一般导体遵从欧姆定律不同,由于零电阻效应,超导体中电场对电荷的作用将使超导电子加速. 根据牛顿定律,有,m qE =v (5)式中m 和q 分别是超导电子的质量和电荷,v 是其加速度. 以s n 表示超导电子的密度,超导电流密度s J 为.=s s n q v J (6)综合式(5)和式(6),有1,s t Λ∂=∂J E (7) 其中2.s mΛn q=(8) 将式(7)代入法拉第定律(2),有,s Λt t ∂∂⎡⎤∇⨯=-⎢⎥∂∂⎣⎦B J或[]()0.s Λt∂∇⨯+=∂J B (9) 式(9)意味着()s Λ∇⨯+J B 不随时间变化,如果在某一时刻,有(),s Λ∇⨯=-J B (10)则在任何时刻式(10)都将成立. 伦敦假设超导体满足式(10). 下面证明,在恒定电磁场的情形下,根据电磁学的基本规律和式(10)可以得到迈斯纳效应. 在恒定电磁场情形下,超导体内的电场强度显然等于零,否则s J 将无限增长,因此安培定律给出0.s μ∇⨯=B J (11)对上式取旋度,有0(),s Λμμ∇⨯∇⨯∇⨯=-B J B (12)其中最后一步用了式(10). 由于2()().∇⨯∇⨯=∇∇⋅-∇B B B而0∇⋅=B ,因此式(12)给出20μΛ∇=B B (13) 式(13)要求超导体中B 从表面随浓度很快地减少. 为简单起见,我们讨论一维情形. 式(13)的一维解是e≈B (14)式(14)表明超导体中B 随深度x 按指数衰减.如果2310cm s n ≈,可以得到6210cm .-≈⨯这样伦敦理论不仅说明了迈斯纳效应,而且预言磁屏蔽需要一个有限的厚度,磁场的穿透浓度是-610cm 的量级. 实验证实了这一预言. 综上所述,伦敦理论用式(7)和式(10)s ,()s tΛΛ∂=∂∇⨯=-J B J B(15) 来概括零电阻和迈斯纳效应,以式(15)作为决定超导体电磁性质的基本方程. 迈斯纳效应的实质是,磁场中的超导体会在表面产生适当的超导电流分布,使超导体内部0.=B 由于零电阻,这超导电流是永久电流,不会衰减. 在外磁场改变时,表面超导电流才会相应地改变.伦敦理论是一个唯象理论. 1957年巴丁、库柏和徐瑞佛(Bardeen ,Cooper ,Schriffer )发展了超导的微观理论,阐明了低温超导的微观机制,并对超导体的宏观特性给予统计的解释.下面回到本题的求解. 由式(3)知,在超导体内部恒有,M H =- (16)这是超导体独特的磁物态方程. 通常的磁物态方程(,,)0f H M T =对超导体约化为式(16).根据式(16),有0,0.HMM T H T ∂⎛⎫= ⎪∂⎝⎭∂⎛⎫= ⎪∂⎝⎭ (17)(a ) 考虑单位体积的超导体. 式(2.7.2)给出准静态过程中的微功为0đ.W HdM μ= (18) 与简单系统的微功đW pdV =-比较知在代换0,p H V M μ→→下,简单系统得到的热力学关系同样适用于超导体. 2.9题式(2)给出22.V T VC p T V T ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ 超导体相应的热力学关系为2020.M T MC H T ΜT μ⎛⎫∂∂⎛⎫=-= ⎪ ⎪∂∂⎝⎭⎝⎭ (19) 最后一步用了式(17). 由式(19)可知,M C 与M 无关,只是T 的函数.(b )相应于简单系统的(2.2.7)式,T VU p T p V T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ 超导体有000,T MU ΗT H M ΜT μμμ∂∂⎛⎫⎛⎫=-+=- ⎪ ⎪∂∂⎝⎭⎝⎭ (20) 其中第二步用了式(17).以,T M 为自变量,内能的全微分为0.M T M U U dU dT dMT M C dT MdM μ∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭=- 积分得超导体内能的积分表达式为200.2M M U C dT U μ=-+⎰ (21)第一项是不存在磁场时超导体的内能,第二项代表外磁场使超导体表面感生超导电流的能量. 第二项是负的,这是式(16)的结果,因此处在外磁场中超导体的内能低于无磁场时的内能. (c )相应于简单系统的(2.4.5)式0,V V C p S dT dV S T T ⎡⎤∂⎛⎫=++ ⎪⎢⎥∂⎝⎭⎣⎦⎰超导体有00M MC ΗS dT dM S T T μ∂⎛⎫=-+ ⎪∂⎝⎭⎰0,MC dT S T=+⎰(22) 第二步用了式(17). 这意味着,处在外磁场中超导体表面的感生超导电流对熵(无序度)没有贡献.补充题1 温度维持为25C ,压强在0至1000n p 之间,测得水的实验数据如下:()363114.510 1.410cm mol K .pV p T ----∂⎛⎫=⨯+⨯⋅⋅ ⎪∂⎝⎭ 若在25C 的恒温下将水从1n p 加压至1000n p ,求水的熵增加值和从外界吸收的热量.解:将题给的pV T ∂⎛⎫⎪∂⎝⎭记为.pV a bp T ∂⎛⎫=+ ⎪∂⎝⎭ (1) 由吉布斯函数的全微分dG SdT Vdp =-+得麦氏关系.p TV S T p ⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 因此水在过程中的熵增加值为()212121p P T p p pp p S S dpP V dp T a bp dp∂⎛⎫∆= ⎪∂⎝⎭∂⎛⎫=- ⎪∂⎝⎭=-+⎰⎰⎰()()222121.2b a p p p p ⎡⎤=--+-⎢⎥⎣⎦(3)将11,1000n n n p p p p ==代入,得110.527J mol K .S --∆=-⋅⋅根据式(1.14.4),在等温过程中水从外界吸收的热量Q 为 ()112980.527J mol 157J mol .Q T S--=∆=⨯-⋅=-⋅补充题2 试证明范氏气体的摩尔定压热容量与摩尔定容热容量之差为(),,23.21p m V m m m R C C a V b V RT-=--解:根据式(2.2.11),有,,.m m p m V m V pV p C C T T T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 由范氏方程2m mRT a p V b V =-- 易得,m V m p R T V b∂⎛⎫= ⎪∂-⎝⎭()232.m m Tm p RT aV V V b ⎛⎫∂=-+ ⎪∂-⎝⎭ (2) 但1,m m V m Tp V p T T V p ⎛⎫⎛⎫∂∂∂⎛⎫=-⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭所以m V m pm Tp T V T p V ∂⎛⎫ ⎪∂⎝⎭∂⎛⎫=- ⎪∂⎛⎫∂⎝⎭ ⎪∂⎝⎭()()323,2m m mm RV V b RTV a V b -=-- (3)代入式(1),得(),,23.21p m V m m mR C C a V b RTV -=--(4)补充题3 承前1.6和第一章补充题3,试求将理想弹性体等温可逆地由0L 拉长至02L 时所吸收的热量和内能的变化.解:式(2.4.4)给出,以,T V 为自变量的简单系统,熵的全微分为.V VC p dS dT dV T T ∂⎛⎫=+ ⎪∂⎝⎭ (1) 对于本题的情形,作代换,,V L p →→-J (2)即有.L LJ TdS C dT T dL T ∂⎛⎫=- ⎪∂⎝⎭ (3) 将理想弹性体等温可逆地由0L 拉长至02L 时所吸收的热量Q 为002.L L LQ TdS T dL T ∂⎛⎫==- ⎪∂⎝⎭⎰⎰J (4) 由2020L L J bT L L ⎛⎫=- ⎪⎝⎭可得220002200021,L L L dL J L L b bT T L L L L L dT⎛⎫⎛⎫∂⎛⎫=--+ ⎪ ⎪⎪∂⎝⎭⎝⎭⎝⎭ (5) 代入式(4)可得0002222200022002L L L L L L L L Q bT dL bT a dL L L L L ⎛⎫⎛⎫=--++ ⎪ ⎪⎝⎭⎝⎭⎰⎰ 0051,2bTL a T ⎛⎫=-- ⎪⎝⎭ (6)其中0001.dL L dTα=过程中外界所做的功为002220020,L L L L L L W JdL bT dL bTL L L ⎛⎫==-= ⎪⎝⎭⎰⎰(7) 故弹性体内能的改变为2005.2U W Q bT L α∆=+= (8)补充题4 承上题. 试求该弹性体在可逆绝热过程中温度随长度的变化率.解:上题式(3)已给出.L LJ TdS C dT T dL T ∂⎛⎫=- ⎪∂⎝⎭ (1)在可逆绝热过程中0dS =,故有.S L L T T J L C T ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 将习题2.15式(5)求得的LJ T ∂⎛⎫⎪∂⎝⎭代入,可得 2200022002.S L L L T bT L L T L C L L L L α⎡⎤⎛⎫⎛⎫∂⎛⎫=--+⎢⎥ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭⎣⎦(3)补充题5 实验测得顺磁介质的磁化率()T χ. 如果忽略其体积变化,试求特性函数(,)f M T ,并导出内能和熵.解:在磁介质的体积变化可以忽略时,单位体积磁介质的磁化功为(式(2.7.2))0đ.W HdM μ= (1) 其自由能的全微分为0.df SdT MdM μ=-+将()χ=T M H 代入,可将上式表为.Mdf SdT dM μχ=-+ (2)在固定温度下将上式对M 积分,得20(,)(,0).2()M f T M f T T μχ=+ (3)(,)f T M 是特性函数. 单位体积磁介质的熵为(),MS f T M T ∂⎡⎤=-⎢⎥∂⎣⎦221(,0).2d M S T dTμχχ=+ (4) 单位体积的内能为220002.22M d U f TS M T U dTμμχχχ=+=++ (5) 本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。
热力学统计物理 课后习题 答案及热力学统计物理各章重点总结
第七章 玻耳兹曼统计7.1试根据公式Va P Lll∂∂-=∑ε证明,对于非相对论粒子 ()222222212z y x n n n L m m P ++⎪⎭⎫ ⎝⎛== πε,( ,2,1,0,,±±=zy x n n n )有V U P 32= 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
证明:处在边长为L 的立方体中,非相对论粒子的能量本征值为()22222,,2212z y x n n nn n n L m m P zy x ++⎪⎭⎫ ⎝⎛== πε ( ,2,1,0,,±±=z y x n n n )-------(1) 为书写简便,我们将上式简记为32-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()22222)2(z y x n n n ma ++=π,并以单一指标l 代表n x ,n y ,n z 三个量子数。
由(2)式可得VaV V l L εε323235-=-=∂∂----------------------(3) 代入压强公式,有VUa VV a P l ll L ll3232==∂∂-=∑∑εε----------------------(4) 式中 l ll a U ε∑= 是系统的内能。
上述证明未涉及分布的具体表达式,因此上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
注:(4)式只适用于粒子仅有平移运动的情形。
如果粒子还有其他的自由度,式(4)中的U 仅指平动内能。
7.2根据公式Va P Lll∂∂-=∑ε证明,对于极端相对论粒子 ()212222z y x n n n Lccp ++== πε, ,2,1,0,,±±=z y x n n n 有VUP 31=上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
证明:处在边长为L 的立方体中,极端相对论粒子的能量本征值为()21222,,2z y x n nn n n n Lc zy x++= πε, ,2,1,0,,±±=z y x n n n -------(1)为书写简便,我们将上式简记为31-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()212222zyxn n n c a ++= π,并以单一指标l 代表n x ,n y ,n z 三个量子数。
热力学与统计物理课后习题答案
T
S T
V
;即
T T 0 S V CV
于是: 0>
p 正p数
V T V S
于是:
< 0p
V S
CP
T
S T
P
T
S , T ,
p p
T
S, p S,V
S,V T , p
T
p V
S
S,V T , p
T p V S
S T
,V ,V
T ,V T , p
化简。
解:由式(3.2.7)得:U TS pV ;又由式(3.4.6)得:
dp L dT TV
;L TS
Pa
U L L p dT T dp
L1
p T
dT dp
第四章 多元系的复相平衡和化学平衡
=0。
解: 由式(2.2.7)得:
(
U V
)T
p
=T
( T
)V
-p;
(
U V
)T
=0
;
p
T
( p T
)V
( U V
)T
=
(U ,T ) (V ,T )
(U ,T )
=
( p,T )
( p,T ) (V ,T )
U =0= ( p )T
(
p V
)T
∵
( p V
)T≠0
;
(
U p
)=T 0。
习题2.10 证明范氏气体的定容热容量只是温度的函数,与比容无
)U
>0
证: 由式(2.1.2)得: dH TdS VdP
等H过程: (TdS )H (VdP)H
热力学统计物理课后习题答案
第七章玻耳兹曼统计222 Un y n z ,( n x ,n y ,n z 0, 1, 2,)有 P3 V上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
证明:处在边长为L 的立方体中,非相对论粒子的能量本征值为个量子数。
7. 2根据公式Pa iiL证明,对于极端相对论粒子V2 2 22 12n z ,n x ,n y ,n z0, 1, 2,有 P1 Ucp cn x n y3VL上述结论对于玻尔兹曼分布, 玻色分布和费米分布都成立。
证明:处在边长为 L 的立方体中,极端相对论粒子的能量本征值为2 2 2 2 12n x ,n y ,n zCL "x山n x ,n y ,n z 0, 1, 2, -------(1)为书写简便,我们将上式简记为aV ----------------- -——(2)其中V=L 3是系统的体积,常量 a2 2 22 c n xn yn z‘2 ,并以单一指标 i 代表 n x ,n y ,n z个量子数。
7. 1试根据公式a i—证明,对于非相对论粒子VP 2 1 2m 2m2 nx2 2P 21 2n x ,n y ,n z2m 2m L2 nx2 2n y n z ( n x ,n y ,n z 0, 1, 2,) (1)为书写简便,我们将上式简记为aV(2)其中V=L 3是系统的体积,常量(2 )2 2n x 2m2 nyn ;,并以单一指标I 代表 n x ,n y ,n z由(2)式可得」-aV 353(3)代入压强公式,a i2 3Va i2U 3 V(4)式中Ui上述证明未涉及分布的具体表达式, 都成立。
注:(4 )式只适用于粒子仅有平移运动的情形。
如果粒子还有其他的自由度,式( U 仅指平动内能。
a i i是系统的内能。
因此上述结论对于玻尔兹曼分布,玻色分布和费米分布4)中的由(2)式可得L1aV 43 V31 I 3 V -------- (3)代入压强公式,有Pa I -IV1 a I I3V I1 U (4 )3V- (4丿式中Ua , II 是系统的内能。
热力学统计物理 课后习题 答案
第六章 近独立粒子的最概然分布6.1试证明,在体积V 内,在ε到ε+d ε的能量范围内,三维自由粒子的量子态数为D(ε) d ε =()εεπd m hV2123322证明:由式子(6-2-13),在体积V=L 3内,在P X 到P X +dP X ,P Y 到P Y +dP Y ,P Z 到P Z +dP Z ,的动量范围内,自由粒子可能的量子态数为Z Y X dP dP dP h V3-----------------(1) 用动量空间的球坐标描述自由粒子的动量,并对动量方向积分,的得在体积V 内,动量大小在P 到P+dP 范围内,三维自由粒子可能的量子态数为dP P hV 234π-------------(2) 上式可以理解为将相空间(μ空间)体积元4πVP 2dP (体积V ,动量球壳4πP 2dP )除以相格大小h 3而得到的状态数。
自由粒子的能量动量关系为mP 22=ε因此 εm P 2=, εmd PdP =将上式代入(2)式,即得到在体积V 内,在ε到ε+d ε的能量范围内,三维自由粒子的量子态数为 D(ε) d ε =()εεπd m hV2123322------------(3)6.2试证明,对于一维自由粒子,在长度L 内,在ε到ε+d ε的能量范围内,量子态数为D(ε) d ε =εεd m h L 2122⎪⎭⎫⎝⎛证明:对于一维自由粒子,有n Lhn L p ==π2 dn Lhdp =∴由于p 的取值有正、负两种可能,故动量绝对值在范围内的量子态数p d p p +→ p d hLd 2n = 再由 εεm mp 2p 22==得 所以 ()εεεεεd m h L m d h L dn 212222 d D ⎪⎭⎫⎝⎛===, 证毕6.3试证明,对于二维自由粒子,在面积L 2内,在ε到ε+d ε的能量范围内,量子态数为D(ε) d ε =επm d hL 222证明:对于二维自由粒子,有y y x x n Lh p n L h p ==, y y x x dn Lhdp dn L h dp ==∴,所以,在面积L 2内,在y y y x x x dp p p dp p p +→+→,内的量子态数为y x y x dp dp dn dn 22hL =换为极坐标,则动量大小在dp p p +→内的量子态数为ϕϕd dp hL pdpd h L dn 222222==对φ从0至2π积分,并利用mp 22=ε则可得在ε到ε+d ε的能量范围内,量子态数为D(ε) d ε =επm d hL 222,证毕6.4在极端相对论情形下,粒子的能量动量关系为ε=CP ,试求在体积V 内,ε到ε+d ε的能量范围内,三维自由粒子的量子态数为 D(ε) d ε =εεπd ch V 23)(4 证明:在体积V=L 3内,在P X 到P X +dP X ,P Y 到P Y +dP Y ,P Z 到P Z +dP Z ,的动量范围内,自由粒子可能的量子态数为Z Y X dP dP dP h V3-----------------(1) 用动量空间的球坐标描述自由粒子的动量,并对动量方向积分,的得在体积V 内,动量大小在P 到P+dP 范围内,三维自由粒子可能的量子态数为dP P hV 234π-------------(2) 在极端相对论情形下,粒子的能量动量关系为ε=CP ,代入,可得在体积V 内,ε到ε+d ε的能量范围内,三维自由粒子的量子态数为 D(ε) d ε =εεπd ch V 23)(4-------------------(3) 6.6同6.5题,如果粒子是玻色子或费米子,结果如何? 解:两种粒子的分布{}{}'l l a a 和必须满足:∑=llN a, ∑=llN a'',∑∑=+llllll E aa ''εε,其中E 为系统总能量。
热力学统计物理_第四版汪志诚_高等教育出版社_答案
L 分别为 0.5, 1.0, 1.5 和 2.0 时的 J , Y , 值, L0
并画出 J , Y , 对
L 的曲线. L0
解:(a)根据题设,理想弹性物质的物态方程为
L L2 0 J bT 2 , L0 L
(1)
由此可得等温杨氏模量为
Y bT L 2 L2 L J L 1 2 L2 0 0 bT 2 . 2 A L T A L0 L A L0 L
根据体胀系数 和等温压缩系数 T 的定义,可将上式改写为
1 / 186
dV dT T dp. V
(2)
上式是以 T , p 为自变量的完整微分,沿一任意的积分路线积分,有
lnV dT T dp .
(3)
若 , T ,式(3)可表为
1 1 lnV dT dp . p T
1 T
1 p
(4)
选择图示的积分路线,从 (T0 , p0 ) 积分到 T , p0 ,再积分到( T , p ) ,相应地体
积由 V0 最终变到 V ,有
ln V T p =ln ln , V0 T0 p0
即
pV p0V0 , C (常量) T T0
或
p V C . T
(5)
J YA T2 T1
解:由物态方程
f J , L, T 0
(1)
知偏导数间存在以下关系:
L T J 1. T J J L L T
(2)
所以,有
J L J T L T J L T A L Y L AY .
热力学与统计物理课后习题答案第一章
热力学与统计物理课后习题答案第一章1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。
解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为 11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T p V T p - 即000p V pV C T T ==(常量), 或.pV CT = (5)式(5)就是由所给11,T T pακ==求得的物态方程。
确定常量C 需要进一步的实验数据。
1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。
热力学与统计物理课后习题答案第一章复习课程
热力学与统计物理课后习题答案第一章1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。
解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数Tκ的定义,可将上式改写为.TdVdT dpVακ=-(2)上式是以,T p为自变量的完整微分,沿一任意的积分路线积分,有()ln.TV dT dpακ=-⎰(3)若11,TT pακ==,式(3)可表为11ln.V dT dpT p⎛⎫=-⎪⎝⎭⎰(4)选择图示的积分路线,从00(,)T p积分到()0,T p,再积分到(,T p),相应地体积由V最终变到V,有000ln=ln ln,V T pV T p-即00p VpVCT T==(常量),或.pV CT=(5)式(5)就是由所给11,T T pακ==求得的物态方程。
确定常量C 需要进一步的实验数据。
1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。
热力学统计物理 课后习题 答案
第四章 多元系的复相平衡和化学平衡4.1 证明:若将U 看作独立变量T,V ,n 1,⋅⋅⋅,n k 的函数,试证明 (1) VUVn U n U i ii∂∂+∂∂=∑ (2) VUv n U u ii i ∂∂+∂∂=解:(1)多元系的内能()k n n V T U U 1,,=是变量V ,n 1,⋅⋅⋅,n k 的一次齐函数。
根据εular 定理,()k n n V T U U λλλλ 1,,'=⋅,mf x fx iii=∂∂∑ 有U V U V n U n x f x j jn V T n V T i i ii i=⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂=∂∂∑∑,,,, ------------------(1) 式子中偏导数的下标n i 指全部K 个组元,n j 指除i 组元外的其他全部组元。
(2)根据体积和内能为广延量,有iii v n V ∑=,iii u n U ∑= --------------------(2)根据(1)结论 VUVn U n U i ii∂∂+∂∂=∑------------------(1) 将(2)式代入(1)式,有i ii u n U ∑=V UV n U n i ii∂∂+∂∂=∑V U v n n U n ii i ii i ∂∂+∂∂=∑∑------------------(3) 上式对n i 的任意取值都成立,故有VUv n U u ii i ∂∂+∂∂=4.2证明μi (T,P,n 1,⋅⋅⋅,n k )是n 1,⋅⋅⋅,n k 的零次齐函数,0)(=∂∂∑jiii n n μ。
证明:根据式jnP T i i n G ,,⎪⎪⎭⎫⎝⎛∂∂=μ------------------(1) μi 是第i 个组元的化学势。
G 是广延量,是n 1,⋅⋅⋅,n k 的一次齐函数,即()()k k n n p T G n n p T G 11,,,,λλλ=------------------(2)将上式对λ求导,有 左式=()()λλλλλλλλ∂∂∂∂=∂∂∑)(,,)(,,11i k i k n n n p T n G n n p T G()k i in n p T n Gn λλλ 1,,)(∂∂=∑()k i i n n p T n λλμ 1,,∑=---------------(3)右式=()()k k n n p T G n n p T G 11,,],,[=∂∂λλ()k i i n n p T n 1,,μ∑=------(4) 令式(3)与式(4)相等,比较后可以知道()()k i k i n n p T n n p T 11,,,,μλλμ= --------------(5)上式说明μi (T,P,n 1,⋅⋅⋅,n k )是n 1,⋅⋅⋅,n k 的零次齐函数,根据欧勒定理有0)(=∂∂∑jiii n n μ 4.4理想溶液中各组元的化学势为i i x RT P T ln ),(g i +=μ(1)假设溶质是非挥发性的。
热力学·统计物理第五版答案
热力学·统计物理第五版答案【篇一:热力学与统计物理答案第二章】=txt>2.1 已知在体积保持不变时,一气体的压强正比于其热力学温度. 试证明在温度保质不变时,该气体的熵随体积而增加.解:根据题设,气体的压强可表为p?f?v?t,(1)式中f(v)是体积v的函数. 由自由能的全微分df??sdt?pdv得麦氏关系将式(1)代入,有p??sp?f(v)?.(3)t??v?t??t?vs0. 这意味着,在温度保持不变时,该?v??t??sp. (2) ??v?t??t?v由于p?0,t?0,故有??气体的熵随体积而增加.2.2 设一物质的物态方程具有以下形式:p?f(v)t,试证明其内能与体积无关.解:根据题设,物质的物态方程具有以下形式:故有p?f(v). (2) ?t??v但根据式(2.2.7),有u?p?tp, (3) ?v?t??t??v所以utf(v)?p?0. (4) ??v?t这就是说,如果物质具有形式为(1)的物态方程,则物质的内能与体积无关,只是温度t的函数.2.3 求证: (a)s?)p0; (bs?h??v 0.u解:焓的全微分为dh?tds?vdp. 令dh?0,得sp?v0. ht内能的全微分为du?tds?pdv. 令du?0,得s?v?p?0. ut2.4 已知u0,求证?u?v?tp?0. t解:对复合函数u(t,p)?u(t,v(t,p))求偏导数,有uuv?p?v?.ttpt如果??uv?0,即有 tu?p?0. t式(2)也可以用雅可比行列式证明:(1)(2)(3)(4)(1)(2)(3)u(u,p?t?(p,(u,(v,t)t)t)?(v,t)t)?(p,t)u?v. (2) ??v?tp?t2.5 试证明一个均匀物体的在准静态等压过程中熵随体积的增减取决于等压下温度随体积的增减.解:热力学用偏导数??用??s描述等压过程中的熵随体积的变化率,?v??pt描述等压下温度随体积的变化率. 为求出这两个偏导数的关??v?p 系,对复合函数求偏导数,有cp??tsst?. (2) ??v?p??t?p??v?pt??v?ps?s(p,v)?s(p,t(p,v)) (1)因为cp?0,t?0,所以??st的正负取决于的正负. ??v?p??v?p式(2)也可以用雅可经行列式证明:(s,sv?p?(v,(s,(t,p)p)p)?(t,p)p)?(v,p)s?t (2) ?t?v??p??p2.6 试证明在相同的压强降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程中的温度降落.解:气体在准静态绝热膨胀过程和节流过程中的温度降落分别由偏导数?t?t?和描述. 熵函数s(t,p)的全微分为 ??p?s??p?hs?s?ds??dtdp. ?tppt在可逆绝热过程中ds?0,故有s?v?t??pt??t?p???t?. (1) spcspt?p最后一步用了麦氏关系式(2.2.4)和式(2.2.8).焓h(t,p)的全微分为h?h?dh??dtdp. ?t?pp?t在节流过程中dh?0,故有h?v?t??v??pt???t???t?p. (2) ??cp??hp?ht?p最后一步用了式(2.2.10)和式(1.6.6). 将式(1)和式(2)相减,得t?t?v0.(3) p?pc??s??hp所以在相同的压强降落下,气体在绝热膨胀中的温度降落大于节流过程中的温度降落. 这两个过程都被用来冷却和液化气体.由于绝热膨胀过程中使用的膨胀机有移动的部分,低温下移动部分的润滑技术是十分困难的问题,实际上节流过程更为常用. 但是用节流过程降温,气体的初温必须低于反转温度. 卡皮查(1934年)将绝热膨胀和节流过程结合起来,先用绝热膨胀过程使氦降温到反转温度以下,再用节流过程将氦液化.2.7 实验发现,一气体的压强p与体积v的乘积以及内能u都只是温度的函数,即pv?f(t),u?u(t).试根据热力学理论,讨论该气体的物态方程可能具有什么形式.解:根据题设,气体具有下述特性:pv?f(t),(1)u?u(t). (2)由式(2.2.7)和式(2),有而由式(1)可得tdf??p?t??. (4) ??tvdt??vu?pt?p?0. (3) ??v?t??t?v将式(4)代入式(3),有tf, dt或积分得lnf?lnt?lnc,dfdt?. (5) ft或pv?ct, (6)式中c是常量. 因此,如果气体具有式(1),(2)所表达的特性,由热力学理论知其物态方程必具有式(6)的形式. 确定常量c需要进一步的实验结果.2.8 证明2p?cv?t?2?,??v?t??t?vcp?2v?t?2?,t?pp?t并由此导出【篇二:热力学统计物理课后习题答案】t>8.4求弱简并理想费米(玻色)气体的压强公式.解:理想费米(玻色)气体的巨配分函数满足lnlln1?ell在弱简并情况下:2?v2?v3/23/22lng3?2m1/2ln1?e??ldg3?2md?3/2ln1?el30hh02?v3/22?3/2g3?2mln1?e?l3?h3/2dln1?el2?vd?3/22 ??g3?2m3/2l30he?1与(8.2.4)式比较,可知ln??再由(8.2.8)式,得3/23/21n?h21?h2nkt?1??lnnkt?1??v2?mkt??2?mkt??4242??2u 3en?h2?v?2?mkt??3/23/2h2n?? ?ev?t?2?mkt?nn v3/23/21?n?h2n?n?h2p?ln??kt?1???nkt?1v2?mkt?t2?mkt?t???? 42?42??8.10试根据热力学公式 s?熵。
热力学统计物理答案
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。
解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p - 即00p V pV C T T ==(常量), 或.p V C T =(5)式(5)就是由所给11,T Tpακ==求得的物态方程。
确定常量C 需要进一步的实验数据。
1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为5171 4.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。
(完整版)热力学统计物理练习的题目及答案详解
热力学·统计物理练习题一、填空题. 本大题70个小题,把答案写在横线上。
1.当热力学系统与外界无相互作用时,经过足够长时间,其宏观性质 时间改变,其所处的 为热力学平衡态。
2. 系统,经过足够长时间,其 不随时间改变,其所处的状态为热力学平衡态。
3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化学参量等四类参量描述,但有 是独立的。
4.对于非孤立系统,当其与外界作为一个整体处于热力学平衡态时,此时的系统所处的状态是 。
5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有 小,但微观上又包含大量粒子,则每小部分都可视为 。
6.描述热力学系统平衡态的独立参量和 之间关系的方程式叫物态方程,其一般表达式为 。
7.均匀物质系统的独立参量有 个,而过程方程独立参量只有 个。
8.定压膨胀系数的意义是在 不变的条件下系统体积随 的相对变化。
9.定容压力系数的意义是在 不变条件下系统的压强随 的相对变化。
10.等温压缩系数的意义是在 不变条件下系统的体积随 的相对变化。
11.循环关系的表达式为 。
12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功∑-=δi i dy Y W ,其中i y 是 ,i Y 是与i y 相应的 。
13.W Q U U A B +=-,其中W 是 作的功。
14.⎰=+=0W Q dU ,-W 是 作的功,且-W 等于 。
15.⎰δ+δ2L 11W Q ⎰δ+δ2L 12W Q (1、2均为热力学平衡态,L 1、L 2为准静态过程)。
16.第一类永动机是指 的永动机。
17.内能是 函数,内能的改变决定于 和 。
18.焓是 函数,在等压过程中,焓的变化等于 的热量。
19.理想气体内能 温度有关,而与体积 。
20.理想气体的焓 温度的函数与 无关。
21.热力学第二定律指明了一切与热现象有关的实际过程进行的 。
22.为了判断不可逆过程自发进行的方向只须研究 和 的相互关系就够了。
热力学统计物理_第四版_汪志诚_答案
水从 升温至 所吸收的总热量 为
为求热源的熵变,可令热源向温度为 的另一热源放出热量 。在这可逆过程中,热源的熵变为
(2)
由于热源的变化相同,式(2)给出的熵变也就是原来的不可逆过程中热源的熵变。则整个系统的总熵变为
(3)
为使水温从 升至 而参与过程的整个系统的熵保持不变,应令水与温度分布在 与 之间的一系列热源吸热。水的熵变 仍由式(1)给出。这一系列热源的熵变之和为
(b)线胀系数为
其中
(c)上述物方程适用于橡皮带,设
,试计算当 分别为 和 时的 值,并画出 对 的曲线.
解:(a)根据题设,理想弹性物质的物态方程为
(1)
由此可得等温杨氏模量为
(2)
张力为零时,
(b)线胀系数的定义为
由链式关系知
(3)
而
所以
(4)
(c)根据题给的数据, 对 的曲线分别如图1-2(a),(b),(c)所示。
1.3在 和1 下,测得一铜块的体胀系数和等温压缩系数分别为 可近似看作常量,今使铜块加热至 。问:
(a)压强要增加多少 才能使铜块的体积维持不变?(b)若压强增加100 ,铜块的体积改变多少?
解:(a)根据1.2题式(2),有
(1)
上式给出,在邻近的两个平衡态,系统的体积差 ,温度差 和压强差 之间的关系。如果系统的体积不变, 与 的关系为
将上式微分,有
所以
(4)
代入式(2),即得
(5)
其中用了式(1.7.8)和(1.7.9)。
1.9试证明:理想气体在某一过程中的热容量 如果是常数,该过程一定是多方过程,多方指数 。假设气体的定压热容量和定容热容量是常量。
解:根据热力学第一定律,有
热力学·统计物理答案 第一章(完整资料).doc
【最新整理,下载后即可编辑】第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。
解:由得:nRT PV =VnRTP P nRT V ==; 所以, TP nR V T V V P 11)(1==∂∂=αT PVRn T P P V /1)(1==∂∂=βP P nRT V P V V T T /111)(12=--=∂∂-=κ习题1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT V T κα如果1Tα= 1Tpκ=,试求物态方程。
解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此,dp pVdT T V dV T p )()(∂∂+∂∂=, 因为T T p pVV T V V )(1,)(1∂∂-=∂∂=κα 所以,dp dT VdVdp V dT V dV T T κακα-=-=,所以,⎰-=dp dT V T καln ,当p T T /1,/1==κα.CT pV pdpT dT V =-=⎰:,ln 得到习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。
问(1压强要增加多少np 才能使铜块体积不变?(2若压强增加100np ,铜块的体积改多少 解:分别设为V xp n ∆;,由定义得:74410*8.7*10010*85.4;10*858.4----=∆=V x T κ所以,410*07.4,622-=∆=V p x n 错习题1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。
线胀系数定义为ηα)(1T L L ∂∂=等杨氏摸量定义为T LA L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数。
热力学统计物理课后习题答案
1. 1试求理想气体的体胀系数 :,压强系数:和等温压缩系数:T解:已知理想气体的物态方程为 pV 二nRT 由此得到体胀系数-貯。
诵冷,1. 2证明任何一种具有两个独立参量 T ,P 的物质,其物态方程可由实验测量的体胀系数和 等温压缩系数,根据下述积分求得 InV =:・dT -:T dp ,如果:•二丄「.T -,试求物态方TP程。
解:体胀系数:=-—V 5丿p等温压缩系数K T =--—]V 2P 人这是以T ,P 为自变量的完整微分,沿一任意的积分路线积分,得根据题设,若〉=丄,冷=丄T p则有InV =ln T C , PV=CTp要确定常数C,需要进一步的实验数据。
1. 4描述金属丝的几何参量是长度 L ,力学参量是张力£,物态方程是(£丄,T )=0,实验通 1 r 鬥)常在大气压下进行,其体积变化可以忽略。
线胀系数定义为a =丄丄| ,等温杨氏模量L 5丿F定义为Y -L 「匚 ,其中A 是金属丝的截面。
一般来说,:和Y 是T 的函数,对£仅有微A I^L 人第一章热力 学 的 基 本压强系数1 仔、_ n R _ 1 B JT 厂而=T等温压缩系数'-T =以T ,P 为自变量, 物质的物态方程为V =V T,p其全微分为 dV =eVdp 二 V : dT -V T dp i印」n RT ) T~) p所以C n = C Vn -1弱的依赖关系。
如果温度变化范围不大,可以看作常数。
假设金属丝两端固定。
试证明,当 温度由T1降至T2时,其张力的增加为厶£ = -YA/T 2-TJ 。
解:f ( £ 丄,T)=0, £ =F £ (L,T)d £=空;dT +( dL — i dT (dL=0)©丿Li 此丿T &T .丿L所以:£= -YA MT ? -TJ1. 6 1mol 理想气体,在27o C 的恒温下发生膨胀,其压强由20P n 准静态地降到1P n ,求气体 所做的功和所吸收的热量。
热力学与统计物理——第09章系综理论习题解ok1
第九章 系综理论习题9.1证明在正则分布中熵可表为ln s s sS k ρρ=-∑其中1sE s eZβρ-=是系统处在s 态的概率。
证:熵的统计表达式是ln (ln )Z S k Z ββ∂=-∂(1)多粒子配分函数111,sssE E E s sseZ eZ eZβββρρ---==⇒==∑∑∑(2)()ln kkkE E k kkkE kE e EeZ Zeββββ-----∂==∂∑∑∑ (3)由(2)知sE s eZ βρ-=(4)1ln ln ln ln s s s s E Z E Z βρρβ⇒-=+⇒-=+⎡⎤⎣⎦(5)(4)X(5)代至(3)得ln 111ln ln ln ln s s ssssZ Z Z ρρρρββββ∂=+=+⎡⎤⎣⎦∂∑∑;于是ln ln ln s ss Z S k Z k βρρβ⎛⎫∂=-=- ⎪∂⎝⎭∑证明2:准备工作11ln ln1(ln )11ln ln ()ln ln ln ln ln (ln )sssssssssE E s s ssE s sE E s ssE E ssE E ssS k k eeZZk eE Z Z k eE k eZZZ Z kekeZZ Zk ekeZ ZZ kk Z Z Zk k Z Z k Z βββββββββρρββββββββββββ---------=-=-=---=+∂=-+∂∂=-+∂∂=-+∂∂=-+∂∂=-∂∑∑∑∑∑∑∑∑∑习题9.2试用正则分布求单原子分子理想气体的物态方程,内能和熵证: ()222112sNE i xi yi zsi Z eE p p p mβ-===++∑∑符号 ixiy iz idp dpdp dp =∏ i i iid q d x d y d z =∏()()2222222112222333/2()2331!!2!!NNixiyizix iy iz mi i xyzN p p p p p p mNNNN N N p p p mx y z NNVZ edpdq edpN h N hVVm e dp dp dp Z N hN hβββπβ==+∞-++-++-∞+∞-++-∞∑∑==⎡⎤⎛⎫=⇒=⎢⎥⎪⎝⎭⎣⎦⎰⎰⎰3/23/23ln 23ln ln !2N N N N Z V m U NkT N h πβββββ⎡⎤⎛⎫∂∂∂=-=-==⎢⎥⎪∂∂∂⎝⎭⎢⎥⎣⎦3/23ln 1211ln ln !N N NN ZV m p V NkT V V N h Vπβββββ⎡⎤⎛⎫∂∂∂====⎢⎥⎪∂∂∂⎝⎭⎢⎥⎣⎦3/233/233/233/22ln 23(ln )(ln )ln !223ln ln !223ln ln 225ln 2N N N N N N Z V m S k Z k Z U k N k N h V m k k N N k h V m N k kN N kN N k h V m kT N k N k N h πββββπβπβπ⎡⎤⎛⎫∂=-=+=+⎢⎥⎪∂⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫=-++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦习题9.5 试根据正则分布导出实际气体分子的速度分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 玻色统计和费米统计8.4求弱简并理想费米(玻色)气体的压强公式. 解:理想费米(玻色)气体的巨配分函数满足()∑--±±=Ξll l e βεαω1ln ln在弱简并情况下:()()()()()⎰⎰∞--∞--±⋅±=±±≈Ξ02/32/3302/12/331ln 32221ln 22ln ll e d m h v g d e m h v g βεαβεαεπεεπ()()()[]⎭⎬⎫⎩⎨⎧±-±⋅±=⎰∞--∞--02/302/32/331ln 1ln 3222l le d e m hv g βεαβεαεεπ()⎰∞+±⋅±=02/32/3313222le d m h v g βεαεεπ 与(8.2.4)式比较,可知U β32ln =Ξ再由(8.2.8)式,得⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛±=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛±=Ξ2/322/322241122411ln mkT h NkT mkT h V N NkT πβπβ 2/322⎪⎪⎭⎫⎝⎛=-mkT h V N e παn VNmkT h e V N T ==⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛∂∂∴--2/322πα ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛±=⎪⎭⎫ ⎝⎛∂∂⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛±=Ξ∂∂=2/322/3222412241ln 1mkT h n nkT T N mkT h n kT V p T ππβ8.10试根据热力学公式 ⎰=dT TC S V 及光子气体的热容量VV T U C ⎪⎭⎫⎝⎛∂∂=,求光子气体的熵。
解:(8-4-10)式给出光子气体的内能为4334215VT c k Uπ=-------(1) 则可以得到光子气体的定容热容量为33342154)(VT c k T U C V Vπ=∂∂=---------(2)根据热力学关于均匀系统熵的积分表达式(2-4-5),有0])([S dV TPdT T C S V V +∂∂+=⎰----------(3) 取积分路线为(0,V )至(T ,V )的直线,即有33342203342454154VT c k dT T V c k S Tππ==⎰----------------(4) 其中已经取积分常量S 0为零。
8.试证明一维和二维理想玻色气体不存在玻色凝聚现象.证明:发生玻色凝聚时μ→0 ,因此临界温度T c 由下式决定:()⎰=-n e d D V c kT 11/εεε …(1) 对于一维和二维理想玻色气体,由第六章习题可知分别有:一维:()()εεεεd m h L d D 2/122⎪⎭⎫⎝⎛=二维:()()επεεmd hL d D 222= 分别代入(1)式可知,若T c 取非零有限值,则当ε→0时积分均不收敛。
要求∴T c =0但由于此时不存在T < T c 的状态,所以一维和二维理想波色气体不存在玻色凝聚现象,证毕。
8.14银的传导电子密度为5.9×1028/m 3。
试求0K 时电子的最大能量、最大速率和电子气体的简并压。
解:0K 时电子的最大能量()()()eVJ V N m 6.5109.8109.53101.9210055.1320193/2282312343/222=⨯=⨯⨯⨯⨯⨯=⎪⎭⎫ ⎝⎛=---ππμ最大速率 ()163119104.1101.9109.8202---⋅⨯=⨯⨯⨯==s m J m v μ 0K 时的简并压 ()()()Pa V N p 10193/228101.2109.8109.552052⨯=⨯⨯⨯⨯==-μ8.15试求绝对零度下电子气体中电子的平均速率v 。
证明:根据式子(8-5-4),绝对零度下自由电子气体中电子动量大小的分布为 f=1 p ≤P Ff=0 p>P F -----------(1)其中P F 是费米动量,即0K 时电子的最大动量。
因此电子的平均动量为F FFP P P P P dP P h V dPP h V p FF4331418834203303===⎰⎰ππ--------------(2)因此电子的平均速率为F F v m P m p v 4343====---------------(3) 8.20假设自由电子在二维平面上运动,面密度为n .试求0 K 时二维电子气体的费米能量、内能和简并压.解:考虑电子自旋有两种取向后,二维电子气体在ε→ ε + d ε的能量范围内电子的量子态数为()επεεmd hL d D 224=所以0K 时电子的最大能量由下式确定:()N md hL =⎰επμ00224 ()n mh L N m h ππμ440222==∴ 内能()()()()()02104212044022222220022μμπμπεεπμN N L h m N m hL d mhL U =⎪⎪⎭⎫ ⎝⎛===⎰对于二维电子气体,V =L 2()()()1222222221221-⋅⎥⎦⎤⎢⎣⎡+=+⎪⎭⎫ ⎝⎛=Vn n mn n L m y x y x L ππε()()V n n m V V l y x L επε-=⎥⎦⎤⎢⎣⎡+-=∂∂-2222221所以0K 时的简并压()021μεεn V U V a V a p l ll L ll===∂∂-=∑∑8.22试根据热力学公式 ⎰=dT T C S V及低温下的热容量,求金属中自由电子气体的熵。
解:根据式(8-5-19)给出低温下金属中自由电子气体的定容热容量为)0(22μπkTNk C V =--------------(1)根据热力学关于均匀系统熵的积分表达式(2-4-5),有0])([S dV TPdT T C S V V +∂∂+=⎰-----------(2) 取积分路线为 (0,V ) 至 (T ,V )的直线,即有)0(2)0(22022μπμπkTNk dT Nk S T ==⎰-------------(3)其中已取积分常量S 0为零。
8.23试求低温下金属中自由电子气体的巨配分函数的对数,从而求电子气体的压强、内能和熵。
解:根据式(8-1-13),自由电子气体巨配分函数的对数可表达为()()()⎰∑+∞----+=+=Ξ02/12/331ln 241ln ln εεπωβεαβεαd e m h V el lll ()⎰+∞--+⎪⎪⎭⎫ ⎝⎛=02/12/331ln 24dx e xm hVl x αβπ----------------(1)其中第二步用了(6-2-17)式,第三步做了变数变化βε=x将上式的积分分为两段:()()]1ln 1ln [24ln 2/102/12/33⎰⎰+∞------+++⎪⎪⎭⎫ ⎝⎛=Ξααααβπdx e xdx exm hV l lx x ---------------(2)在第一个积分中将对数函数改写为()()()()()ξαααααα-++----+++-=+++-=++=+e x e x e e e l l l l x x x x 1ln )(1ln )(1ln ln 1ln其中 )(x +-=αξ 。
在第二个积分中作变数变换 x +=αξ ,(2)式可改写为])(154[24ln 21252/33I I m hV++-⎪⎪⎭⎫ ⎝⎛=Ξαβπ---------------(3) 其中()⎰----+=αξξξα0211)(1ln d e I l()⎰+∞-+-+=0212)(1ln ξξαξd e I l ------------------(4)在低温 1>>=-kTμα 的情形下, I 1和I 2 可近似为()⎰∑⎰+∞--∞=+∞---=-+≈≈011212121)1()()(1ln ξαξαξξd e nd eI I n n n l2122121)(12)1()(απα-=--=∑∞=nn n ----------------(5)于是)851()(21516ln 22252/33απαβπ+-⎪⎪⎭⎫ ⎝⎛=Ξm h V-------------(6) 根据费米统计中热力学量的统计表达式可得)81()(238ln 22232/33απαβπα+-⎪⎪⎭⎫⎝⎛=Ξ∂∂-=m h V N -------------(7) Ξ=Ξ∂∂-=ln 23ln ββU -------------(8) Ξ=Ξ∂∂=ln 1ln 1VV P ββ-------------(9) )ln 25()ln ln (ln N k k U αββαα+Ξ=Ξ∂∂-Ξ∂∂-Ξ=------------(10) 由于在低温下 1>>=-kTμα ,作为第一级近似可以略去式(7)中的第二项而有232/33)(238ln αβπα-⎪⎪⎭⎫⎝⎛=Ξ∂∂-=m h V N即kTV N m )0()3(23222μβπα==- ------------------(11)计及(7)式的第二项,可将(7)式改写为)121()3(2)81()3(222322232223222απβπαπβπα-=+=--V N m V N m 再将上式中第二项的 -α 用第一级近似代入,得}])0([121{)0(22μπμαkT kT-=-------------------(12)或}])0([121){0(22μπμμkT -=------------------(13)(13)式与(8-5-17)一致。
用式(7)除式(6),并将(12)式代入可将 ln Ξ 表示为N ,T ,μ(0) 的函数}])0([1251{)0(52}])0([21}{])0([121{)0(52ln 222222μπμμπμπμkT kT N kT kT kT N +=+-=Ξ-(14)代回式(8),(9),(10)即得}])0([1251){0(5322μπμkT N U +=----------------(15)}])0([1251){0(5222μπμkT n P +=----------------(16))0(22μπkT Nk S =----------------(17)8.24关于原子核半径R 的经验公式给出 R = (1.3×10-5m)·A 1/3式中A 是原子核所含核子数.假设质子数和中子数相等,均为A /2,试计算二者在核内的密度n .如果将核内的质子和中子看作简并费米气体,试求二者的μ(0)以及核子在核内的平均动能.核子质量M μ =1.67×10-27kg . 解: ()3453153/1005.0103.1342/342/m A A R A VN n ⨯=⋅⨯===-ππ()()()()MeVJ nM271043.01005.031067.1210055.1320113/2452272343/222=⨯≈⨯⨯⨯⨯⨯⨯==---ππμ平均动能 ()MeV E 2.16053==μ 8.已知0 K 时铜的化学势μ(0)=7.04 eV ,试求20 K 时的化学势和电子的平均能量。