系统聚类分析

合集下载

五种常用系统聚类分析方法及其比较

五种常用系统聚类分析方法及其比较

五种常用系统聚类分析方法及其比较胡雷芳一、系统聚类分析概述聚类分析是研究如何将对象按照多个方面的特征进行综合分类的一种统计方法[1]。

然而在以往的分类学中,人们主要靠经验和专业知识作定性分类处理,许多分类不可避免地带有主观性和任意性,不能揭示客观事物内在的本质差别和联系;或者人们只根据事物单方面的特征进行分类,这些分类虽然可以反映事物某些方面的区别,但却往往难以反映各类事物之间的综合差异。

聚类分析方法有效地解决了科学研究中多因素、多指标的分类问题[2]。

在目前的实际应用中,系统聚类法和K均值聚类法是聚类分析中最常用的两种方法。

其中,K均值聚类法虽计算速度快,但需要事先根据样本空间分布指定分类的数目,而当样本的变量数超过3个时,该方法的可行性就较差。

而系统聚类法(Hierarchicalclusteringmethods,也称层次聚类法)由于类与类之间的距离计算方法灵活多样,使其适应不同的要求。

该方法是目前实践中使用最多的。

这该方法的基本思想是:先将n个样本各自看成一类,并规定样本与样本之间的距离和类与类之间的距离。

开始时,因每个样本自成一类,类与类之间的距离与样本之间的距离是相同的。

然后,在所有的类中,选择距离最小的两个类合并成一个新类,并计算出所得新类和其它各类的距离;接着再将距离最近的两类合并,这样每次合并两类,直至将所有的样本都合并成一类为止。

这样一种连续并类的过程可用一种类似于树状结构的图形即聚类谱系图(俗称树状图)来表示,由聚类谱系图可清楚地看出全部样本的聚集过程,从而可做出对全部样本的分类[3]。

二、五种常用系统聚类分析方法系统聚类法在进行聚类的过程中,需要计算类与类之间的距离。

根据类与类之间的距离计算方法的不同,我们可以将系统聚类法分为单连接法、完全连接法、平均连接法、组平均连接法与离差平方和法等。

1.单连接法(Singlelinkage)单连接法又称最短距离法。

该方法首先将距离最近的样本归入一类,即合并的前两个样本是它们之间有最小距离和最大相似性;然后计算新类和单个样本间的距离作为单个样本和类中的样本间的最小距离,尚未合并的样本间的距离并未改变。

系统工程32聚类分析

系统工程32聚类分析
1
dij ( p | xik x jk |q ) q k 1
◦ 明氏距离有三种特殊形式:
✓ 绝对距离(Block距离):当q=1时
p
dij 1 xik x jk k 1
常用距离
◦ 明氏距离有三种特殊形式:
✓欧氏距离(Euclidean distance):当q=2时
1
dij
聚类分析的方法:
✓系统聚类(层次聚类) ✓非系统聚类(非层次聚类)
系统聚类法包括:凝聚方式聚类、分解方式聚类 非系统聚类法包括:模糊聚类法、K-均值法(快
速聚类法)等等
以系统聚类法为例
样本或变量的相似性程度的数量指标:
✓距离 它是将每一个样品看作p维空间的一个点,并用某种 度量方法测量点与点之间的距离,距离较近的归为一类, 距离较远的点应属于不同的类。
9.01 9.32 15.99 9.10 1.82
10.52 10.05 16.18 8.39 1.96
x8 13.29 14.87 9.76 11.35 10.81
将每一个省区视为一个样本: G1={辽宁},G2={浙江},G3={河南},G4={甘肃},G5={ 青海}
采用欧氏距离:
➢ d12 =[(7.9-7.68)2+(39.77-50.37)2+(8.49-11.35)2+(12.9413.3)2+(19.27-19.25)2+(11.05-14.59)2+(2.04-2.75)2+(13.2914.87)2]0.5=11.67
d13=13.80 d14=13.12 d15=12.80 d23=24.63 d24=24.06 d25=23.54 d34=2.2 d35=3.51 d45=2.21

聚类分析

聚类分析

聚类分析聚类分析又称群分析,它是研究(样品或指标)分类问题的一种多元统计方法,所谓类,通俗地说,就是指相似元素的集合。

聚类分析内容非常丰富,按照分类对象的不同可分为样品分类(Q-型聚类分析)和指标或变量分类(R-型聚类分析);按照分类方法可分为系统聚类法和快速聚类法。

1. 系统聚类分析先将n 个样品各自看成一类,然后规定样品之间的“距离”和类与类之间的距离。

选择距离最近的两类合并成一个新类,计算新类和其它类(各当前类)的距离,再将距离最近的两类合并。

这样,每次合并减少一类,直至所有的样品都归成一类为止。

系统聚类法直观易懂。

1.1系统聚类法的基本步骤:第一,计算n 个样品两两间的距离 ,记作D= 。

第二,构造n 个类,每个类只包含一个样品。

第三,合并距离最近的两类为一新类。

第四,计算新类与各当前类的距离。

第五,重复步骤3、4,合并距离最近的两类为新类,直到所有的类并为一类为止。

第六,画聚类谱系图。

第七,确定类的个数和类。

1.2 系统聚类方法:1.2.1最短距离法1.2.2最长距离法1.2.3中间距离法1.2.4重心法1.2.5类平均法1.2.6离差平方和法(Ward 法)上述6种方法归类的基本步骤一致,只是类与类之间的距离有不同的定义。

最常用的就是最短距离法。

1.3 最短距离法以下用ij d 表示样品i X 与j X 之间距离,用ij D 表示类i G 与j G 之间的距离。

定义类i G 与j G 之间的距离为两类最近样品的距离,即ij G G G G ij d D j J i i ∈∈=,min设类p G 与q G 合并成一个新类记为r G ,则任一类k G 与r G 的距离是:ij G X G X kr d D j j i i ∈∈=,min ⎭⎬⎫⎩⎨⎧=∈∈∈∈ij G X G X ij G X G X d d q j k i p j k i ,,min ,min min {}kq kp D D ,min = 最短距离法聚类的步骤如下:ij d {}ij d(1)定义样品之间距离,计算样品两两距离,得一距离阵记为)0(D ,开始每个样品自成一类,显然这时ij ij d D =。

系统聚类

系统聚类
Dp2q Sr (S p Sq ) 其中S p , Sq分别为 p类于q类的离差平方和, S r为 r 类的离差平方和 增量愈小,合并愈合理。
为了便于我们理解系统聚类法的方法和步骤,下面给出一个例子逐步进行说 明:
例:为了研究辽宁等 5 省 1991 年城镇居民生活消费情况的分布规律,根据调 查资料做类型分类,用最短距离法做类间分类。数据如下:
因此将 3、4 合并为一类,为类 6,替代了 3、4 两类 类 6 与剩余的 1、2、5 之间的距离分别为:
d(3,4)1=min(d31,d41)=min(13.80,13.12)=13.12 d(3,4)2=min(d32,d42)=min(24.63,24.06)=24.06 d(3,4)5=min(d35,d45)=min(3.51,2.21)=2.21 得到新矩阵
2、选择 D(0)表中最小的非零数,不妨假设 dpq ,于是将 Gp 和 Gq 合并为一
新类,记为 Gr GP ,Gq
3、利用递推公式计算新类与其它类之间的距离,产生 D(1)表。若类的个 数等于 1,转到下一步,否则回到前一步。类推直至所有的样本点归为一类为止。
4、画聚类图 5、决定类的个数 6、聚类结果的解释和证实 由于类与类之间的距离的计算方法不同,形成了不同的系统聚类方法。
吉林 黑龙江 天津 北京 上海 河南 福建 安徽 辽宁 青海 贵州 湖南 江西 广西 宁夏
6 -+-+
7 -+ +-----+
3 ---+ +---------------------------+
1 -+-------+
|
2 -+
+-----------+

聚类分析_精品文档

聚类分析_精品文档

1聚类分析内涵1.1聚类分析定义聚类分析(Cluste.Analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术.也叫分类分析(classificatio.analysis)或数值分类(numerica.taxonomy), 它是研究(样品或指标)分类问题的一种多元统计方法, 所谓类, 通俗地说, 就是指相似元素的集合。

聚类分析有关变量类型:定类变量,定量(离散和连续)变量聚类分析的原则是同一类中的个体有较大的相似性, 不同类中的个体差异很大。

1.2聚类分析分类聚类分析的功能是建立一种分类方法, 它将一批样品或变量, 按照它们在性质上的亲疏、相似程度进行分类.聚类分析的内容十分丰富, 按其聚类的方法可分为以下几种:(1)系统聚类法: 开始每个对象自成一类, 然后每次将最相似的两类合并, 合并后重新计算新类与其他类的距离或相近性测度. 这一过程一直继续直到所有对象归为一类为止. 并类的过程可用一张谱系聚类图描述.(2)调优法(动态聚类法): 首先对n个对象初步分类, 然后根据分类的损失函数尽可能小的原则对其进行调整, 直到分类合理为止.(3)最优分割法(有序样品聚类法): 开始将所有样品看成一类, 然后根据某种最优准则将它们分割为二类、三类, 一直分割到所需的K类为止. 这种方法适用于有序样品的分类问题, 也称为有序样品的聚类法.(4)模糊聚类法: 利用模糊集理论来处理分类问题, 它对经济领域中具有模糊特征的两态数据或多态数据具有明显的分类效果.(5)图论聚类法: 利用图论中最小支撑树的概念来处理分类问题, 创造了独具风格的方法.(6)聚类预报法:利用聚类方法处理预报问题, 在多元统计分析中, 可用来作预报的方法很多, 如回归分析和判别分析. 但对一些异常数据, 如气象中的灾害性天气的预报, 使用回归分析或判别分析处理的效果都不好, 而聚类预报弥补了这一不足, 这是一个值得重视的方法。

聚类分析的方法

聚类分析的方法

聚类分析的方法一、系统聚类法系统聚类分析法就是利用一定的数学方法将样品或变量(所分析的项目)归并为若干不同的类别(以分类树形图表示),使得每一类别内的所有个体之间具有较密切的关系,而各类别之间的相互关系相对地比较疏远。

系统聚类分析最后得到一个反映个体间亲疏关系的自然谱系,它比较客观地描述了分类对象的各个体之间的差异和联系。

根据分类目的不同,系统聚类分析可分为两类:一类是对变量分类,称为R型分析;另一类是对样品分类,称为Q型分析。

系统聚类分析法基本步骤如下(许志友,1988)。

(一)数据的正规化和标准化由于监测时所得到的数值各变量之间相差较大,或因各变量所取的度量单位不同,使数值差别增大,如果不对原始数据进行变换处理,势必会突出监测数据中数值较大的一些变量的作用,而消弱数值较小的另一些变量的作用,克服这种弊病的办法是对原始数据正规化或标准化,得到的数据均与监测时所取的度量单位无关。

设原始监测数据为Xij (i=1,2,…,n;j=1,2,…,m;n为样品个数,m为变量个数),正规化或标准化处理后的数据为Zij (i=1,2,…,n;j=1,2,…,m)。

1. 正规化计算公式如下:(7-32)(i=1,2,…,n;j=1,2,…,m)2. 标准化计算公式如下:(7-33)(i=1,2,…,n;j=1,2,…,m)其中:(二)数据分类尺度计算为了对数据Zij进行分类,须对该数据进一步处理,以便从中确定出分类的尺度,下列出分类尺度计算的四种方法。

1.相关系数R两两变量间简单相关系数定义为:(7-34)(i,j=1,2,…,m)其中一般用于变量的分类(R型)。

有一1≤≤1且愈接近1时,则此两变量愈亲近,愈接近-1,则关系愈疏远。

2.相似系数相似系数的意义是,把每个样品看做m维空间中的一个向量,n个样品相当于m维空间中的n个向量。

第i个样品与第j个样品之间的相似系数是用两个向量之间的夹角余弦来定义,即:(7-35)(i,j=1,2,…,m)常用于样品间的分类(Q型)。

系统聚类法的原理和具体步骤

系统聚类法的原理和具体步骤

系统聚类法(Hierarchical Clustering)是一种常用的聚类分析方法,用于将样本或对象根据相似性或距离进行层次化的分组。

其原理和具体步骤如下:
原理:
系统聚类法通过计算样本或对象之间的相似性或距离,将它们逐步合并为不同的聚类组。

该方法基于一个假设,即相似的样本或对象更有可能属于同一个聚类。

具体步骤:
距离矩阵计算:根据选定的相似性度量(如欧氏距离、曼哈顿距离等),计算样本或对象之间的距离,并生成距离矩阵。

初始化聚类:将每个样本或对象视为一个初始聚类。

聚类合并:根据距离矩阵中的最小距离,将距离最近的两个聚类合并为一个新的聚类。

更新距离矩阵:根据合并后的聚类,更新距离矩阵,以反映新的聚类之间的距离。

重复步骤3和4,直到所有的样本或对象都合并为一个聚类或达到指定的聚类数目。

结果展示:将合并过程可视化为一棵聚类树状图(树状图或树状图),以显示不同聚类之间的关系和层次结构。

需要注意的是,系统聚类法有两种主要的实现方式:凝聚层次聚类和分裂层次聚类。

凝聚层次聚类从单个样本开始,逐步合并为更大的聚类;分裂层次聚类从一个整体聚类开始,逐步分裂为更小的聚类。

以上步骤适用于凝聚层次聚类。

系统聚类法在数据分析、模式识别、生物学分类等领域广泛应用。

通过系统聚类法,可以将样本或对象进行有序的分组,帮助发现数据中的模式和结构,并为进一步的分析和解释提供基础。

第一节系统聚类分析

第一节系统聚类分析

第一节系统聚类分析第五章聚类分析(一)教学目的通过本章的学习,对聚类分析从总体上有一个清晰地认识,理解聚类分析的基本思想和基本原理,掌握用聚类分析解决实际问题的能力。

(二)基本要求了解聚类分析的定义,种类及其应用范围,理解聚类分析的基本思想,掌握各类分析方法的主要步骤。

(三)教学要点1、聚类分析概述;2、系统聚类分析基本思想,主要步骤;3、动态聚类法基本思想,基本原理,主要步骤;4、模糊聚类分析基本思想,基本原理,主要步骤;5、图论聚类分析基本思想,基本原理。

(四)教学时数6课时五)教学内容 (1、聚类分析概述2、系统聚类分析3、动态聚类法4、模糊聚类分析5、图论聚类分析统计分组或分类可以深化人们的认识。

实际应用中,有些情况下进行统计分组比较容易,分组标志确定了,分组也就得到了,但是,有些情况下进行统计分组却比较困难,特别是当客观事物性质变化没有明显标志时,用于确定分组的标志和组别就很难确定。

聚类分析实际上给我们提供了一种对于复杂问题如何分组的统计方法。

第一节聚类分析概述一、聚类分析的定义聚类分析是将样品或变量按照它们在性质上的亲疏程度进行分类的多元统计分析方法。

聚类分析时,用来描述样品或变量的亲疏程度通常有两个途径,一是把每个样品或变量看成是多维空间上的一个点,在多维坐标中,定义点与点,类和类之间的距离,用点与点间距离来描述样品或变量之间的亲疏程度;另一个是计算样品或变量的相似系数,用相似系数来描述样品或变量之间的亲疏程度。

二、聚类分析的种类(一)聚类分析按照分组理论依据的不同,可分为系统聚类法,动态聚类法,模糊聚类、图论聚类、聚类预报等多种聚类方法。

1、系统聚类分析法。

是在样品距离的基础上定义类与类的距离,首先将个样品自成n一类,然后每次将具有最小距离的两个类合并,合并后再重新计算类与类之间的距离,再并类,这个过程一直持续到所有的样品都归为一类为止。

这种聚类方法称为系统聚类法。

根据并类过程所做的样品并类过程图称为聚类谱系图。

系统聚类

系统聚类

系统聚类分析(hierachical cluster analysis)在聚类分析中应用最为广泛。

凡是具有数值特征的变量和样品都可以通过选择不同的距离和系统聚类方法而获得满意的数值分类效果。

系统聚类法就是把个体逐个地合并成一些子集,直至整个总体都在一个集合之内为止。

1. 数量型资料数据变换处理DPS提供了如下4种常用的变换方法:(1) 中心化变换。

x'ij=x ij-j)。

(2) 规格化变换(极差正规化)。

(3) 标准化变换。

,其中,。

(4) 对数变换。

x ij=ln{x ij}。

2. 计算距离系数对数量型资料,提供了如下6种距离系数:(1) 欧氏距离:(2) 绝对值距离(又称Manhattan度量或网格变量):(3) 切比雪夫距离:(4) 兰氏距离:(5) 马氏距离:(6) 卡方距离:式中, , T ij=T i+T j(k=1, 2,…, m; i,j=1, 2, …, n)当原始数据是二元性质的属性变量时, 由于数据结构的特殊性, 它不必进行数据转换处理。

它可直接根据原始数据计算相似系数和距离系数。

假设有2个分类单位A和B,当数据为二元,即取0或1时,两组数据匹配有4种形式,可以一个列联表形式表示:其中,a是A、B两单元都取1的个数,b和c是其中之一去1的个数,d是a是A、B两单元都取0的个数, a+b+c+d=n.在DPS系统中提供的常用的10种距离系数以用于系统聚类分析,各个系数计算公式为:1.Jaccard (1901)系数(2) Czekanowski (1913)系数(3) Sokal (1958)简单匹配系数(4) Baroni-Urbani & Buser系数(5) Ochilai (1957)系数(6) Dagnelie (1962)系数(7) Rogers and Tanimoto (1960)系数(8) Kulczynski, (1927)系数(9) Sokal and Sneath (1963)系数(10) Watson et al. (1966)系数3. 进行聚类分析根据Wishart (1969)提出的统一公式进行。

系统聚类分析方法

系统聚类分析方法

系统聚类分析方法聚类分析是研究多要素事物分类问题的数量方法。

基本原理是根据样本自身的属性,用数学方法按照某种相似性或差异性指标,定量地确定样本之间的亲疏关系,并按这种亲疏关系程度对样本进行聚类。

常见的聚类分析方法有系统聚类法、动态聚类法和模糊聚类法等。

1. 聚类要素的数据处理假设有m 个聚类的对象,每一个聚类对象都有个要素构成。

它们所对应的要素数据可用表3.4.1给出。

(点击显示该表)在聚类分析中,常用的聚类要素的数据处理方法有如下几种。

①总和标准化②标准差标准化③极大值标准化经过这种标准化所得的新数据,各要素的极大值为1,其余各数值小于1。

④极差的标准化经过这种标准化所得的新数据,各要素的极大值为1,极小值为0,其余的数值均在0与1之间。

2. 距离的计算距离是事物之间差异性的测度,差异性越大,则相似性越小,所以距离是系统聚类分析的依据和基础。

①绝对值距离选择不同的距离,聚类结果会有所差异。

在地理分区和分类研究中,往往采用几种距离进行计算、对比,选择一种较为合适的距离进行聚类。

例:表3.4.2给出了某地区九个农业区的七项指标,它们经过极差标准化处理后,如表3.4.3所示。

对于表3.4.3中的数据,用绝对值距离公式计算可得九个农业区之间的绝对值距离矩阵:3. 直接聚类法直接聚类法是根据距离矩阵的结构一次并类得到结果。

▲ 基本步骤:①把各个分类对象单独视为一类;②根据距离最小的原则,依次选出一对分类对象,并成新类;③如果其中一个分类对象已归于一类,则把另一个也归入该类;如果一对分类对象正好属于已归的两类,则把这两类并为一类;每一次归并,都划去该对象所在的列与列序相同的行;④那么,经过m-1次就可以把全部分类对象归为一类,这样就可以根据归并的先后顺序作出聚类谱系图。

★直接聚类法虽然简便,但在归并过程中是划去行和列的,因而难免有信息损失。

因此,直接聚类法并不是最好的系统聚类方法。

[举例说明](点击打开新窗口,显示该内容)例:已知九个农业区之间的绝对值距离矩阵,使用直接聚类法做聚类分析。

系统聚类分析的方法

系统聚类分析的方法

系统聚类分析的方法系统聚类分析是一种常用于数据分类和分组的技术,它可以从大量的数据中找出数据的相似性和差异性,以此来帮助人们更好地理解数据中的结构和规律。

在这篇文章中,我们将介绍系统聚类分析的方法和应用,以及它在实际中的应用。

系统聚类分析所使用的方法主要是对数据进行层次聚类,即将数据分成多个组,每个组中的数据相似度较高,组间的数据相似度较低。

系统聚类分析可分为两类:凝聚式聚类和分离式聚类。

凝聚式聚类是先将每个数据视为一组,再将其依据相似性合并成越来越大的组,直至形成一个大的组。

相反,分离式聚类是先将所有数据视为一个组,然后将其逐渐分成越来越小的组,直至分成单独的数据为止。

系统聚类分析主要有三个步骤:数据预处理、相似性度量和聚类方法选择。

首先,对数据进行预处理,包括数据清洗、数据变换和数据标准化。

其次,计算不同数据之间的相似性度量,主要有欧氏距离、曼哈顿距离和余弦相似性等。

最后,选择合适的聚类方法对数据进行分类分组,包括链接聚类法、划分聚类法和模糊聚类法等。

其中,其中链接聚类法是最常用的方法之一,它将数据的相似性度量作为加权距离函数,将数据逐渐合并成一个大的组。

在这个过程中,会计算每个组的距离,再将距离矩阵作为输入进行递归地计算,直到形成一个大的组。

划分聚类法是一种将数据分成不同组的方法,它通过选择一些分割点来划分不同的组,使得每个组内的数据相似性较高。

模糊聚类法则是一种通过将数据分成多个隶属于不同组的程度来对数据进行分类的方法,它允许每个数据隶属于多个不同组,这在实际应用中也有一定的优势。

系统聚类分析方法的应用非常广泛,其中最常见的应用就是在生物学和医学领域。

在这些领域中,可以将样本数据视为数据点,然后使用聚类法将它们分成不同的类别,以便更好地理解不同样本的特征和性质。

另外,系统聚类分析也可以用于社会科学、经济学和地质学等领域,这些领域中也有大量的数据需要进行分类和处理。

为了更好地应用系统聚类分析方法,需要注意一些要点。

《系统聚类分析》课件

《系统聚类分析》课件

PART 02
系统聚类分析的基本原理
REPORTING
距离度量
01
02
03
欧氏距离
根据空间中两点间的直线 距离计算,适用于数值型 数据。
曼哈顿距离
在直角坐标系中,两点之 间的距离等于各坐标轴上 绝对值之和的和。
切比雪夫距离
不考虑坐标轴上的比例因 子,只考虑坐标轴上的绝 对距离。
聚类方法
层次聚类
系统聚类分析
REPORTING
• 引言 • 系统聚类分析的基本原理 • 系统聚类分析的步骤 • 系统聚类分析的常用算法 • 系统聚类分析的优缺点 • 系统聚类分析的未来发展
目录
PART 01
引言
REPORTING
聚类的定义
聚类
将数据集划分为若干个组(或称为簇),使得同一组内的数据尽可能相似,不 同组的数据尽可能不同。
系统聚类分析
基于距离度量,通过一定的算法将数据点(或样本)进行分类,使得同一类中 的数据点尽可能接近或相似,不同类中的数据点尽可能远离或差异大。
聚类的目的
探索性数据分析
通过聚类分析,可以发现数据中的隐 藏模式和结构,从而更好地理解数据 的分布和特征。
数据降维
决策支持
聚类分析可以用于市场细分、客户分 类等场景,帮助企业更好地了解客户 需求和市场趋势,从而制定更有针对 性的营销策略。
将数据点按照某种标准(如距离)进行层次分解,形成一棵聚类 树。
K-means聚类
将数据点分为K个聚类,每个聚类中心点为该聚类的平均值。
DBSCAN聚类
基于密度的聚类方法,将相邻的密集区域划分为同一聚类。
聚类评估
内部评估指标
通过计算聚类内部的紧密程度来 评估聚类的质量,如轮廓系数、 Calinski-Harabasz指数等。

聚类分析及MATLAB实现

聚类分析及MATLAB实现

2
设有n个样品的p元观测数据组成一个数据矩阵 其中每一行表示一个样品,每一列表示一个指标,xij表示第i个样品关于第j项指标的观测值,聚类分析的基本思想就是在样品之间定义距离,在指标之间定义相似系数,样品之间距离表明样品之间的相似度,指标之间的相似系数刻画指标之间的相似度。将样品(或变量)按相似度的大小逐一归类,关系密切的聚集到较小的一类,关系疏远的聚集到较大的一类,聚类分析通常有:谱系聚类、快速聚类,我们主要介绍谱系聚类的方法与MATLAB实现
4.2 谱系聚类法 谱系聚类法是目前应用较为广泛的一种聚类法。谱系聚类是根据生物分类学的思想对研究对象进行分类的方法。在生物分类学中,分类的单位是:门、纲、目、科、属、种。其中种是分类的基本单位,分类单位越小,它所包含的生物就越少,生物之间的共同特征就越多。利用这种思想,谱系聚类首先将各样品自成一类,然后把最相似(距离最近或相似系数最大)的样品聚为小类,再将已聚合的小类按各类之间的相似性(用类间距离度量)进行再聚合,随着相似性的减弱,最后将一切子类都聚为一大类,从而得到一个按相似性大小聚结起来的一个谱系图。
clusterdata
根据数据创建分类
inconsistent
计算聚类树的不连续系数
研究对样品或指标进行分类的一种多元统计方法,是依据研究对象的个体的特征进行分类的方法。
01
聚类分析把分类对象按一定规则分成若干类,这些类非事先给定的,而是根据数据特征确定的。在同一类中这些对象在某种意义上趋向于彼此相似,而在不同类中趋向于不相似。
1382.68
1462.08
5
法国
1546.55
1501.77
1525.95
6
德国
1656.52
1630.52

聚类分析之系统聚类法

聚类分析之系统聚类法

聚类分析之系统聚类法系统聚类法是一种常用的聚类分析方法,旨在将样本集合划分为不同的簇,使得同一个簇内的样本之间相似度较高,而不同簇之间的样本相似度较低。

本文将介绍系统聚类法的基本原理、常用的聚类算法以及应用领域等内容。

系统聚类法的基本原理是通过计算样本之间的距离或相似度来判断它们之间的关系,并将相似的样本归为同一簇。

在系统聚类法中,最常用的距离度量方法有欧氏距离、曼哈顿距离和余弦相似度等。

通过选择适当的距离度量方法,可以更准确地描述样本之间的差异。

常见的系统聚类算法包括层次聚类法、BIRCH算法和DBSCAN算法等。

层次聚类法是一种自底向上的聚类算法,它从每个样本开始,逐步合并相邻的样本,直到所有样本都被合并为一个簇。

BIRCH算法是一种基于CF树的聚类算法,它通过构建一种多叉树的数据结构来实现高效的聚类计算。

DBSCAN算法则是一种基于密度的聚类算法,它通过确定样本的邻域密度来判断是否属于同一簇。

系统聚类法在许多领域中都有广泛的应用。

在生物信息学领域,系统聚类法可以用于基因表达数据的聚类分析,从而找到具有相似表达模式的基因。

在市场营销领域,系统聚类法可以用于将顾客划分为不同的群体,从而为不同群体制定个性化的营销策略。

在图像处理领域,系统聚类法可以用于图像分割,将具有相似颜色或纹理特征的像素归为同一簇。

尽管系统聚类法具有广泛的应用前景,但也存在一些挑战和限制。

首先,系统聚类法对初始样本集合的选择较为敏感,不同的初始选择可能导致不同的聚类结果。

其次,系统聚类法在处理大规模数据时计算复杂度较高,需要消耗大量的计算资源。

此外,系统聚类法还面临着噪声和异常值的影响,这些值可能会干扰正常的聚类结果。

总之,系统聚类法是一种重要的聚类分析方法,通过计算样本之间的距离或相似度,将相似的样本归为同一簇。

它在生物信息学、市场营销和图像处理等领域具有广泛的应用价值。

然而,系统聚类法仍面临一些挑战和限制,如初始样本选择、计算复杂度和噪声处理等问题。

系统、K均值聚类分析

系统、K均值聚类分析

快速聚类分析1.基本知识聚类:是将某个对象划分为若干组的过程,让同一个组内的数据对象具有较高的相似度,而不同组内的数据对象是不相似的。

聚类分析:是对样本或变量进行分类的一种多元统计方法,目的在于将事物归类。

不依靠事先已知的数据分类,也不依靠标有数据类别的训练样本集合。

聚类分析在spss 中分为三种:系统聚类,K 均值聚类、两步聚类。

聚类是将变量根据一定的距离逐次合并类,步骤总结为5步。

A.定义样本间的距离,以及类与类的距离。

B.令每个观测记录各自成为一个类别。

C.计算类与类之间的距离,并将距离最近的两个合并为一类,类的数目减一。

D.如果当前的类的数目大于一,转至第三步。

E.结束聚类过程。

常见定义距离的方法:欧式距离:d ij =J1i −i 2平方欧式距离:d ij =J1i −i 2闵可夫斯基距离:d ij =(J1i −i q )1/q ,q 用户自定义。

K-均值聚类(快速聚类):它允许事先指定聚类个数。

也可以指定使聚类过程中止的条件,比如迭代次数等。

聚类变量为数值型变量,最少需要有一个。

2.K 均值聚类操作步骤第一步、将数据导入SPSS 中并赋值后、点击分析、分类、K 均值聚类。

图1操作步骤第一步第二步:进入图中对话框后将变量放入变量框中,点击迭代、点击最大迭代次数里填入次数(一般来说,可以默认,但有得时候,因为默认的迭代次数并不能迭代到收敛完成。

)点击继续。

图2迭代次数第三步:点击保存、勾选、聚类成员、与聚类中心距离,点击继续。

图3保存勾选第四步:点击选项、勾选初始聚类中心、ANOVA表、每个个案的聚类信息,点击继续,确定。

图4选项勾选3.K均值聚类结果K均值聚类的初始聚类中心、迭代历史几率、聚类成员结果。

图5基本结果最终聚类中心、最终聚类中心之间的距离结果。

图6最终聚类中心ANOVA表、每个聚类中的个案数目结果。

图7ANOVA表结果4.结果整理将最终聚类中心表的结果粘贴到表格中进行整理,然后将ANOVA表中的F 值、p值放入表格中。

系统聚类的方法解析

系统聚类的方法解析

系统聚类的方法解析系统聚类是一种数据分析技术,用于将一组对象划分为不同的类别或群组,使得同一类别内的对象具有相似的特征,而不同类别之间的对象具有明显的差异。

系统聚类方法基于对象之间的相似度或距离来判断它们是否属于同一类别。

本文将介绍几种常见的系统聚类方法,包括层次聚类、K-均值聚类和DBSCAN聚类。

层次聚类是一种将对象以树形结构进行组织的聚类方法。

它可以分为凝聚式聚类和分裂式聚类两种类型。

凝聚式聚类从每个对象作为一个类开始,逐步合并最相似的类,直到所有对象都合并为一个类为止。

分裂式聚类从所有对象作为一个类开始,将其分解为越来越小的类,直到每个类只包含一个对象为止。

层次聚类方法可以根据不同的相似度度量(如欧几里得距离、曼哈顿距离等)来计算对象之间的距离。

K-均值聚类是一种基于距离的聚类方法。

它将要聚类的对象划分为K 个类别,其中K是预先指定的。

它通过迭代优化的方式,计算每个对象与每个类别的距离,并将对象划分到距离最近的类别中。

在每次迭代后,重新计算每个类别的质心(即所有对象的平均值),并调整对象的归属,直到达到一定的停止准则(如达到最大迭代次数或类别的变化小于一些阈值)。

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类方法。

它将对象的密度定义为一些半径内的对象数目。

DBSCAN通过定义两个参数:半径(ε)和最小对象数目(MinPts),来判断对象是否是核心对象、边界对象还是噪声对象。

从核心对象开始,递归地将密度可达的对象划分到同一类别中,直到没有更多的密度可达对象。

DBSCAN可以有效地发现任意形状和大小的聚类,且对噪声对象的影响较小。

系统聚类方法适用于无监督学习任务,因为它们不需要事先的标记数据。

它们可以通过计算对象之间的相似度或距离,自动发现潜在的模式和结构。

然而,系统聚类方法需要选择合适的聚类数目、参数和相似度度量,这对于不同的数据集可能是挑战性的。

聚类分析(第3节_系统聚类法)

聚类分析(第3节_系统聚类法)

1 2 1 2 2 Dkp Dkq Dpq , (1/ 4 0) 2 2
(6.3.5)
第三节 系统聚类分析法以及类的确 定
设 Dkq > Dkp ,如果采用最短距离法,则 Dkr = Dkp ,如果采用最长距离法,则 Dkr = Dkq 。
如图 6.1 所示, (6.3.5) 式就是取它们(最长
● 重心法
重心法定义类间距离为两类重心(各类样品的均值)的 距离。重心指标对类有很好的代表性,可体现出每类包含 的样品个数,但并不能充分利用个样本所含的信息。 设 G p 与 G q 分别有样品 n p , 其重心分别为 X p 和 X q , n q 个, 则 G p 与 G q 之间的距离定义为 X p 和 X q 之间的距离,这里 我们用欧氏距离来表示,即
第三节 系统聚类分析法以及类的确 定

类间距离与系统聚类法
在进行系统聚类之前,我们首先要定义类与类之间 的距离,由类间距离定义的不同产生了不同的系统聚 类法。常用的类间距离定义有 8种,与之相应的系统 聚类法也有 8种,分别为:最短距离法、最长距离法、 中间距离法、重心法、类平均法、可变类平均法、可 变法和离差平方和法。它们的归类步骤基本上是一致 的,主要差异是类间距离的计算方法不同。
第三节 系统聚类分析法以及类的确 定
以下用 d ij 表示样品 X i与 X 之间距离,用 Gij表示类 Gi j 与 G j 之间的距离。

最短距离法
定义类 Gi 与类G j 之间的距离为两类最近样品的距离,即 为
Dij
X i Gi , X j G j
min
d ij
(6.3.1)
设类G p 与 Gq 合并成一个新类记为 Gr ,则任一类Gk 与Gr 的距离为

系统聚类分析

系统聚类分析

0.26
0.04
0.00
0.15
0.00
0.00
二、距离的计算
常见的距离有 ① 绝对值距离
d ij xik x jk
② 欧氏距离
d ij ( xik x jk ) 2
k 1 n
n
(i, j 1,2,, m)
(3.4.5)
i 1
(i, j 1,2,, m)
(3.4.6)
计算原来各类与新类之间的距离,这样就得到 一个新的(m-1)阶的距离矩阵; 再从新的 距离矩阵中选出最小者dij,把Gi和Gj归并成新 类;再计算各类与新类的距离,这样一直下去, 直至各分类对象被归为一类为止。
例题:以下根据式(3.4.9)中的距离矩阵,
用最短距离聚类法对某地区的9个农业区进行 聚类分析。
1 m x j xij 0 m i 1 sj 1 m ( xij x ) 2 1 j m i 1
③ 极大值标准化,即
xij xij max{xij }
i
(i 1,2, , m; j 1,2, , n)
(3.4.3)
经过这种标准化所得的新数据,各要素的 极大值为1,其余各数值小于1。
假设有m 个聚类的对象,每一个聚类对象 都有n个要素构成。它们所对应的要素数据可 用表3.4.1给出。
表3.4.1 聚类对象与要素数据
要 聚 类 对 象 素
x1
x11 x21 xi1 xm1
x2 x j
x12 x22 xi 2 x1 j xij
xn
x1n xin xmn
d8,10=min{d84,d89}= min{1.29,1.40}=1.29
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档