人教版数学七年级下册第八章测试卷及答案(3).doc

合集下载

(人教版)初中数学七下 第八章综合测试03附答案

(人教版)初中数学七下 第八章综合测试03附答案

第八章综合测试一、选择题(每小题4分,共32分)1.下列方程组是二元一次方程组的是( )A.12x y xy -=⎧⎨=⎩B.4123x y y x -=-⎧⎨=+⎩C.2201x x y x ⎧--=⎨=+⎩D.1130y x x y ⎧-=⎪⎨⎪+=⎩ 2.二元一次方程组320x y x y -=-⎧⎨+=⎩,的解是( )A.12x y =-⎧⎨=⎩B.12x y =⎧⎨=-⎩C.12x y =-⎧⎨=-⎩D.21x y =-⎧⎨=⎩3.某校春季运动会篮球比赛中,七(1)班、七(5)班的实力相当.关于比赛结果,甲同学说:(1)班与(5)班得分比为6: 5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x 分,(5)班得y 分,根据题意所列的方程组应为( )A.65240x yx y =⎧⎨=-⎩B.65240x yx y =⎧⎨=+⎩C.56240x yx y =⎧⎨=+⎩D.56240x yx y =⎧⎨=-⎩4.方程5x y +=的非负整数解有( ) A.4个B.5个C.6个D.7个5.已知式子2x ax b ++,若当2x =时,其值是3;当3x =-时,其值是4,则式子a b -的值是( )A.415-B.435-C.185D.3256.根据图8-2中的对话,可以求得小红所买的笔和笔记本的价格分别是( )A.0.8元/支,2.6元/本B.0.8元/支,3.6元/本C.1.2元/支,2.6元/本D.1.2元/支,3.6元/本7.已知21x y =⎧⎨=⎩,是关于x ,y 的二元一次方程组81mx ny nx my +=⎧⎨-=⎩,的解,则2m n -的值为( )A.4B.2C.4±D.2±8.足球一般是用黑白两种颜色的皮块缝制而成的,如图8-3,黑色皮块是正五边形,白色皮块是正六边形,若一个球上共有黑、白皮块共32块,请你计算一下,黑色皮块和白色皮块的数量分别为( )A.16块、16块B.8块、24块C.20块、12块D.12块、20块二、填空题(每小题4分,共20分)9.由325x y -=得到用x 表示y 的式子是y =________.10.若方程组2313531m n m n +=⎧⎨-=⎩,的解是23m n =⎧⎨=⎩,,则方程组2(2)3(1)135(2)3(1)1x y x y ++-=⎧⎨+--=⎩,的解是_______.11.如图8-4①,在第一个天平上,物体A 的质量等于物体B 加上物体C 的质量;如图8-4②,在第二个天平上,物体A 加上物体B 的质量等于3个物体C 的质量.由此可知,1个物体A 与________个物体C 的质量相等.12.若方程组34225x y x y +=⎧⎨-=⎩,与312210ax by ax by -=⎧⎨+=⎩,有相同的解,则a =________,b =________.13.如果以x y ,为未知数的二元一次方程组2327x y m x y m +=⎧⎨-=⎩,的解满足438x y =-,那么m =________.三、解答题(共48分) 14.(10分)解下列方程组:(1)5()20,4(2)2;x y x y x -=⎧⎨-=⎩(2)13,233.34m nm n ⎧+=⎪⎪⎨⎪-=⎪⎩15.(8分)(2013·浙江台州)已知关于x y ,的方程组7,234mx ny mx ny +=⎧⎨-=⎩的解为1,2,x y =⎧⎨=⎩求m n ,的值.16.(10分)某同学在解关于,x y 的方程组2,78ax by cx y +=⎧⎨-=⎩时,本应解出3,2,x y =⎧⎨=-⎩由于看错了系数c ,而得到解2,2,x y =-⎧⎨=⎩求a b c ++的值.17.(10分)从甲地到乙地的路有一段平路与一段上坡路,如果骑自行车保持平路每小时行15 km ,上坡每小时行10 km ,下坡每小时行18 km ,那么从甲地到乙地需29 min ,从乙地到甲地需25 min ,从甲地到乙地全程是多少千米?18.(10分)团体购买公园门票票价如下:今有甲、乙两个旅游团,已知甲团人数少于50,乙团人数不超过100.若分别购票,则两团共计应付门票费1392元,若合在一起作为一个团体购票,则总计应付门票费1080元. (1)请你判断乙团的人数是否也少于50; (2)求甲、乙两旅游团各有多少人.第八章综合测试答案解析一、 1.【答案】B【解析】A 项中的xy 及C 项中的2x 的次数都是2,D 项中的1x不是整式. 2.【答案】A 3.【答案】D 4.【答案】C【解析】由5x y +=,得5x y =-.非负整数解包括0,所以y 的取值为0,1,2,3,4,5,相应的x 的取值为5,4,3,2,1,0,共6个。

人教版七年级数学下册第八章测试题及答案精选全文完整版

人教版七年级数学下册第八章测试题及答案精选全文完整版

可编辑修改精选全文完整版最新人教版七年级数学下册第八章测试题及答案第8章二元一次方程组班级 姓名 成绩__________一、相信你的选择(每小题3分,共30分)1、下列给出的方程中,是二元一次方程的是( )A 、5=xyB 、y x 56=C 、61=+yx D 、642=+y x 2、下列二元一次方程组中,以 21==y x 为解的是( ) A 、 531=+=-y x y x B 、 531-=+=-y x y x C 、 5332=+-=-y x y x D 、 433=+=-y x y x 3、解方程组 .328,1258=-=+y x y x 比较简便的方法是( ) A 、代入法 B 、加减法 C 、试数法 D 、无法确定4、若方程组.9.3053,1332=+=-b a b a 的解是 .2.1,3.8==b a 则方程组 .9.30)1(5)2(3,13)1(3)2(2=-++=--+y x y x 的解是( ) A 、 2.23.6==y x B 、 2.13.8==y x C 、 2.23.10==y x D 、 2.03.10==y x 5、若二元一次方程123=-y x 的解为正整数,则x 的值为( )A 、奇数B 、偶数C 、奇数或偶数D 、06、已知 .83,123=+=+y x y x 那么y x +的值是( ) A 、0 B 、5 C 、1- D 、17、如果0124323=+---m n n m y x 是二元一次方程,那么m 、n 的值分别为( )A 、2、3B 、2、1C 、1- 、2D 、3、48、一个两位数,他的个位数与十位数的和为4,那么符合条件的两位数为( )A 、3个B 、4个C 、5个D 、无数个9、在向汶川地震灾区献爱心活动中,西关小学捐给五年级一批图书,如果该年级每个同学分6本还差6本,如果 每个同学分5本则多出5本,则五年级共有同学( )名。

七年级数学下册《第八章二元一次方程组》测试卷及答案(人教版)

七年级数学下册《第八章二元一次方程组》测试卷及答案(人教版)

七年级数学下册《第八章二元一次方程组》测试卷及答案(人教版)一、单选题(本大题共12小题,每小题3分,共36分)1.中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个.问:苦、甜果各有几个?设苦果有x个,甜果有y个,则可列方程组为()A.100041199979x yx y+=⎧⎪⎨+=⎪⎩B.100079909411x yx y+=⎧⎪⎨+=⎪⎩C.100079999x yx y+=⎧⎨+=⎩D.1000411999x yx y+=⎧⎨+=⎩2.如图,某农家乐老板计划在一块长130米,宽60米的空地开挖两块形状大小相同的垂钓鱼塘,它们的面积之和为5750平方米,两块垂钓鱼塘之间及周边留有宽度相等的垂钓通道,则垂钓通道的宽度为()A.4.5m B.5m C.5.5m D.6m3.已知方程组23133530.9a ba b-=⎧⎨+=⎩的解是8.31.2ab=⎧⎨=⎩,则()()()()2213313230.951x yx y⎧-=++⎪⎨-=-+⎪⎩的解是()A.8.31.2xy=⎧⎨=⎩B.10.32.2xy=⎧⎨=⎩C.6.32.2xy=⎧⎨=⎩D.10.30.2xy=⎧⎨=⎩4.若关于x,y的二元一次方程组2245x y kx y k+=⎧⎨-=⎩的解满足1x y-=,则k的值是()A.1B.2C.3D.45.方程组233730x yx zx y z+=⎧⎪-=⎨⎪-+=⎩的解为()A .211x y z =⎧⎪=⎨⎪=-⎩B .211x y z =⎧⎪=-⎨⎪=⎩C .211x y z =⎧⎪=-⎨⎪=-⎩D .211x y z =⎧⎪=⎨⎪=⎩6.已知21x y =⎧⎨=-⎩是方程23x y m -=的解,则m 的值为( ) A .7 B .7- C .1 D .1-7.若关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是23x y =⎧⎨=-⎩,则关于m ,n 的二元一次方程组()()()()111222a m n b m n c a m n b m n c ⎧-++=⎪⎨-++=⎪⎩的解是( ) A .1252m n ⎧=-⎪⎪⎨⎪=-⎪⎩ B .1252m n ⎧=-⎪⎪⎨⎪=⎪⎩ C .5212m n ⎧=-⎪⎪⎨⎪=-⎪⎩ D .5212m n ⎧=⎪⎪⎨⎪=⎪⎩8.若等式||2(1)3m x m y +-=,是关于x ,y 的二元一次方程,则m 的值是( )A .1±B .1C .1-D .2±9.已知关于x ,y 的二元一次方程组=12+=3ax by ax by -⎧⎨⎩的解为=1=1x y ⎧⎨-⎩,那么代数式2a b -的值为( ) A .-2 B .2 C .3 D .- 310.若关于x 、y 的二元一次方程组3749ax y x y +=⎧⎨+=⎩与5358x y x by -+=⎧⎨+=⎩) A .1 B .1± C .2 D .2±11.若关于x ,y 的方程组()()()()111222a x y b x y c a x y b x y c ⎧+--=⎪⎨+--=⎪⎩,解为20222023x y =⎧⎨=⎩.则关于x ,y 的方程组1112221515a x b y c a x b y c ⎧+=⎪⎪⎨⎪+=⎪⎩的解是( )A .80915x y =⎧⎪⎨=⎪⎩B .40451x y =⎧⎨=⎩C .20222023x y =⎧⎨=⎩D .2022520235x y ⎧=⎪⎪⎨⎪=-⎪⎩12.已知21x y =⎧⎨=-⎩是关于x ,y 的二元一次方程组522ax by bx ay +=-⎧⎨-=⎩的解,则a +b 的值为( ) A .﹣5 B .﹣1 C .3 D .7二、填空题(本大题共8小题,每小题3分,共24分)13.若实数m ,n 满足5240m n m n --+-=∣∣,则3m n +=__________.14.若关于x ,y 的二元一次方程组9876x y m x y n -=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()()()91827162a b m a b n ⎧--+=⎪⎨-++=⎪⎩的解为_______. 15.已知x ,y ,z 满足438324x y z +++==,且212x y z -+=,则x =____________. 16.若关于x ,y 的方程()12m m x y --=是一个二元一次方程,则m 的值为_____________.17.若方程组2439x y ax y -=⎧⎨+=⎩无解,则a 的值为________ 18.重庆某大学对重庆某村实施“技术助农”.该村种植有A 、B 、C 三种经济作物,助农前,A ,B ,C 三种作物亩数比例为2:5:3;助农后,三种经济作物的亩数都得以增加,其中B 作物增加的亩数占总增加亩数的16.助农前,C 作物的亩产量是B 作物亩产量的2.5倍,A ,B 两种作物的亩产量之和恰好是C 作物的亩产量;助农后,A ,B 两种作物的亩产量分别增加了13和12,A ,B 两种作物的亩产量之和恰好仍是C 作物的亩产量.若助农后,B 作物的产量比助农前A ,B 产量之和多332,而C 作物的产量比助农前A ,B ,C 三种作物产量的总和还多5%,则助农前后A 作物的产量之比为__________.19.已知关于x ,y 的二元一次方程组21346x y a x y a +=-+⎧⎨-=+⎩(a 是常数),若不论a 取什么实数,代数式kx y -(k 是常数)的值始终不变,则k =______.20.已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是49x y =⎧⎨=⎩,则与方程组111222234234a x b y c a x b y c +=⎧⎨+=''''⎩ 有关的2x y ''-的值为_____.三、解答题(本大题共5小题,每小题8分,共40分)21.解下列二元一次方程组:(1)=23+10=0y x x y -⎧⎨⎩(2)2+3=53+2=5x y x y -⎧⎨⎩22.“冰墩墩”和“雪容融”分别是北京2022年冬奥会和冬残奥会的吉祥物.某冬奥官方特许商品零售店购进了一批同一型号的“冰墩墩”和“雪容融”玩具,连续两个月的销售情况如表:求此款“冰墩墩”和“雪容融”玩具的零售价格.23.解方程组:(1)231915x yx y+=-⎧⎨=-⎩(用代入消元法)(2)49231x yx y-=⎧⎨+=⎩(用加减消元法)24.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)请自行写出一个除上述你方程外的“和解方程”:______(3)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.25.已知一个三位数=m abc,如果它的百位数字加上2与十位数字加上5的和等于个位数字加上8,则称这个三位数叫“258数”.如:245,∵()()22455813+++=+=,∵245是“258数”;437,∵()()423514+++= 7815+=,14≠15,∵437不是“258数”.(1)请根据材料判断526和738是不是“258数”,并说明理由;(2)若“258数”=m abc (19a b c ≤<<≤,且a ,b 、c 均为整数)能被3整除,请求出所有符合题意的m 的值.参考答案:1.A2.B3.D4.A5.C6.A7.A8.C9.B10.C11.A12.B13.714.20a b =⎧⎨=⎩ 15.1416.-117.-618.90:27119.-120.16-21.(1)24x y =⎧⎨=⎩;(2)55x y =-⎧⎨=⎩.22.此款“冰墩墩”玩具的零售价格为118元,“雪容融”玩具的零售价格为75元23.(1)143x y =-⎧⎨=⎩ (2)21x y =⎧⎨=-⎩24.(1)92m=-(2)1643x(答案不唯一)(3)23,3m n=-=-25.(1)526是“258数”,738不是“258数”,(2)267、627、357、537。

人教版七年级数学下册第八单元测试题及答案.docx

人教版七年级数学下册第八单元测试题及答案.docx

12(第6题)七年级数学第八章《二元一次方程组》测试卷班级 _______ 姓名 ________ 坐号 _______ 成绩 _______一、选择题(每小题3分,共24分)1、下列各组数是二元一次方程⎩⎨⎧=-=+173x y y x 的解是( )A 、⎩⎨⎧==21y xB 、⎩⎨⎧==10y xC 、⎩⎨⎧==07y x D 、⎩⎨⎧-==21y x 2、方程⎩⎨⎧=+=+10by x y ax 的解是 ⎩⎨⎧-==11y x ,则a ,b 为( )A 、⎩⎨⎧==10b aB 、⎩⎨⎧==01b aC 、⎩⎨⎧==11b aD 、⎩⎨⎧==00b a3、|3a +b +5|+|2a -2b -2|=0,则2a 2-3ab 的值是( )A 、14B 、2C 、-2D 、-44、解方程组⎩⎨⎧=-=+534734y x y x 时,较为简单的方法是( )A 、代入法B 、加减法C 、试值法D 、无法确定5、某商店有两进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店( )A 、赔8元B 、赚32元C 、不赔不赚D 、赚8元6、一副三角板按如图摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到的方程组为( )A 、⎩⎨⎧=+-=18050y x y xB 、⎩⎨⎧=++=18050y x y xC 、⎩⎨⎧=+-=9050y x y xD 、⎩⎨⎧=++=9050y x y x 7、李勇购买80分与100分的邮票共16枚,花了14元6角,购买80分与100分的邮票的枚数分别是( )A 、6,10B 、7,9C 、8,8D 、9,78、两位同学在解方程组时,甲同学由⎩⎨⎧=-=+872y cx by ax 正确地解出⎩⎨⎧-==23y x ,乙同学因把C 写错了解得 ⎩⎨⎧=-=22y x ,那么a 、b 、c 的正确的值应为( ) A 、a =4,b =5,c =-1 B 、a =4,b =5,c =-2C 、a =-4,b =-5,c =0D 、a =-4,b =-5,c =2二、填空(每小题3分,共18分)9、如果⎩⎨⎧-==13y x 是方程3x -ay =8的一个解,那么a =_________。

人教版七年级数学下册第八章综合检测卷含答案

人教版七年级数学下册第八章综合检测卷含答案

人教版七年级数学下册第八章综合检测卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列方程组中,是二元一次方程组的是( )A .⎩⎪⎨⎪⎧x +13=1,y =x 2B .⎩⎨⎧3x -y =5,2y -z =6C .⎩⎪⎨⎪⎧x 5+y 2=1,xy =1D .⎩⎪⎨⎪⎧x 2=3,y -2x =42.【教材P 93练习T 1变式】已知2x -3y =1,用含x 的式子表示y 正确的是( )A .y =23x -1B .x =3y +12C .y =2x -13D .y =-13-23x3.已知⎩⎨⎧x =1,y =2是关于x ,y 的方程x +ky =3的一个解,则k 的值为( )A .-1B .1C .2D .34.用代入法解方程组⎩⎨⎧2y -3x =1,x =y -1,下面的变形正确的是( )A .2y -3y +3=1B .2y -3y -3=1C .2y -3y +1=1D .2y -3y -1=15.【教材P 109活动1变式】以二元一次方程组⎩⎨⎧x +3y =7,y -x =1的解为坐标的点(x ,y )在平面直角坐标系的( )A .第一象限B .第二象限C .第三象限D .第四象限6.有一个两位数和一个一位数,它们的和为39,若将两位数放在一位数的前面,得到的三位数比将一位数放在两位数的前面得到的三位数大27,求这两个数.若设两位数是x ,一位数是y ,则可列方程组为( ) A .⎩⎨⎧x +y =39,xy -yx =27 B .⎩⎨⎧x +y =39,10x +y +27=100y +xC .⎩⎨⎧x +y =39,10x +y -27=10y +xD .⎩⎨⎧x +y =39,10x +y -(+x )=277.如果方程组⎩⎨⎧3x +7y =10,ax +(a -1)y =5的解满足x 与y 的值相等,那么a 的值是( )A .1B .2C .3D .48.定义运算“*”,规定x *y =ax 2+by ,其中a ,b 为常数,且1*2=5,2*1=6,则2*3=( )A .8B .9C .10D .129.甲、乙两个工程队各有员工80人、100人,现在从外部调90人充实两队,调配后甲队人数是乙队人数的23,则甲、乙两队分别分到的人数为( ) A .50,40 B .36,54 C .28,62 D .20,7010.利用两块完全一样的长方体木块测量一张桌子的高度,首先按图①所示的方式放置,再交换两木块的位置,按图②所示的方式放置,测量的数据如图,则桌子的高度等于( )A .80 cmB .75 cmC .70 cmD .65 cm二、填空题:本大题共5小题,每小题3分,共15分.11.已知(n -1)x |n |-2y m -2 024=0是关于x ,y 的二元一次方程,则nm =________. 12.方程组⎩⎨⎧x +y =12,y =2的解为________.13.已知⎩⎨⎧x =2,y =1是二元一次方程组⎩⎨⎧mx +ny =7,nx -my =1的解,则m +3n 的立方根为________.14.在“实践与探究”的数学活动中,让一组和二组分别用8个一样大小的长方形纸片进行拼图.一组拼成一个如图①所示的大长方形;二组拼成一个如图②所示的正方形,但中间留下一个边长为4 cm 的小正方形.据此计算出每个小长方形的面积是__________cm 2.15.【教材P 102习题T 4变式】机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个.已知2个大齿轮与3个小齿轮配成一套,则安排________名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套. 三、解答题(一):本大题共3小题,每小题8分,共24分. 16.【教材P 111复习题T 3变式】解方程组:(1)⎩⎨⎧x -2y =3,3x +y =2; (2)⎩⎪⎨⎪⎧x 3-y 2=6,x -y 2=9;(3)⎩⎨⎧x -y +z =0,4x +2y +z =0,25x +5y +z =60.17.【教材P 106习题T 5变式】已知y =x 2+px +q ,当x =1时,y =2;当x =-2时,y =2.求p 和q 的值.18.若关于x ,y 的二元一次方程组⎩⎨⎧x +y =3,mx +ny =8与⎩⎨⎧x -y =1,mx -ny =4有相同的解.(1)求这个相同的解; (2)求m -n 的值.四、解答题(二):本大题共3小题,每小题9分,共27分. 19.阅读材料:在解方程组⎩⎨⎧2x +5y =3①,4x +11y =5②时,萌萌采用了一种“整体代换”的解法.解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③. 把方程①代入③,得2×3+y =5, ∴y =-1,把y =-1代入①,得x =4, ∴原方程组的解为⎩⎨⎧x =4,y =-1.请模仿萌萌的“整体代换”法解方程组⎩⎨⎧4x -3y =6,8x -7y =18.20.某同学在解关于x ,y 的方程组⎩⎨⎧ax +by =2,cx -7y =8时,本应得出解为⎩⎨⎧x =3,y =-2,由于看错了系数c ,而得到⎩⎨⎧x =-2,y =2,求a +b -c 的值.21.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元,求该商场计划购进甲、乙两种手机各多少部.五、解答题(三):本大题共2小题,每小题12分,共24分.22.在平面直角坐标系中,已知点A(x,y),点B(x-my,mx-y) (其中m为常数,且m≠0),则称B是点A的“m族衍生点”.例如:点A(1,2) 的“3族衍生点”B 的坐标为(1-3×2,3×1-2),即B(-5,1).(1)点(2,0)的“2族衍生点”的坐标为__________;(2)若点A的“3族衍生点”B的坐标是(-1,5) ,求点A的坐标;(3)若点A(x,0)(其中x≠0),点A的“m族衍生点”为点B,且AB=OA,求m的值.23.已知用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货18吨.某物流公司现有35吨货物,计划同时租用A型车a辆,B型车b辆,将货物一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案.(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费用.答案一、1.D 2.C 3.B 4.A 5.A 6.D 7.C8.C 点拨:根据题意得⎩⎨⎧a +2b =5,4a +b =6.解得⎩⎨⎧a =1,b =2.则2*3=4a +3b =4+6=10.9.C 10.B二、11.-1 12.⎩⎨⎧x =10,y =2 13.2 14.24015.25 点拨:设安排x 名工人加工大齿轮,y 名工人加工小齿轮,则依题意有⎩⎪⎨⎪⎧x +y =85,16x 2=10y 3,解得⎩⎨⎧x =25,y =60.三、16.解:(1)⎩⎨⎧x -2y =3,①3x +y =2,②由①,得x =3+2y .③将③代入②,得9+6y +y =2,即y =-1. 将y =-1代入③,得x =3-2=1. 所以原方程组的解为⎩⎨⎧x =1,y =-1.(2)⎩⎪⎨⎪⎧x 3-y 2=6,①x -y 2=9,②②-①,得23x =3,解得x =92.将x =92代入①,得32-y2=6,解得y =-9. 所以原方程组的解为⎩⎪⎨⎪⎧x =92,y =-9.(3)⎩⎨⎧x -y +z =0,①4x +2y +z =0,②25x +5y +z =60,③②-①,得3x +3y =0,④③-①,得24x +6y =60,⑤④和⑤组成方程组⎩⎨⎧3x +3y =0,24x +6y =60,解得⎩⎪⎨⎪⎧x =103,y =-103.将⎩⎪⎨⎪⎧x =103,y =-103代入①,得z =-203.所以原方程组的解为⎩⎪⎨⎪⎧x =103,y =-103,z =-203.17.解:根据题意,得⎩⎨⎧1+p +q =2,4-2p +q =2,解得⎩⎨⎧p =1,q =0,∴p 的值是1,q 的值是0.18.解:(1)根据题意可得,x ,y 满足方程组⎩⎨⎧x +y =3,x -y =1,解得⎩⎨⎧x =2,y =1.故这个相同的解为⎩⎨⎧x =2,y =1. (2)将⎩⎨⎧x =2,y =1代入方程组⎩⎨⎧mx +ny =8,mx -ny =4,可得⎩⎨⎧2m +n =8,2m -n =4,解得⎩⎨⎧m =3,n =2,所以m -n =3-2=1.四、19.解:⎩⎨⎧4x -3y =6①,8x -7y =18②,将方程②变形:8x -6y -y =18,即2(4x -3y )-y =18③, 把方程①代入③,得2×6-y =18,∴y =-6, 把y =-6代入①,得x =-3, ∴原方程组的解为⎩⎨⎧x =-3,y =-6.20.解:把⎩⎨⎧x =3,y =-2,⎩⎨⎧x =-2,y =2分别代入ax +by =2,得⎩⎨⎧3a -2b =2,-2a +2b =2,解得⎩⎨⎧a =4,b =5,将⎩⎨⎧x =3,y =-2代入cx -7y =8,得3c +14=8, 解得c =-2,则a +b -c =4+5+2=11.21.解:设该商场计划购进甲种手机x 部,乙种手机y 部.由题意得⎩⎨⎧0.4x +0.25y =15.5,(0.43-0.4)x +(0.3-0.25)y =2.1,解得⎩⎨⎧x =20,y =30.答:该商场计划购进甲种手机20部,乙种手机30部. 五、22.解:(1)(2,4)(2)设点A 的坐标为 (x ,y ),由题意可得⎩⎨⎧-1=x -3y ,5=3x -y ,解得⎩⎨⎧x =2,y =1, ∴点A 的坐标为(2,1).(3)∵点A (x ,0),∴OA =|x |,点A 的“m 族衍生点”为点B (x ,mx ), ∴AB =|mx |.∵AB =OA ,∴|x |=|mx |,∴m =±1.23.解:(1)设1辆A 型车和1辆B 型车都载满货物一次可分别运货x 吨、y 吨,依题意得⎩⎨⎧3x +2y =17,2x +3y =18,解得⎩⎨⎧x =3,y =4.答:1辆A 型车载满货物一次可运货3吨,1辆B 型车载满货物一次可运货4吨.(2)依题意得3a +4b =35,∴a =35-4b3.∵a ,b 都是正整数,∴⎩⎨⎧a =9,b =2或⎩⎨⎧a =5,b =5或⎩⎨⎧a =1,b =8.∴有3种租车方案:方案一:租用A 型车9辆,B 型车2辆; 方案二:租用A 型车5辆,B 型车5辆; 方案三:租用A 型车1辆,B 型车8辆. (3)方案一:9×200+2×240=2 280(元); 方案二:5×200+5×240=2 200(元); 方案三:1×200+8×240=2 120(元). ∵2 280>2 200>2 120,∴最省钱的租车方案是方案三:租用A 型车1辆,B 型车8辆,最少租车费用为2 120元.。

人教版七年级数学下册-第8章-二元一次方程组--单元提优测试题(Word版附答案)

人教版七年级数学下册-第8章-二元一次方程组--单元提优测试题(Word版附答案)

人教版七年级数学 第8章《二元一次方程组》单元提优测试题完成时间:120分钟 满分:150分姓名 成绩10小题,每小题4分,共40分。

每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)1.已知x2m-1+3y4-2n=-7是关于x ,y 的二元一次方程,则m ,n 的值是( )A. ⎩⎨⎧m =2n =1 B. ⎩⎪⎨⎪⎧m =1n =-32 C. ⎩⎪⎨⎪⎧m =1n =52 D. ⎩⎪⎨⎪⎧m =1n =322.小明到商店购买“五四青年节”活动奖品,购买20只铅笔和10本笔记本共需110元,购买30支铅笔和5本笔记本共需85元.设每支铅笔x 元,每本笔记本y 元,则可列方程组( ) A. ⎩⎨⎧20x +30y =11010x +5y =85 B. ⎩⎨⎧20x +10y =11030x +5y =85 C. ⎩⎨⎧20x +5y =11030x +10y =85 D. ⎩⎨⎧5x +20y =11010x +30y =85 3.若34x 2a+b y 3及34x 6y a-b的和是单项式,则a +b =( ) A. -3 B. 0 C. 3 D. 6 4.已知|a +b -1|+2a +b -2=0,则(a -b)2 017的值为( )A. 1B. -1C. 2 017D. -2 017 5.若方程mx +ny =6的两个解是⎩⎨⎧x =1,y =1,⎩⎨⎧x =2,y =-1,则m ,n 的值为( ) A. 4,2 B. 2,4 C. -4,-2 D. -2,-46.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马拉1片瓦,问有多少匹大马,多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A. ⎩⎨⎧x +y =1003x +3y =100 B. ⎩⎪⎨⎪⎧x +y =100x +13y =100 C. ⎩⎪⎨⎪⎧x +y =1003x +13y =100 D. ⎩⎨⎧x +y =1003x +y =100 7.父子二人并排垂直站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身身高的17,父子二人的身高之和为3.2米.若设爸爸的身高为x 米,儿子的身高为y 米,则可列方程组为( ) A. ⎩⎪⎨⎪⎧x +y =3.2(1+17)x =(1+13)y B. ⎩⎪⎨⎪⎧x +y =3.2(1-17)x =(1-13)y C. ⎩⎪⎨⎪⎧x +y =3.213x =17y D. ⎩⎪⎨⎪⎧x +y =3.2(1-13)x =(1-17)y 8.端午节前夕,某超市用1 680元购进A ,B 两种商品共60件,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件,B 型商品y 件,依题意列方程组正确的是( )A. ⎩⎨⎧x +y =6036x +24y =1 680B. ⎩⎨⎧x +y =6024x +36y =1 680C. ⎩⎨⎧36x +24y =60x +y =1 680D. ⎩⎨⎧24x +36y =60x +y =1 6809.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( ) A. 50人,40人 B. 30人,60人 C. 40人,50人 D. 60人,30人10.通讯员要在规定时间内到达某地,若每小时走15千米,则可提前24分钟到达某地;若每小时走12千米,则要迟到15分钟.设通讯员到达某地的路程是x 千米,原定的时间为y 小时,则可列方程组为( ) A. ⎩⎨⎧x 15-15=y x 12+12=y B. ⎩⎨⎧x 15+15=y x 12-12=y C. ⎩⎨⎧x 15-2460=y x 12-1560=y D. ⎩⎨⎧x 15+2460=y x 12-1560=y二、填空题(每题5分,共20分)11.小刚解出了方程组⎩⎨⎧3x -y =3,2x +y =▲,解为⎩⎨⎧x =4,y =◆,因不小心滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则▲= ,◆= .12.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 .13.小林、小芳和小亮三人玩飞镖游戏,各投5支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是 分.14.一个两位数的十位数字及个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字及个位数字对调后所组成的新两位数,则原来的两位数为三、解答题(共90分)15.(8分)解下列二元一次方程组:(1)⎩⎨⎧3x +2y =19,①2x -y =1.② (2)⎩⎨⎧4x +3y =14,①3x +2y =22;②16.(8分)“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,求1套文具和1套图书各需多少元? 17.(8分)已知⎩⎨⎧x =2,y =-1是方程组⎩⎨⎧ax +y =b ,4x -by =a +5的解,求a ,b 的值.18.(8分)甲、乙两人共同解方程组⎩⎨⎧ax +5y =15,①4x -by =-2,②由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧x =5,y =4.试计算a2017+(-110b)2 018的值. 19.(10分)甲、乙两位同学一起解方程组⎩⎨⎧ax +by =2,cx -3y =-2,甲正确地解得⎩⎨⎧x =1,y =-1,乙仅因抄错了题中的c ,解得⎩⎨⎧x =2,y =-6,求原方程组中a ,b ,c 的值.20.(10分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/公里计算,耗时费按q 元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数及车速如表:(1)求p ,q 的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少? 21.(12分)学校“百变魔方”社团准备购买A ,B 两种魔方,已知 购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔 方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个.某商店有两种优惠活动,如图所示.请根据以上信息,购进A 种魔方多少个时,两种活动费用相同?22.(12分)某景点的门票价格如下表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人.如果两班都以班为单位单独购票,那么一共支付1 118元,如果两班联合起来作为一个团体购票,那么只需花费816元. (1)两个班各有多少名学生?(2)团体购票及单独购票相比较,两个班各节约了多少钱?23.(14分)“五一”期间,步步高超市进行兑换活动,亮亮妈妈的积分卡里有7 000 分,她看了看兑换方法后(见表),兑换了两种礼品共5件并刚好用完积分,请你求出亮 亮妈妈的兑换方法.人教版七年级数学 第8章《二元一次方程组》单元提优测试题参 考 答 案1.已知x2m-1+3y4-2n=-7是关于x ,y 的二元一次方程,则m ,n 的值是( D )A. ⎩⎨⎧m =2n =1 B. ⎩⎪⎨⎪⎧m =1n =-32 C. ⎩⎪⎨⎪⎧m =1n =52 D. ⎩⎪⎨⎪⎧m =1n =322.小明到商店购买“五四青年节”活动奖品,购买20只铅笔和10本笔记本共需110元,购买30支铅笔和5本笔记本共需85元.设每支铅笔x 元,每本笔记本y 元,则可列方程组( B )A. ⎩⎨⎧20x +30y =11010x +5y =85B. ⎩⎨⎧20x +10y =11030x +5y =85C. ⎩⎨⎧20x +5y =11030x +10y =85D. ⎩⎨⎧5x +20y =11010x +30y =85 3.若34x 2a+b y 3及34x 6y a-b的和是单项式,则a +b =( C ) A. -3 B. 0 C. 3 D. 6 4.已知|a +b -1|+2a +b -2=0,则(a -b)2 017的值为( A )A. 1B. -1C. 2 017D. -2 017 5.若方程mx +ny =6的两个解是⎩⎨⎧x =1,y =1,⎩⎨⎧x =2,y =-1,则m ,n 的值为( A ) A. 4,2 B. 2,4 C. -4,-2 D. -2,-46.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马拉1片瓦,问有多少匹大马,多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( C ) A. ⎩⎨⎧x +y =1003x +3y =100 B. ⎩⎪⎨⎪⎧x +y =100x +13y =100C. ⎩⎪⎨⎪⎧x +y =1003x +13y =100 D. ⎩⎨⎧x +y =1003x +y =100 7.父子二人并排垂直站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身身高的17,父子二人的身高之和为3.2米.若设爸爸的身高为x 米,儿子的身高为y 米,则可列方程组为( D ) A. ⎩⎪⎨⎪⎧x +y =3.2(1+17)x =(1+13)y B. ⎩⎪⎨⎪⎧x +y =3.2(1-17)x =(1-13)y C. ⎩⎪⎨⎪⎧x +y =3.213x =17y D. ⎩⎪⎨⎪⎧x +y =3.2(1-13)x =(1-17)y 8.端午节前夕,某超市用1 680元购进A ,B 两种商品共60件,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件,B 型商品y 件,依题意列方程组正确的是( B )A. ⎩⎨⎧x +y =6036x +24y =1 680B. ⎩⎨⎧x +y =6024x +36y =1 680C. ⎩⎨⎧36x +24y =60x +y =1 680D. ⎩⎨⎧24x +36y =60x +y =1 6809.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( C )A. 50人,40人B. 30人,60人C. 40人,50人D. 60人,30人10.通讯员要在规定时间内到达某地,若每小时走15千米,则可提前24分钟到达某地;若每小时走12千米,则要迟到15分钟.设通讯员到达某地的路程是x 千米,原定的时间为y 小时,则可列方程组为( D ) A. ⎩⎨⎧x 15-15=y x 12+12=y B. ⎩⎨⎧x 15+15=y x 12-12=y C. ⎩⎨⎧x 15-2460=y x 12-1560=y D. ⎩⎨⎧x 15+2460=y x 12-1560=y二、填空题(每题5分,共20分)11.小刚解出了方程组⎩⎨⎧3x -y =3,2x +y =▲,解为⎩⎨⎧x =4,y =◆,因不小心滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则▲= 17 ,◆= 9 .12.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 ⎩⎪⎨⎪⎧y -x =4.5y 2=x -1 .13.小林、小芳和小亮三人玩飞镖游戏,各投5支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是 21 分.14.一个两位数的十位数字及个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字及个位数字对调后所组成的新两位数,则原来的两位数为 35. 三、解答题(共90分)15.(8分)解下列二元一次方程组:(1)⎩⎨⎧3x +2y =19,①2x -y =1.② (2)⎩⎨⎧4x +3y =14,①3x +2y =22;② 解:由②,得y =2x -1.③ 将③代入①,得3x +4x -2=19. 解得x =3.将x =3代入③,得y =5. ∴原方程组的解为⎩⎨⎧x =3,y =5.16.(8分)“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,求1套文具和1套图书各需多少元? 解:设1套文具的价格为x 元,一套图书的价格为y 元,根据题意,得⎩⎨⎧x +3y =104,3x +2y =116, 解得⎩⎨⎧x =20,y =28.答:1套文具和1套图书各需20元、28元.17.(8分)已知⎩⎨⎧x =2,y =-1是方程组⎩⎨⎧ax +y =b ,4x -by =a +5的解,求a ,b 的值.解:把⎩⎨⎧x =2,y =-1代入⎩⎨⎧ax +y =b ,4x -by =a +5得⎩⎨⎧2a -1=b ,①8+b =a +5.②把①代入②,得8+(2a -1)=a +5. 解得a =-2.把a =-2代入①,得2×(-2)-1=b. 解得b =-5. ∴a =-2,b =-5.18.(8分)甲、乙两人共同解方程组⎩⎨⎧ax +5y =15,①4x -by =-2,②由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧x =5,y =4.试计算a2017+(-110b)2 018的值. 解:把⎩⎨⎧x =-3,y =-1代入方程②中,得4×(-3)-b×(-1)=-2,解得b =10. 把⎩⎨⎧x =5,y =4代入方程①中,得 5a +5×4=15,解得a =-1. ∴a2 017+(-110b)2 018=(-1)2 017+(-110×10)2 018=(-1)+1=0. 19.(10分)甲、乙两位同学一起解方程组⎩⎨⎧ax +by =2,cx -3y =-2,甲正确地解得⎩⎨⎧x =1,y =-1,乙仅因抄错了题中的c ,解得⎩⎨⎧x =2,y =-6,求原方程组中a ,b ,c 的值.解:把⎩⎨⎧x =1,y =-1代入⎩⎨⎧ax +by =2,cx -3y =2中,得⎩⎨⎧a -b =2,c +3=-2,∴⎩⎨⎧a -b =2,c =-5.由题意知:⎩⎨⎧x =2,y =-6是方程ax +by =2的解,∴2a -6b =2,即a -3b =1. 联立⎩⎨⎧a -b =2,a -3b =1,解得⎩⎨⎧a =52,b =12.故a =52,b =12,c =-5. 20.(10分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/公里计算,耗时费按q 元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数及车速如表:(1)求p ,q 的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少? 解:(1)由题意,得⎩⎨⎧8p +8q =12,10p +12q =16. 解得⎩⎪⎨⎪⎧p =1,q =12.(2)小华的里程数是11 km ,时间为12 min. 则总费用是:11p +12q =17(元).答:总费用是17元.21.(12分)学校“百变魔方”社团准备购买A ,B 两种魔方,已知购买2个A 种魔方 和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同. (1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个. 某商店有两种优惠活动,如图所示.请根据以上信息,购进A 种 魔方多少个时,两种活动费用相同?解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据题意,得⎩⎨⎧2x +6y =130,3x =4y , 解得⎩⎨⎧x =20,y =15.答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个. (2)设购进A 种魔方m 个,则购进B 种魔方(100-m)个,根据题意,得0.8×20m +0.4×15(100-m)=20m +15(100-m -m),解得m =45. 答:购进A 种魔方45个时,两种活动费用相同. 22.(12分)某景点的门票价格如下表:购票人数/人 1~50 51~100 100以上 每人门票价/元12108某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人.如果两班都以班为单位单独购票,那么一共支付 1 118元,如果两班联合起来作为一个团体购票,那么只需花费816元.(1)两个班各有多少名学生?(2)团体购票及单独购票相比较,两个班各节约了多少钱? 解:(1)设七年级(1)班有x 名学生,七年级(2)班有y 名学生. ①若两班人数多于50人且少于100人,则⎩⎨⎧12x +10y =1 118,10(x +y )=816.解得⎩⎨⎧x =151,y =-69.4.不合题意,舍去;②若两班人数多于100人,则⎩⎨⎧12x +10y =1 118,8(x +y )=816. 解得⎩⎨⎧x =49,y =53.答:七年级(1)班有49名学生,七年级(2)班有53名学生. (2)∵49×(12-8)=196,53×(10-8)=106,∴团体购票及单独购票相比较,七年级(1)班节约了196元,七年级(2)班节约了106元. 23.(14分)“五一”期间,步步高超市进行兑换活动,亮亮妈妈的积分卡里有7 000 分,她看了看兑换方法后(见表),兑换了两种礼品共5件并刚好用完积分,请你求出亮 亮妈妈的兑换方法.礼品表兑换礼品 积分 榨汁机一个 3 000分 电茶壶一个 2 000分 书包一个1 000分解:①设亮亮妈妈兑换了x 个电茶壶和y 个书包,由题意,得⎩⎨⎧2 000x +1 000y =7 000,x +y =5, 解得⎩⎨⎧x =2,y =3.②设亮亮妈妈兑换了x 个榨汁机和y 个书包,由题意,得⎩⎨⎧3 000x +1 000y =7 000,x +y =5, 解得⎩⎨⎧x =1,y =4.③设亮亮妈妈兑换x 个榨汁机和y 个电茶壶,由题意,得⎩⎨⎧3 000x +2 000y =7 000,x +y =5,解得⎩⎨⎧x =-3,y =8.不合题意,舍去.答:亮亮妈妈兑换了2个电茶壶和3个书包或1个榨汁机和4个书包.。

人教版最全七年级下册数学第八章同步练习测试题及答案

人教版最全七年级下册数学第八章同步练习测试题及答案

第八章 二元一次方程组 8.1 二元一次方程组复习检测(5分钟):1、下列各式中:(1)3x-y=2 ; (2) 0212=+x y ; (3) y-z=5 ; (4) xy= - 7; (5) 4x-3y ; (6)421=-y x; (7) x+y-z=5 ; (8) 5x+3=x-4y. 属于二元一次方程的个数有( )A .1个B 。

2个C 。

3个D 。

4个 2、已知方程3x+y=2,当x=2时,y=_____;当y=-1时,x=_____. 3、已知x=1,y=-3满足方程5x-ky=3,则k=_______.4、写出满足方程2x-3y=17 的三个不同解。

除了这三个解外,还有没有其它的解?一般地,一个二元一次方程通常有多少个解?5、已知有三对数值:⎩⎨⎧-==11y x ⎩⎨⎧==12y x ⎩⎨⎧==54y x ,哪一对是下列方程组的解?①⎩⎨⎧=+=-104332y x y x ②⎩⎨⎧=--=13433y x x y6、已知⎩⎨⎧==12y x 是方程组⎩⎨⎧=+=-31ny x y mx 的解,求2)(n m -的值。

7、一批零件有1500个,如果甲先做4天后,乙加入合作,再做8天正好完成;如果乙先做5天后,甲加入合作,再做7天也恰好完成。

设甲、乙两人每天分别加工零件x 、y 个,请根据题意列出方程组。

8.2二元一次方程组的解法(1)复习检测(5分钟)1、用含有x 的代数式表示y:(1)2x+y=1; (2)y-3x+1=0(3)4x -y =-1; (4)5x -10y +15=0.2、解下列二元一次方程组:(1)⎩⎨⎧=++=.83,23y x y x (2)⎩⎨⎧-==-.57,1734x y y x(3)⎩⎨⎧=+-=-.1023,5y x y x (4)⎩⎨⎧-=-=-.2.32,872x y y x(5)⎩⎨⎧=--=+894132t s t s (6)⎪⎩⎪⎨⎧=+=-923143y x yx8.2二元一次方程组的解法(2)复习检测(5分钟) 1、填空(1)二元一次方程组⎩⎨⎧=+=-31y x y x 的解是_________。

人教版七年级数学下册第八章《二元一次方程组》单元检测卷 (附答案)

人教版七年级数学下册第八章《二元一次方程组》单元检测卷 (附答案)
12.(黄石中考)一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表所示,现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销互动:购买三个及三个以上可一次性返现金4元,则购买盒子所需要最少费用为_______元.
型号
A
B
单个盒子容量(升)
2
3
单价(元)
5
6
三、解答题(共60分)
2.若 ,则ab=()
A.-10B.-40C.10D.40
【答案】A
【解析】
【分析】联立已知两方程求出a与b的值,即可求出ab的值.
【详解】解:联立得:
解得
∴ab=-10.
故选A.
3.若-2amb4与5an+2b2m+n可以合并成一项,则mn的值是( )
A.0B. C.1D.2
【答案】C
【解析】
【分析】根据-2amb4与5an+2b2m+n可以合并成一项,可得同类项,根据同类项的定义,可得m、n的值,根据乘方,可得答案.
18.阅读下列材料:
问题:某饭店工作人员第一次买了13只鸡、5只鸭、9只鹅共用了925元.第二次买了2只鸡、4只鸭、3只鹅共用了320元,试问第三次买了鸡、鸭、鹅各一只共需多少元?(假定三次购买鸡、鸭、鹅的单价不变)
解:设鸡、鸭、鹅的单价分别为x,y,z元.依题意,得

上述方程组可变形为 ,
设x+y+z=a,2x+z=b,上述方程组可化 : ,
13.解方程组:
(1)
(2)
14.已知 是关于x,y的二元一次方程3x=y+a的解,求a(a-1)的值.
15.已知关于x,y 方程组 与 有相同的解,求a,b的值.

2023-2024学年人教版数学七年级下册第八章 二元一次方程组 单元测试(含答案)

2023-2024学年人教版数学七年级下册第八章 二元一次方程组  单元测试(含答案)

1 10
ö2024 b÷÷ø
的值. 22.下面是小莹同学解二元一次方程组的过程,请认真阅读并完成相应任务.
2x 4 y 3① 解方程组 4……第一步
② ③,得 3y 6 .
…………………………第二步
解得 y 2 .

.
15.若关于
x,y
的方程组
x y 3x 5y
c1
c2
的解为
x
y
5 6
,则方程组
x 3
1 y 1 c1 x 1 5 y 1
c2
的解
为. 16.A,B 两地相距 80 千米,一船从 A 出发顺水行驶 4 小时到达 B,而从 B 出发逆水行驶 5 小时才能到达 A,则船在静水中的航行速度是 千米/时. 17.甲对乙说:“我像你这样大岁数的那年,你的岁数等于我今年的岁数的一半;当你到我 这样大岁数的时候,我的岁数是你今年岁数的二倍少 7 岁.”则今年甲的年龄为 岁, 乙 的年龄为 岁.
(1)1 辆 A 型车和 1 辆 B 型车都载满荔枝一次可分别运送多少吨? (2)请你帮该物流公司设计租车方案. 26.春节前夕,某商场用 14900 元购进矿泉水和无糖茶共 500 箱,它们的成本价与销售价如 下表所示:
类别 成本价/(元/箱) 销售价/(元/箱)
矿泉水
25
36
无糖茶
35
50
(1)商场这次购进矿泉水和无糖茶各多少箱? (2)该商场售完这 500 箱矿泉水和无糖茶,可获利多少元? 27.长江是我们的母亲河,金港新区为了打造沿江风景,吸引游客搞活经济,将一段长为 180 米的沿江河道整治任务交由 A、B 两工程队先后接力完成.A 工作队每天整治 12 米,B 工程 队每天整治 8 米,共用时 20 天.求 A、B 两工程队分别整治河道多少米? ⑴根据题意,七⑴班甲同学列出尚不完整的方程组如下.根据甲同学所列的方程组,请你分 别指出未知数 x、y 表示的意义,然后在方框中补全甲同学所列的方程组; x y 12x 8y ,x 表示________________________,y 表示_________________________;

人教版七年级数学下册第八章第三节解实际问题与二元一次方程组复习题(含答案) (3)

人教版七年级数学下册第八章第三节解实际问题与二元一次方程组复习题(含答案) (3)

人教版七年级数学下册第八章第三节解实际问题与二元一次方程组复习题(含答案) 已知:23x y ++与()22x y +的和为零,则x y -=( ) A .7B .5C .3D .1【答案】C【解析】【分析】 利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值,即可求出x −y 的值.【详解】根据题意得:|x +2y +3|+()22x y +=0, ∴2320x y x y +=-⎧⎨+=⎩①②, 由②得:y =−2x ③,③代入①得:x −4x =−3,即x =1,把x =1代入③得:y =−2,则x −y =1−(−2)=1+2=3.故选:C .【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元方法与加减消元法.22. 铭铭要用20元钱购买笔和本,两种物品都必须都买,20元钱全部用尽,若每支笔3元,每个本2元,则共有几种购买方案( )A.2 B.3 C.4 D.5【答案】B【解析】【分析】设购买x支笔,y个本,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结x,y均为正整数即可求出结论.【详解】解:设购买x支笔,y个本,依题意,得:3x+2y=20,∴y=10-32 x.∵x,y均为正整数,∴112 7x y =⎧⎨=⎩,2244xy=⎧⎨=⎩,3361xy=⎧⎨=⎩,∴共有3种购买方案.故选:B.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的基础,用一个变量表示另一个变量,进行整数解的讨论是解题的关键.二、解答题23.列方程组解应用题:《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买一只羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?【答案】合伙人是21人,羊价是150元.【解析】【分析】设合伙买羊的有x 人,羊价为y 钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【详解】解:设合伙人数是x 人、羊价是y 元,依题意得:54573x y x y +=⎧⎨+=⎩, 解得:21150x y =⎧⎨=⎩答:合伙人数是21人,羊价是150元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.李师傅负责修理我校课桌椅,现知道李师傅修理2张课桌和3把椅子共需86分钟,修理5张课桌和2把椅子共需149分钟.(1)请问李师傅修理1张课桌和1把椅子各需多少分钟(2)现我校有12张课桌和14把椅子需要修理,要求1天做完,李师傅每天工作8小时,请问李师傅能在上班时间内修完吗?【答案】(1)李师傅修理1张课桌需要25分钟,修理1把椅子需要12分钟;(2)李师傅能在上班时间内修完.【解析】【分析】(1)设李师傅修理1张课桌需要x分钟,修理1把椅子需要y分钟,根据“李师傅修理2张课桌和3把椅子共需86分钟,修理5张课桌和2把椅子共需149分钟”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)求出李师傅修理12张课桌和14把椅子所需时间,将其与8小时(480分钟)比较后即可得出结论.【详解】解:(1)设李师傅修理1张课桌需要x分钟,修理1把椅子需要y分钟,依题意,得:2386 52149x yx y+=⎧⎨+=⎩,解得:2512 xy=⎧⎨=⎩.答:李师傅修理1张课桌需要25分钟,修理1把椅子需要12分钟.(2)25×12+12×14=468(分钟),8小时=480分钟,∵468<480,∴李师傅能在上班时间内修完.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.甲、乙两人同解方程组232ax by cx y +=⎧⎨-=-⎩,甲正确解得11x y =⎧⎨=-⎩,乙因抄错c ,解得23x y =⎧⎨=-⎩,求a 2﹣b +c 的值. 【答案】9.【解析】【分析】把11x y =⎧⎨=-⎩代入②得出c +3=﹣2,求出c ,把11x y =⎧⎨=-⎩和23x y =⎧⎨=-⎩代入①得出2232a b a b -=⎧⎨-=⎩,求出a ,b ,再求出a 2﹣b +c 的值即可. 【详解】解:232ax by cx y +=⎧⎨-=-⎩①② 把11x y =⎧⎨=-⎩代入②得:c +3=﹣2, 解得:c =﹣5,把11x y =⎧⎨=-⎩和23x y =⎧⎨=-⎩代入①得:2232a b a b -=⎧⎨-=⎩, 解得:42a b =⎧⎨=⎩, 所以a 2﹣b +c =42﹣2﹣5=9.【点睛】本题考查了解二元一次方程组和二元一次方程组的解,根据方程解的概念将方程的解代入未抄错的方程中得出关于c 的方程和得出关于a 、b 的方程组是解此题的关键.26.如图,在平面直角坐标系xOy 中,把一个点P 的横、纵坐标都乘以同一个实数a ,然后将得到的点先向右平移m 个单位,再向上平移n 个单位(0,0)m n >>,得到点P '(1)若(2,1)P -,5a =,1m =,2n =,则点P '坐标是_____;(2)对正方形ABCD 及其内部的每个点进行上述操作,得到正方形A B C D ''''及其内部的点,其中点,A B 的对应点分别为,A B ''.求,,m n a ;(3)在(2)的条件下,己知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F '与点F 重合,求点F 的坐标.【答案】(1)(11,3)-;(2)12a =,12m =,2n =;(3)()1,4 【解析】【分析】 (1)根据题意和平移的性质求点P '坐标;(2)由正方形的性质,结合题意列方程组求解;(3)设点F 的坐标为(,)x y ,根据平移规律列方程组求解.【详解】(1)∵(2,1)P -,5a =,1m =,2n =,∴(251,152)P '⨯+-⨯+∴(11,3)P '-故答案为:(11,3)-;(2)根据题意得:313202a m a m a n -+=-⎧⎪+=⎨⎪⋅+=⎩解得12122a m n ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩即12a =,12m =,2n =; (3)设点F 的坐标为(,)x y ,根据题意得1122122x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得14x y =⎧⎨=⎩ ∴F 的坐标为()1,4.【点睛】本题主要考察平移变换,关键是掌握坐标系中平移变换与横、纵坐标的变化规律.27.我国古代有这样一个数学问题:以绳测井,若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺,绳长、井深各几何?大意是:用绳测量井深,若将绳子折成三等分(如图1),则一份绳长比并深多5尺;若将绳子折成四等分(如图2),则一份绳长比井深多1尺,求绳长和井深各是多少尺.【答案】绳长是48尺,井深是11尺【解析】【分析】设绳长是x 尺,井深是y 尺,根据绳子折叠后的长度与井深可列写2个方程,然后解二元一次方程可得.【详解】解:设绳长是x 尺,井深是y 尺 依据题意,得5,314x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩ 解这个方程组,得48,11.x y =⎧⎨=⎩苍:绳长是48尺,井深是11尺.【点睛】本题考查二元一次方程的运用,解题关键是将题干中的信息转化为等量关系式,然后列写等量方程.28.如图,在四边形ABCD 中,已知AB CD ∥,AD BC ∥,且AB BC ⊥.(1)填空:A ∠=_____,C ∠=______,D ∠=_______;(2)点E 为射线BC 上一任意一点,连接AE ,作DAE ∠的平分线AF ,交射线BC 于点F ,作AEC ∠的平分线EG ,交直线AD 于点G ,请探究射线AF 与EG 之间的位置关系,并加以证明;(3)连接AC ,若AC 恰好平分BAD ∠,则在(2)问的条件下,是否存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数)?若存在,求出x 的值;若不存在,请说明理由.【答案】(1)90︒;90︒;90︒(2)AF //EG ;证明见详解(3)存在;50x =︒、54x =︒或35711x ⎛⎫=︒ ⎪⎝⎭【解析】【分析】(1)根据垂直的定义、平行线的性质、四边形的内角和即可得解;(2)按照题目要求画出图形后,根据已知条件、角平分线的性质、平行线的性质和判定即可得到结论并证明;(3)结合图形根据平行线的性质、角平分线的性质、角的和差可列出360901x k ︒︒=︒-+,再由x 、k 的取值范围即可求得结论. 【详解】解:(1)∵AB BC ⊥∴90B ∠=︒∵//AB CD∴18090C B ∠=︒-∠=︒∵//AD BC∴18090D C ∠=︒-∠=︒∴36090A B C D ∠=︒-∠-∠-∠=︒;(2)按照题目要求作图:猜想:射线AF 与EG 的位置关系是:AF //EG 证明: ∵AF 平分DAE ∠,EG 平分BEA ∠ ∴12EAF DAE ∠=∠,12AEG BEA ∠=∠ ∵//DG BF∴DAE BEA ∠=∠∴EAF AEG ∠=∠∴AF //EG ;(3)在(2)问的条件下,连接AC ,如图:∵AF //EG ,//DG BF∴180AFB GEF ∠+∠=︒,DAF AFB ∠=∠∴180GEF DAF ∠+∠=︒∵GEF k DAF ∠=∠ ∴1801DAF EAF k ︒∠=∠=+ ∵BAE x ∠=︒ ∴1801809011x k k ︒︒︒++=︒++ ∴360901x k ︒︒=︒-+ ∵AC 恰好平分BAD ∠,由(1)可知90BAD ∠=︒ ∴1452BAC DAC BAD ∠=∠=∠=︒ ∵E 为射线BC 上一任意一点∴45BAE x ∠=︒>︒∵k 为不超过10的正整数∴当8k 时,50BAE x ∠=︒=︒;当9k =时,54BAE x ∠=︒=︒;当10k =时,35711BAE x ⎛⎫∠=︒=︒ ⎪⎝⎭∴存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数);50x =︒、54x =︒或35711x ⎛⎫=︒ ⎪⎝⎭. 【点睛】本题考查了垂直的定义、平行线的判定和性质、四边形的内角和、角的和差、根据要求画图、代入消元法、根据参数的取值范围求角的度数等知识点,熟练掌握相关知识点世界解决问题的关键.29.为加强爱国主义教育,提高思想道德素质,某中学决定组织部分班级去山西国民师范旧址革命活动纪念馆开展红色旅游活动,在参加此次活动的师生中,若每位教师带17名学生,还剩12名学生没人带;若每位教师带18名学生,就有一位教师少带4名学生.现有甲、乙两种大客车,两种客车的载客量和租金如下表所示.(1)参加此次红色旅游活动的教师和学生各有多少人?(2)为了安全,每辆客车上要有2名教师.则怎样租车可以保证师生均有车坐,而且每辆车上都没有空座,也不超载,此时租车的费用为多少元?【答案】(1)教师有16位,学生有284名;(2)应租用甲种客车3辆,乙种客车5辆,此时租车的费用为3000元【解析】【分析】(1)设教师有x 位,学生有y 名,根据题意列出方程组即可;(2)由(1)知每辆客车上要有2名教师需1628÷=辆车,设学校应租用甲种客车m 辆,乙种客车()8m -辆,根据学生和老师的总人数列出方程即可,再算出相应的费用.【详解】(1)设教师有x 位,学生有y 名,根据题意,得1712,18 4.x y x y =-⎧⎨=+⎩解,得16,284.x y =⎧⎨=⎩答:教师有16位,学生有284名.(2)1628÷=,需要租8辆车.设学校应租用甲种客车m 辆,乙种客车()8m -辆,根据题意,得()3042828416m m +-=+,解得3m =,85m -=,330054203000⨯+⨯=(元).答:应租用甲种客车3辆,乙种客车5辆,此时租车的费用为3000元.【点睛】本题考查了二元一次方程组、一元一次方程的实际应用,正确寻找等量关系是解题关键.30.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?【答案】每枚黄金重1434两,每枚白银重1174两 【解析】【分析】设每枚黄金重x 两,每枚白银重y 两,根据题意可得等量关系:①9枚黄金重量=11枚白银重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13,解方程即可.【详解】(1)设每枚黄金重x 两,每枚白银重y 两,根据题意,得()()911,10813.x y x y x y =⎧⎨+-+=⎩解得143,4117.4x y ⎧=⎪⎪⎨⎪=⎪⎩答:每枚黄金重1434两,每枚白银重1174两. 【点睛】 本题考查二元一次方程组实际应用,正确找出等量关系是解题关键.。

人教版七年级数学下册第八章综合测试卷含答案

人教版七年级数学下册第八章综合测试卷含答案

人教版七年级数学下册第八章综合测试卷一、选择题(每题3分,共30分)1.[2023·重庆一中月考]已知3x |m |+(m +1)y =6是关于x ,y 的二元一次方程,则m 的值为( ) A.1B.-1C.±1D.22.下列方程组中,是二元一次方程组的是( ) A.{x +13=1,y =x2 B.{3x -y =5,2y -z =6C.{x 5+y2=1,xy =1D.{x2=3,y -2x =43.用代入法解方程组{2y -3x =1,x =y -1,下面的变形正确的是( )A.2y -3y +3=1B.2y -3y -3=1C.2y -3y +1=1D.2y -3y -1=14.方程组{2x +y =■,x +y =3的解为{x =2,y =■,则被遮盖的两个数分别为( )A.1,2B.5,1C.2,3D.2,45.(母题:教材P109活动1)以二元一次方程组{x +3y =7,y -x =1的解为坐标的点(x ,y )在平面直角坐标系的( ) A.第一象限B.第二象限C.第三象限D.第四象限6.已知(x -y -3)2+|x +y -1|=0,则y x 的值为( ) A.-1B.1C.-2D.27.[2023·武汉江汉区月考]若m 为正整数,且二元一次方程组{mx +2y =10,3x -2y =0有整数解,则m 2+1的值为( ) A.5或10B.49C.4或49D.58.[2023·温州]一瓶牛奶的营养成分中,碳水化合物的含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30 g.设蛋白质、脂肪的含量分别为x g ,y g ,可列出方程为( ) A.52x +y =30B.x +52y =30C.32x +y =30D.x +32y =309.如图,利用两块相同的长方体木块(阴影部分)测量一件长方体物品的高度,首先按图①方式放置,再按图②方式放置,测量的数据如图,则长方体物品的高度是()A.73 cmB.74 cmC.75 cmD.76 cm10.为庆祝杭州亚运会胜利召开,某校开展了以亚运为主题的演讲活动,计划拿出180元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件15元,乙种奖品每件10元,则购买方案有()A.5种B.6种C.7种D.8种二、填空题(每题3分,共24分)11.[2023·清华附中期中]若一个二元一次方程组的解是{x=2,y=1,请写出一个符合此要求的二元一次方程组.12.(母题:教材P90习题T2)方程组{x+y=12,y=2的解为.13.方程2x+y=5的非负整数解有.14.若{x+y=1,2x+y=0的解是方程ax-3y=2的一组解,则a的值是.15.已知{x=2,y=1是二元一次方程组{mx+ny=7,nx-my=1的解,则m+3n的立方根为.16.定义运算“*”,规定x*y=ax2+by,其中a,b为常数,且1*2=5,2*1=6,则2*3=.17.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm.设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x = ,y = . 18.有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货 吨.三、解答题(19题16分,其余每题10分,共66分) 19.(母题:教材P111复习题T3)解方程组: (1){x -2y =3,3x +y =2;(2){x3-y2=6,x -y2=9;(3){3(x +y )-4(x -y )=6,x +y 2-x -y 6=1;(4){x -y +z =0,4x +2y +z =0,25x +5y +z =60.20.(母题:教材P106习题T5)已知y =x 2+px +q ,当x =1时,y =2;当x =-2时,y =2.求p 和q 的值. 21.若关于x ,y 的二元一次方程组{x +y =3,mx +ny =8与{x -y =1,mx -ny =4有相同的解.(1)求这个相同的解; (2)求m -n 的值.22.某种商品的包装盒是长方体,它的展开图如图所示.如果长方体包装盒的长比宽多4 cm,求这种商品包装盒的体积.23.王明和李亮解同一个方程组{ax+5y=15,①4x-by=-1,②急性子的王明把方程①中的a看错了,得到方程组的解为{x=3,y=-1,而马虎的李亮把方程②中的b看错了,得到方程组的解为{x=5,y=4,学习委员张丽说,她可以根据王明和李亮的计算结果算出这个方程组的解,你能知道张丽求出的方程组的解是多少吗?24.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,设需熟练工m名,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?答案一、1.A【点拨】∵3x|m|+(m+1)y=6是关于x,y的二元一次方程,∴{|m|=1,m+1≠0,∴m=1,故选A.2.D3.A4.B5.A6.B【点拨】由题意得{x-y-3=0,x+y-1=0,解得{x=2,y=-1,所以y x=(-1)2=1.故选B.7.D【点拨】解方程组{mx+2y=10,①3x-2y=0,②①+②得(3+m)x=10,∴x=103+m,③把③代入②得y=153+m.④∵x,y均为整数,∴3+m既能被10整除也能被15整除,即3+m的值可以为±5,±1.∵m为正整数,∴3+m=5,即m=2.∴m2+1=22+1=4+1=5,故选D.8.A 【点拨】∵碳水化合物的含量是蛋白质的1.5倍,且蛋白质的含量为x g,∴碳水化合物的含量是1.5x g.根据题意,得1.5x+x+y=30,∴52x+y=30.9.C10.A二、11.{x+y=3,x-y=1(答案不唯一)12.{x=10,y=213.{x=0,y=5或{x=1,y=3或{x=2,y=1【点拨】由题意可得,y=5-2x,当x=0时,y=5-2×0=5;当x =1时,y =5-2×1=3; 当x =2时,y =5-2×2=1;当x =3时,y =5-2×3=-1<0(舍去). 14.-8 15.216.10 【点拨】根据题中的新定义及已知等式得{a +2b =5,4a +b =6,解得{a =1,b =2.则2*3=4a +3b =4+6=10. 17.4;5 【点拨】根据题意得{2x +3y =23,3x +2y =22,解得{x =4,y =5.18.23.5三、19.【解】(1){x -2y =3,①3x +y =2,②由①,得x =3+2y .③将③代入②,得9+6y +y =2, 解得y =-1.将y =-1代入③,得x =3-2=1. 所以原方程组的解为{x =1,y =-1.(2){x3-y2=6,①x -y2=9,②②-①,得23x =3,解得x =92. 将x =92代入①,得32-y2=6, 解得y =-9. 所以原方程组的解为{x =92,y =-9.(3){3(x +y )-4(x -y )=6,①x +y 2-x -y 6=1,②②×6,得3(x +y )-(x -y )=6,③ ①-③,得-3(x -y )=0,即x =y .将x =y 代入③,得3(x +x )-0=6,解得x =1. 所以y =1.所以原方程组的解为{x =1,y =1.(4){x -y +z =0,①4x +2y +z =0,②25x +5y +z =60,③②-①,得3x +3y =0,④ ③-①,得24x +6y =60,⑤④和⑤组成方程组{3x +3y =0,24x +6y =60,解得{x =103,y =-103.将{x =103,y =-103代入①,得z =-203. 所以原方程组的解为{x =103,y =-103,z =-203.选用二元一次方程组的解法的策略.当方程组中某一个未知数的系数是1(或-1)时,优先考虑代入法;当两个方程中,同一个未知数的系数相等或互为相反数时,用加减法较简单;当两个方程通过变形用含有一个未知数的式子来表示另一个未知数都比较复杂时,往往选用加减法.20.【解】根据题意,得{1+p +q =2,4-2p +q =2,解得{p =1,q =0,所以p 的值是1,q 的值是0.对于一个含待定系数的式子,有几个待定的系数,就必须有几对对应值,列出几个方程,组成一个方程组,求出待定系数的值. 21.【解】(1)根据题意得,x ,y 满足方程组{x +y =3,x -y =1,解得{x =2,y =1.故这个相同的解为{x =2,y =1.(2)将{x =2,y =1代入方程组{mx +ny =8,mx -ny =4,得{2m +n =8,2m -n =4,解得{m =3,n =2,所以m -n =3-2=1.22.【解】设这种商品包装盒的宽为x cm ,高为y cm ,则长为(x +4)cm. 根据题意,得{2x +2y =14,x +4+2y =13,解得{x =5,y =2,所以x +4=9,故这种商品包装盒的长为9 cm ,宽为5 cm ,高为2 cm ,所以其体积为9×5×2=90(cm 3).答:这种商品包装盒的体积为90 cm 3. 23.【解】能.根据题意,将{x =3,y =-1代入②,得12+b =-1,解得b =-13; 将{x =5,y =4代入①得5a +20=15,解得a =-1.∴方程组为{-x +5y =15,4x +13y =-1,解得{x =-20033,y =5933.24.【解】(1)设每名熟练工每月可以安装x 辆电动汽车,每名新工人每月可以安装y 辆电动汽车, 根据题意得{x +2y =8,2x +3y =14,解得{x =4,y =2.答:每名熟练工每月可以安装4辆电动汽车,每名新工人每月可以安装2辆电动汽车.(2)由题意得12(4m +2n )=240, 整理得n =10-2m . ∵0<n <10,∴0<m <5.∴一共有四种招聘方案:①抽调熟练工1名,招聘新工人8名;②抽调熟练工2名,招聘新工人6名;③抽调熟练工3名,招聘新工人4名;④抽调熟练工4名,招聘新工人2名.。

人教版七年级下册数学第八章测试卷附答案

人教版七年级下册数学第八章测试卷附答案

第八章-二元一次方程组一、单选题1.一个两位数,十位数字与个位数字和为6,这样的两位数中,是正整数的有()A. 6个B. 5个 C. 3个 D. 无数个2.下列各组数中①;②;③;④是方程的解的有( )A. 1个 B. 2 C. 3 个D. 4个3.下列方程中,是二元一次方程的是()A. -y=6B. +=1C. 3x-y2=0D. 4xy=34.二元一次方程组的解为()A. B.C. D.5.已知方程组,则x﹣y的值为()A. -1B. 0C. 2D. 36.购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支,作业本5本,圆珠笔2支共需()A. 4.5元B. 5元 C. 6元 D. 6.5元7.下列方程组中,是二元一次方程组的是()A. B. C.D.8.笼中有x只鸡y只兔,共有36只脚,能表示题中数量关系的方程是()A. x+y=18B. x+y=36C.4x+2y=36 D. 2x+4y=369.二元一次方程x+2y=5在实数范围内的解()A. 只有1个B. 只有2个 C. 只有3个 D. 有无数个二、填空题10.请写出一个你所喜欢的二元一次方程组________11.若+(2a+3b﹣13)2=0,则a+b= ________.12.已知,则a+b等于________.13.若关于x、y的二元一次方程组的解满足x+y=1,则a的值为________.14.请构造一个二元一次方程组,使它的解为.这个方程组是________.15.已知|x﹣y+2|+(2x+y+4)2=0.则x y=________.16.将方程5x﹣y=1变形成用含x的代数式表示y,则y=________.17.方程组的解是________.三、计算题18.解方程组:.19.解下列二元一次方程组:(1)(2)20.解下列方程组:(1)(2)四、综合题21.已知y=kx+b,当x=1时,y=﹣2;当x=﹣1时,y=4.(1)求k、b的值;(2)当x取何值时,y的值小于10?答案一、单选题1.【答案】 A【解析】【解答】解:设两位数的个位数为x,十位为y,根据题意得:x+y=6,∵xy都是整数,∴当x=0时,y=6,两位数为60;当x=1时,y=5,两位数为51;当x=2时,y=4,两位数为42;当x=3时,y=3,两位数为33;当x=4时,y=2,两位数为24;当x=5时,y=1,两位数为15;则此两位数可以为:60、51、42、33、24、15,共6个,故选:A.【分析】可以设两位数的个位数为x,十位为y,根据两数之和为6,且xy为整数,分别讨论两未知数的取值即可.注意不要漏解.2.【答案】 B【解析】【解答】解:把①代入得左边=10=右边;把②代入得左边=9≠10;把③代入得左边=6≠10;把④代入得左边=10=右边;所以方程的解有①④2个.故答案为:B【分析】能使二元一次方程的左边和右边相等的未知数的值就是二元一次方程的解,二元一次方程有无数个解,根据定义将每一对x,y的值分别代入方程的左边算出答案再与右边的10比较,若果相等,x,y的值就是该方程的解,反之就不是该方程的解。

人教版七年级数学下册第八章测试卷(附答案)

人教版七年级数学下册第八章测试卷(附答案)

人教版七年级数学下册第八章测试卷(附答案)人教版七年级数学下册第八章测试卷(附答案)一、单选题(共12题;共24分)1.用加减法解方程组时,若要求消去y,则应选择( B )。

A.①×3+②×2B.①×3−②×2C.①×5−②×3D.①×5+②×32.下列方程组中是二元一次方程组的是 ( A )。

A.2x+3y=5B.2x+3y^2=5C.2x^2+3y=5D.2x^2+3y^2=53.下面三对数值:(1)(2)(3)是方程的解的是 ( C )。

A.(1)B.(2)C.(3)D.(1)和(3)4.一艘内河轮船匀速从甲地开往乙地,沿河岸有一公路,船长看见每隔30分钟有一辆公共汽车从背后开过,而迎面则每隔10分钟有一辆公共汽车开来,假定以甲、乙两地为终点站往返均匀发车,匀速行驶,则每隔( B )分钟发车一辆?A。

12B。

15C。

18D。

205.方程组的解是( A )。

A.x=1,y=2B.x=2,y=1C.x=-2,y=1D.x=1,y=-26.若2a3xby+5与5a2-4yb2x是同类项,则 ( A )。

A.3x-2y=1B.2x-3y=1C.3x+2y=1D.2x+3y=17.已知关于x、y的方程3x+4y=7,则( A )。

A.x=1,y=1B.x=1,y=-1C.x=-1,y=1D.x=-1,y=-18.二元一次方程7x+y=15有( C )组正整数解。

A.1组B.2组C.3组D.4组9.方程组的解为x=3,y=4,则被遮盖的前后两个数分别为( B )。

A.1、2B.1、5C.5、1D.2、410.为丰富同学们的课余活动,某校计划成立足球和篮球课外兴趣小组,现需购买篮球和足球若干个,已知购买篮球的数量比足球的数量少1个,篮球的单价为60元,足球的单价为30元,一共花了480元,问篮球和足球各买了多少个?设购买篮球x个,购买足球y个,可列方程组( C )。

人教版七年级数学下册第八章第三节解实际问题与二元一次方程组单元测试题(含答案) (108)

人教版七年级数学下册第八章第三节解实际问题与二元一次方程组单元测试题(含答案) (108)

人教版七年级数学下册第八章第三节解实际问题与二元一次方程组练习试题(含答案)已知关于x ,y 的二元一次方程组335x y m x y m +=+⎧⎨-=-⎩. (1)若x ,y 互为相反数,求m 的值;(2)若x 是y 的2倍,求原方程组的解.【答案】(1)m =-1;(2)63x y =⎧⎨=⎩. 【解析】【分析】(1)中方程①中33x y m +=+,再由x 、y 的值互为相反数则x+y=0,即可得出33m +=0,即关于m 的方程,求出m 的值即可;(2)再由x 是y 的2倍,即可得出x =2y ,代入原方程组,得到关于m 的方程,求出m 的值即可解答.【详解】(1)若x ,y 互为相反数,则x +y =0,所以有3m +3=0,解得m =-1.(2)若x 是y 的2倍,则x =2y ,原方程组可化为3335y m y m =+⎧⎨=-⎩解得32y m =⎧⎨=⎩所以方程组的解为63x y =⎧⎨=⎩. 【点睛】本题考查的是二元一次方程组的解,先根据题意得出x,y的代数式是解答此题的关键.32.如图所示,3×3的方格中每个方格内均有一个单项式(图中只列出了部分单项式),方格中每一行、每一列以及每一条对角线上的三个单项式的和均相等.求a的值.【答案】a=7.【解析】【分析】先由条件建立二元一次方程组求出x、y的值,就可以求出每一行或每一列的数的和,就可以求出中间这列的最后一个数,再建立关于a的方程就可以求出结论.【详解】由题意,得335555543y x x y xy x y-+=-+⎧⎨-+=++⎩解得23 xy=-⎧⎨=⎩所以5-3x+a=5+4+3y,所以a=7.【点睛】本题考查学生是图标的能力的运用,列二元一次方程组解实际问题的运用,解答时建立方程组求出各行或各列的和是关键.33.全球变暖,气候开始恶化,中国政府为了对全球气候变暖负责,积极推进节能减排,居民购买节能灯,国家补贴50%购灯费.某县推广财政补贴节能灯后,李阿姨买了4个8W 和3个24W 的节能灯,一共用了29元;王叔叔买了2个8W 和2个24W 的节能灯,一共用了17元.该县财政补贴50%后,一个8W 、24W 节能灯的价格各是多少元?【答案】一个8W 节能灯的价格为3.5元;一个24W 节能灯的价格为5元.【解析】【分析】两个等量关系为:4个8W 节能灯的总价钱+3个24W 的节能灯的总价钱=29,2个8W 节能灯的总价钱+2个24W 的节能灯的总价钱=17.【详解】设该县财政补贴50%后,一个8W 节能灯的价格为x 元,一个24W 节能灯的价格为y 元,则4329{2217x y x y +=+= 解得 3.5{5x y ==答:该县财政补贴50%后,一个8W 节能灯的价格为3.5元,一个24 W 节能灯的价格为5元.【点睛】此题主要考查了二元一次方程组的应用,关键是抓住题目中的关键语句,列出方程组.34.在括号内填写一个二元一次方程,使所组成方程组()521x y +=⎧⎨⎩的解是12x y =⎧⎨=-⎩. 【答案】x-y=3【解析】【分析】根据x 、y 的值,任意写一个关于x 、y 的二元一次方程即可.【详解】解:∵所组成方程组的解是12x y =⎧⎨=-⎩∴x-y=3,即方程组5213x y x y +=⎧⎨-=⎩的解是12x y =⎧⎨=-⎩. 故答案为:x-y=3【点睛】本题考查二元一次方程的解.此题是开放题,要学生理解方程组的解的定义,围绕解列不同的算式即可列不同的方程组.35.若方程组4322(3)3x y mx m y +=⎧⎨+-=⎩的解满足x =2y ,求m 的值. 【答案】m=32【解析】【分析】先把x=2y 代入第一个方程求出y=2,然后把x=4,y=2代入第二个方程即可求出m 的值.【详解】解:()432233x y mx m y +=⎧⎪⎨+-=⎪⎩①② 将x =2y 代入方程①,得8y +3y =22,解得y =2.将y =2代入方程x =2y ,得x =4.把x =4,y =2代入方程②,得4m +2(m -3)=3,解得m=32. 【点睛】本题考查的知识点是二元一次方程组的解,解题关键是利用代入法.36.已知关于x ,y 的二元一次方程组3522718x y a x y a -=⎧⎨+=-⎩(1)消去a ,试用含y 的代数式表示x ;(2)若方程组中的x ,y 互为相反数,求出方程组的解.【答案】(1) x =-19y -36;(2)22x y =⎧⎨=-⎩. 【解析】【分析】(1)把a 的系数变为相等,两个方程作差,即可解答;(2)根据x ,y 互为相反数,得到x+y=0,即x=-y ,代入方程组,即可解答.【详解】解:(1)352 2718x y a x y a -=⎧⎨+=-⎩①② ②×2-①,得(4x +14y)-(3x -5y)=-18×2,整理,得x=-19y-36.(2)∵x,y互为相反数,∴x+y=0,∴-19y-36+y=0,y=-2,∴x=2,∴方程组的解为22 xy=⎧⎨=-⎩.【点睛】本题考查的知识点是二元一次方程组的解,解题关键是利用加减消元法.37.某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?【答案】这种出租车的起步价是5元,超过3km后,每千米的车费是1.5元.【解析】【分析】设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据“乘坐这种出租车走了9km,付了14元;乘坐这种出租车走了13千米,付了20元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【详解】解:设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据题意得:()()931413320x yx y⎧+-=⎪⎨+-=⎪⎩,解得:51.5xy=⎧⎨=⎩.答:这种出租车的起步价是5元,超过3km 后,每千米的车费是1.5元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.38.为了拉动内需,广东启动“家电下乡”活动.某家电公司销售给农户的Ⅰ型冰箱和Ⅱ型冰箱在启动活动前一个月共售出980台,启动活动后的第一个月销售给农户的Ⅰ型和Ⅱ型冰箱的销量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1254台.在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为多少台?【答案】销售给农户的Ⅰ型冰箱为580台,销售给农户的Ⅱ型冰箱为400台【解析】【分析】本题有两个相等关系:“启动活动前一个月Ⅰ型冰箱售出量+Ⅰ型冰箱售出量=980台”、“启动活动后的第一个月Ⅰ型冰箱售出量+Ⅰ型冰箱售出量=1254台”,据此设未知数列出方程组,解方程组即可求得结果.【详解】解:设销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为x 台、y 台,由题意得:980(130%)(125%)1254x y x y +=⎧⎨+++=⎩,解得580400x y =⎧⎨=⎩. 答:销售给农户的Ⅰ型冰箱为580台,销售给农户的Ⅱ型冰箱为400台.【点睛】本题考查了二元一次方程组的应用,属于基础题型,正确理解题意,找准相等关系列出方程组是求解的关键.39.(列二元一次方程组解应用题)甲、乙两家超市出售同样品牌的保温壶和水杯,保温壶和水杯在两家超市的售价分别相同.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.求一个保温壶和一个水杯售价各是多少元?【答案】一个保温壶50元,一个水杯10元.【解析】【分析】设一个保温壶的售价x元,一个水杯的售价y元,根据“买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】设一个保温壶x元,一个水杯y元.根据题意得:60 23130x yx y+=⎧⎨+=⎩解得5010 xy=⎧⎨=⎩答:一个保温壶50元,一个水杯10元【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.40.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元,一个21人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费645元,两种客房各租住了多少间?【答案】租住三人间3间,两人间6间.【解析】【分析】设租住三人间x间,两人间y间,根据人数和住宿费用各列一个方程,组成方程组求解即可.【详解】设租住三人间x间,两人间y间,根据题意得:,解得:.答:租住三人间3间,两人间6间.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.。

七年级数学下册《第八章 二元一次方程组》单元测试卷及答案解析-人教版

七年级数学下册《第八章 二元一次方程组》单元测试卷及答案解析-人教版

七年级数学下册《第八章 二元一次方程组》单元测试卷及答案解析-人教版一、单选题1.如果21x y =⎧⎨=-⎩是关于x 、y 的二元一次方程ax+y=1的解,那么a 的值为( )A .-2B .-1C .0D .I2.已知二元一次方程组 522048x y x y +=⎧⎨-=⎩①②,若用加减法消去y ,则正确的是( )A .①×1+②×1B .①×1+②×2C .①×1-②×1D .①×1-②×23.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是( ) A .14B .13C .12D .154.方程组24x y x y -=⎧⎨-=⎩的解为2x y =-⎧⎨=⎩▽则被△和△遮盖的两个数分别为(,)A .-10,6B .2,-6C .2,6D .10,-65.已知13x y =⎧⎨=⎩是关于x ,y 的二元一次方程2x y m -=的一个解,则m 的值是( )A .5B .2C .-5D .-26.关于x ,y 的二元一次方程组538y x x y =-⎧⎨-=⎩,用代入法消去y ,得到的方程是( )A .3583x x --=B .358x x +-=C .358x x ++=D .358x x -+=7.已知24328a b a b +=⎧⎨+=⎩,则2a+2b 的值为()A .3B .4C .6D .78.小明计划用100元钱在京东商城购买价格分别为6元和8元的两种商品,则在钱全部用完的前提下,可供小明选择的方案有( ) A .3种B .4种C .5种D .6种9.举办“书香文化节”的活动中,将x 本图书分给了y 名学生,若每人分6本,则剩余40本;若每人分8本,则还缺50本,下列方程组正确的是( )A .640850y x y x -=⎧⎨+=⎩B .640850y xy x +=⎧⎨-=⎩C .640850x y x y +=⎧⎨-=⎩D .640850y xy x -=⎧⎨-=⎩10.若方程组41233x by z x by z -+=⎧⎨-+=⎩ 的解是1x ay z c=⎧⎪=⎨⎪=⎩,则6a b c ++的值是( )A .-3B .0C .3D .6二、填空题11.已知二元一次方程x -2y =10,用含x 的代数式表示y ,则y = . 12.已知x 、y 满足方程组3202132022x y x y +=⎧⎨+=⎩,则x y -= .13.若273330x y y z z x +=⎧⎪+=⎨⎪+=⎩,则代数式x+y+z 的值为 .14.小明家准备装修一套新房,若甲、乙两家装修公司合作需6周完成,装修费用为5.2万元;若甲公司单独做4周,剩下的由乙公司做,还需9周完成,此时装修费用为4.8万元.若小明只选甲公司单独完成,则他需要付给甲公司装修费用 万元.三、计算题15.解方程组:(1){y =2x3x +2y =7 (2){4x −y =112x +y =1316.解方程组: 4223327x y z x y z x y z +-=⎧⎪-+=-⎨⎪+-=⎩四、解答题17.解方程组 64ax by x cy +=⎧⎨+=⎩ 时甲同学因看错 a 符号,从而求得解为32x y =⎧⎨=⎩ ,乙因看漏 c ,从而求得解为 62x y =⎧⎨=-⎩ ,试求 a , b , c 的值.18.已知方程组31313x y mx y m +=-+⎧⎨-=+⎩的解满足x 为非正数,y 为负数,求m 的取值范围.19. 2021年下半年,新冠疫情在全球新一波蔓延,接种新冠疫苗是当前抗击疫情最有效的手段.某县注射的疫苗有两种,一种是2针剂的灭活疫苗,另种是3针剂的重组蛋白疫苗.某校120名教职工全部完成其中一种疫苗的注射,共注射了325针,注射2针剂和3针剂疫苗的教职工各有多少人?五、综合题20.已知二元一次方程20ax y b +-=(a ,b 均为常数,且a≠0).(1)当a =3,b =﹣4时用x 的代数式表示y ;(2)若()2212x a by b b =-⎧⎪⎨=+⎪⎩是该二元一次方程的一个解 ①探索a 与b 关系,并说明理由;②无论a 、b 取何值,该方程有一组固定解,请求出这组解.21.下面是马小虎同学解二元一次方程组的过程,请认真阅读并完成相应的任务.解方程组:{3x −y =4 ①6x −3y =10 ②解:①×2,得628x y -=……③ 第一步 ②-③,得2y -= 第二步=2y -. 第三步将=2y -代入①,得2x =.第四步所以,原方程组的解为22x y =⎧⎨=-⎩第五步(1)这种求解二元一次方程组的方法叫做 法,以上求解步骤中,马小虎同学第 步开始出现错误.(2)请写出此题正确的解答过程.22.目前,新型冠状病毒在我国虽可控可防,但不可松懈.建兰中学欲购置规格分别为200mL 和500mL 的甲、乙两种免洗手消毒液若干瓶,已知购买3瓶甲和2瓶乙免洗手消毒液需要80元,购买1瓶甲和4瓶乙免洗手消毒液需要110元. (1)求甲、乙两种免洗手消毒液的单价.(2)该校在校师生共1000人,平均每人每天都需使用10mL 的免洗手消毒液,若校方采购甲、乙两种免洗手消毒液共花费2500元,则这批消毒液可使用多少天?(3)为节约成本,该校购买散装免洗手消毒液进行分装,现需将8.4L 的免洗手消毒液全部装入最大容量分别为200mL 和500mL 的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗10mL ,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.参考答案与解析1.【答案】D【解析】【解答】解:将 21x y =⎧⎨=-⎩ 代入ax+y=1得2a-1=1 解得a=1. 故答案为:D.【分析】根据方程根的概念,将x=2与y=-1代入ax+y=1可得关于字母a 的方程,求解即可得出a 的值.2.【答案】B【解析】【解答】解: ACD 、既不能消去x ,也不能消去y ,错误;B 、能消去y ,正确; 故答案为:B.【分析】观察两方程中y 的系数,找出两系数的最小公倍数,结合系数的符号,即可判断.3.【答案】C【解析】【解答】解:设这间会议室的座位排数是x 排,人数是y 人.根据题意,得()12111411x y x y+=⎧⎨-+=⎩解得12155x y =⎧⎨=⎩. 故答案为:C .【分析】本题中有两个等量关系:1、每排坐12人,则有11人没有座位;2、每排坐14 人,则余1人独坐一排. 这样设每排的座位数为x ,总人数为y ,列出二元一次方程组即可.4.【答案】B【解析】【解答】解:∵方程组24x y x y -=⎧⎨-=⎩①②的解为2x y =-⎧⎨=⎩▽ 424y y --=⎧⎨--=⎩①②解之:y=-6, △=2【分析】将x=-2代入第二个方程,可求出△的值,再将x ,y 的值代入第一个方程,可求出△的值.5.【答案】C【解析】【解答】解:13x y =⎧⎨=⎩是关于x ,y 的二元一次方程2x y m -=的一个解123m ∴-⨯=5m ∴=-故答案为:C.【分析】将x=1、y=3代入方程中进行计算可得m 的值.6.【答案】D【解析】【解答】解:方程:{y =x −5①3x −y =8②把①式代入②式,可得:()358x x --=整理,可得:358x x -+= 故答案为:D.【分析】将第一个方程代入第二个方程中可得3x-(x-5)=8,然后化简即可.7.【答案】C【解析】【解答】解:24328a b a b +=⎧⎨+=⎩①② ①+②,可得: 4a +4b =12 ∴2a +2b =12÷2=6. 故答案为:C .【分析】两方程组中两方程相加即可求解.8.【答案】B【解析】【解答】设购买价格为6元的商品x 件,价格为8元的商品y 件依题意得:68100x y +=5034xy -∴=又x ,y 均为正整数解得211x y =⎧⎨=⎩或68x y =⎧⎨=⎩或105x y =⎧⎨=⎩或142x y =⎧⎨=⎩因此可供小明选择的方案有4种.【分析】设购买价格为6元的商品x 件,价格为8元的商品y 件, 根据购买价格分别为6元和8元的两种商品共花费100元,列出二元一次方程,再求出其正整数解即可.9.【答案】B【解析】【解答】解:由题意得: 640850y xy x +=⎧⎨-=⎩故答案为:B.【分析】根据“ 每人分6本,则剩余40本”得方程6y-40=x ;根据“每人分8本,则还缺50本”得方程8y-50=x ,依此列出二元一次方程组,即可解答.10.【答案】A【解析】【解答】解:∵方程组41233x by z x by z -+=⎧⎨-+=⎩ 的解是1x a y z c=⎧⎪=⎨⎪=⎩∴41233a b c a b c -+=⎧⎨-+=⎩①② 由①-②得:2b c +=- ∴2b c =--把2b c =--代入①,得:()241a c c ---+=∴51a c +=-∴65123a b c a c b c ++=+++=--=-. 故答案为:A.【分析】由题意把x 、y 、z 的值代入方程组可得关于a 、b 、c 的方程组,将c 作为常数,用含c 的式子表示出a 、b ,整体代换计算即可求解.11.【答案】x 102- 【解析】【解答】解:x -2y =102y=x-10 解之:y=x 102-. 故答案为x 102-【分析】先移项,再将y的系数化为1,可求出y.12.【答案】1 2 -【解析】【解答】解:3202132022 x yx y+=⎧⎨+=⎩①②①-②得,2x-2y=﹣1两边同除以2得,x-y=1 2 -故答案为1 2 -.【分析】将①式和②式整体相减得出2x-2y=﹣1,然后根据等式的性质两边同除以2,即可解答. 13.【答案】45【解析】【解答】解:273330x yy zz x+=⎧⎪+=⎨⎪+=⎩①②③①+②+③得:2x+2y+2z=90整理得:x+y+z=45.故答案为:45.【分析】将方程组中的三个方程相加并化简可得x+y+z的值. 14.【答案】6【解析】【解答】解:设甲公司的工作效率为x,乙公司的工作效率为y.依题意列方程组,得661 491 x yx y+=⎧⎨+=⎩解这个方程组,得110115 xy⎧=⎪⎪⎨⎪=⎪⎩所以,甲公司单独做需10周,乙公司单独做需15周;设甲一周的装修费是m万元,乙一周的装修费是n万元.依题意列方程组,得66 5.2 49 4.8 m nm n+=⎧⎨+=⎩解这个方程组,得35415 mn⎧=⎪⎪⎨⎪=⎪⎩甲单独做的装修费:35×10=6(万元)故答案为:6.【分析】设甲公司的工作效率为x,乙公司的工作效率为y,根据相等关系“ 甲装修公司6周完成的工作量+乙装修公司6周完成的工作量=1,甲装修公司4周完成的工作量+乙装修公司9周完成的工作量=1”可得关于x、y的方程组,解之求出x、y的值;设甲一周的装修费是m万元,乙一周的装修费是n万元,根据相等关系“ 甲装修公司6周所需费用+乙装修公司6周完成所需费用=1,甲装修公司4周所需费用+乙装修公司9周所需费用=1”可得关于m、n的方程组,解之可求解.15.【答案】(1)解:{y=2x①3x+2y=7②将①代入②得3x+4x=7解得x=1将x=1代入①得y=2∴12 xy=⎧⎨=⎩(2)解:{4x−y=11①2x+y=13②①+②得6x=24解得x=4将x=4代入②得8+y=13解得y=5∴45 xy=⎧⎨=⎩【解析】【分析】(1)将①方程直接代入②方程可求出x的值,再将x的值代入①方程可求出y的值,从而即可得出方程组的解;(2)将方程组中的两个方程相加可求出x的值,再将x的值代入②方程可求出y的值,从而即可得出方程组的解.16.【答案】解:4 223 327x y zx y zx y z+-=⎧⎪-+=-⎨⎪+-=⎩①②③解:①+②得, 31x y -=④ ②×2+③得, 731x y -=⑤④与⑤组成方程组得 31731x y x y -=⎧⎨-=⎩解方程组得, 12x y =⎧⎨=⎩把 12x y =⎧⎨=⎩ 代入①得, 124z +-=解得, 1z =-∴原方程组的解为: 121x y z =⎧⎪=⎨⎪=-⎩【解析】【分析】利用第一个方程加上第二个方程可得3x-y=1,利用第二个方程的2倍加上第三个方程可得7x-3y=1,联立求解可得x 、y 的值,然后将x 、y 的值代入第一个方程中求出z 的值,据此可得方程组的解.17.【答案】解:甲同学因看错 a 符号∴ 把 3x = , 2y = 代入 4x cy +=解得 12c =326a b -+= .乙因看漏 c∴ 把 6x = , 2y =- 代入 6ax by +=得 626a b -= 得 326626a b a b -+=⎧⎨-=⎩解得, a=4 , b=9【解析】【分析】甲同学看错a 的负号,把x=3,y=2代入x+cy=4,求出c 值,因看错a 的符号,得-3a+2b=6,再由乙看漏c ,把x=6,y=-2代入ax+by=6,得6a-2b=6,联立方程组解方程组得a 、b 的值,即可解决问题.18.【答案】解:解方程组31313x y m x y m +=-+⎧⎨-=+⎩,得324x m y m =-⎧⎨=--⎩ ∵x 为非正数,y 为负数∴30240m m -≤⎧⎨--<⎩解得-2<m≤3【解析】【分析】先求出方程组的解324x m y m =-⎧⎨=--⎩,再根据题意列出不等式组30240m m -≤⎧⎨--<⎩,最后求出m 的取值范围即可。

七年级数学下册《第八章 二元一次方程组》单元测试卷附答案解析-人教版

七年级数学下册《第八章 二元一次方程组》单元测试卷附答案解析-人教版

七年级数学下册《第八章 二元一次方程组》单元测试卷附答案解析-人教版一、单选题1.已知x 2y 1=⎧⎨=-⎩是二元一次方程2x 3ky 1-=的一组解,则k 的值为( )A .1B .-1C .53D .53-2.方程组: 5210x y x y +=⎧⎨+=⎩①② ,由②-①得到的方程是( )A .3x =10B .x =-5C .3 x =-5D .x =53.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是( ) A .14B .13C .12D .154.将方程3x+y=9写成用含y 的式子表示x 的形式,正确的是( )A .y=3x-9B .y=9-3xC .x=3y-3 D .x=3-3y 5.已知{x =2ky =−3k 是二元一次方程x-y=10的解,则k 的值是( )A .-10B .-2C .2D .106.若4326x y x y +=⎧⎨-=⎩,则x y +的值为( )A .3B .4C .5D .67.已知方程组272a b a b +=⎧⎨-=⎩①②下列消元过程错误的是( )A .代人法消去a ,由②得2a b =+代入①B .代入法消去b ,由①得72b a =-代入②C .加减法消去b ,①-②D .加减法消去a ,①-②×28.三元一次方程组32522x y x y z z -=⎧⎪++=⎨⎪=⎩,,的解是( )A .112x y z =⎧⎪=⎨⎪=⎩B .112x y z =⎧⎪=-⎨⎪=⎩C .112x y z =-⎧⎪=⎨⎪=⎩D .112x y z =-⎧⎪=-⎨⎪=⎩9.把一根长17m 的钢管截成2m 和3m 长两种不同规格的钢管,且不造成浪费,你有几种不同的截法( ) A .1种B .2 种C .3种D .4种10.在学习完“垃圾分类”的相关知识后,小明和小丽一起收集了一些废电池,小明说:“我比你多收集了7节废电池啊!”小丽说:“如果你给我8节废电池,我的废电池数量就是你的2倍”.如果他们说的都是真的,设小明收集了x 节废电池,小丽收集了y 节废电池,则可列方程组为( ).A .()7828x y x y -=⎧⎨-=+⎩B .()7828y x x y -=⎧⎨+=-⎩C .()728x y x y -=⎧⎨-=⎩D .()7288x y x y -=⎧⎨-=+⎩二、填空题11.已知方程2x ﹣y =8,用含x 的代数式表示y ,则y = . 12.若二元一次方程组ax by 3bx ay 2+=⎧⎨+=⎩的解为x 3y 2=⎧⎨=⎩,则a b +的值 .13.已知关于x ,y 的二元一次方程()()a 1x a 2y 52a 0-+++-=,当a 每取一个值时就有一方程,而这些方程有一个公共解,则这个公共解是 .14.某中学为积极开展校园足球运动,计划购买A 和B 两种品牌的足球,已知一个A 品牌足球价格为120元,一个B 品牌足球价格为150元.学校准备用3000元购买这两种足球(两种足球都买),并且3000元全部用完,请写出一种购买方案:买 个A 品牌足球,买 个B 品牌足球.三、计算题15.解方程 212311x y x y -=-⎧⎨+=⎩16.解方程组: 3472395978x z x y z x y z +=⎧⎪++=⎨⎪-+=⎩①②③四、解答题17.已知关于x ,y 的二元一次方程组2632x y x y k -=⎧⎨-=⎩的解满足x ﹣y =2,求k 的值.18.下面是王斌同学解方程组1022x y x y +=⎧⎨-=-⎩的过程,请认真阅读并完成相应任务.解:1022x y x y +=⎧⎨-=-⎩①②由①得10y x =-③,……第一步把③代入②,得2(10)2x x --=-,……第二步 整理得2022x x --=-,……第三步 解得18x -=,即18x =-.……第四步 把18x =-代入③,得28y =则方程组的解为1828x y =-⎧⎨=⎩.……第五步(1)任务一:填空:①以上求解过程中,王斌用了 消元法;(填“代入”或“加减”)②第 步开始出现错误,这一步错误的原因是 ;(2)任务二:直接写出该方程组求解后的正确结果.19.为了鼓励市民节约用电,某市对居民用电实行阶梯收费(总电费=第一阶梯电费+第二阶梯电费),规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.以下是张磊家2014年3月和4月所交电费的收据,问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元? 代收电费收据 电表号 1205 电表号 1205 户名 张磊 户名 张磊 月份 3月 月份 4月 用电量 220度 用电量 265度 金额112元金额139元20.已知31x y =⎧⎨=⎩是方程2x-ay=9的一个解,解决下列问题:(1)求a 的值;(2)化简并求值:()()()()211213a a a a a -+--+-21.阅读下列方程组的解法,然后解答相关问题:解方程组272625252423x y x y +=⎧⎨+=⎩①②时若直接利用消元法解,那么运算比较繁杂,采用下列解法则轻而易举解:①-②,得222x y +=,即1x y +=.③ ②-③×24,得1x =-.把1x =-代入③,解得2y =.故原方程组的解是12x y =-⎧⎨=⎩.(1)请利用上述方法解方程组192123111315x y x y +=⎧⎨+=⎩.(2)猜想并写出关于x ,y 的方程组()2()2ax a m y a mbx b m y b m +-=-⎧⎨+-=-⎩的解,并加以检验.22.一批机器零件共558个,甲先做3天后,乙再加入,两人共同再做6天刚好完成.设甲每天做x个,乙每天做y 个.(1)列出关于x ,y 的二元一次方程.(2)用含x 的代数式表示y ,并求当32x =时y 的值是多少? (3)若乙每天做48个,则甲每天做多少个?参考答案与解析1.【答案】B【解析】【解答】解:∵x 2y 1=⎧⎨=-⎩是二元一次方程2x-3ky=1的一组解∴4+3k=1 解得k=-1. 故答案为:B.【分析】根据二元一次方程根的概念,将x=2、y=-1代入原方程,可得关于字母k 的一元一次方程,解该方程可求出k 的值.2.【答案】D【解析】【解答】解:由②-①得:x=5.故答案为:D.【分析】由方程②-方程①,即左边减左边,右边减右边,可得x=5,即可得出正确答案.3.【答案】C【解析】【解答】解:设这间会议室的座位排数是x 排,人数是y 人.根据题意,得()12111411x y x y+=⎧⎨-+=⎩解得12155x y =⎧⎨=⎩. 故答案为:C .【分析】本题中有两个等量关系:1、每排坐12人,则有11人没有座位;2、每排坐14 人,则余1人独坐一排. 这样设每排的座位数为x ,总人数为y ,列出二元一次方程组即可.4.【答案】D【解析】【解答】解:3x+y=93x=9-y 解之:33yx =-. 故答案为:D【分析】先移项,将含y 的项移到方程的右边,再在方程的两边同时除以3,可求出x.5.【答案】C【解析】【解答】解:∵{x=2ky=−3k是二元一次方程x-y=10的解∴2k+3k=10解之:k=2.故答案为:C【分析】将x,y的值代入方程,可得到关于k的方程,解方程求出k的值. 6.【答案】A【解析】【解答】解:43 26 x yx y+=⎧⎨-=⎩①②①+②得3x+3y=9两边同时除以3得x+y=3.故答案为:A.【分析】直接将方程组中的两个方程相加后再在两边同时除以3即可得出答案. 7.【答案】C【解析】【解答】解:方程组272a ba b+=⎧⎨-=⎩①②A、代入法消去a,由②得a=b+2代入①可消去a,不符合题意;B、代入法消去b.由①得b=7−2a代入②可消去b,不符合题意;C、加减法消去b,①+②,符合题意;D、加减法消去a,①−②×2,不符合题意.故答案为:C.【分析】利用加减消元法和代入消元的方法求解二元一次方程组即可。

七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)

七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)

七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)一、选择题(本大题共10小题,共30分)1. 二元一次方程x −2y =1有无数多个解,下列四组值中不是该方程的解的是( )A. {x =0y =−12B. {x =1y =1C. {x =1y =0D. {x =−1y =−12. 若(k -2)x |k|−1-3y =2是关于x ,y 的二元一次方程,则k 2-3k -2的值为( )A. 8B. 8或−4C. −8D. −43. 方程组{2x +y =4,x −y =−1的解是( )A. {x =1y =2B. {x =−3y =−2C. {x =2y =0D. {x =3y =−14. 《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( )A. 160钱B. 155钱C. 150钱D. 145钱5. 我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x 米,乙工程队每天施工y 米.根据题意,所列方程组正确的是( )A. {x =y −22x +3y =400 B. {x =y −22x +3(x +y)=400−50 C. {x =y +22x +3y =400−50D. {x =y +22x +3(x +y)=400−506. 用代入法解方程组时,比较容易的变形是( )A. 由 ①,得x =y+12B. 由 ①,得y =2x −1C. 由 ②,得y =3x+56D. 由 ②,得x =6y−537. 为做好防疫消毒工作,某单位制作日常消毒液.将浓度分别为90%和60%的甲、乙两种酒精溶液,配制成浓度是75%的消毒酒精溶液500g ,设甲种酒精溶液为xg ,乙种酒精溶液为yg ,则()A. {x =300y =200B. {x =250y =200C. {x =250y =250D. {x =200y =3008. 在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都相等,若填在图中的数字如图,则x ,y 的值是( )A. x =1,y =−1B. x =−1,y =1C. x =2,y =−1D. x =−2,y =19. 两位同学在解方程组时,甲同学由{ax +by =2,cx −y =−4正确地解出{x =3,y =−2;乙同学因把c 写错了解得{x =−2,y =2,则a +b +c 的值为( )A. 3B. 0C. 1D. 710. 若点P (x ,y )的坐标满足方程组{x +y =k,x −y =6−3k,则点P 不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(本大题共4小题,共12分)11. 已知方程组{3x +2y =m −22x +3y =m的解适合x +y =2,则m 的值为______.12. 当m ,n 满足关系 时,关于x ,y 的方程组{x −5y =2m,2x +3y =m −n 的解互为相反数.13. 已知乙组人数是甲组人数的一半,若将乙组人数的13调入甲组,则甲组比乙组多15人,甲、乙两组的人数分别为__________.14. 已知2x -y -z =0,3x +4y -2z =0,则x−y+zx+y+z =________________.三、计算题(本大题共2小题,共12分) 15. 解方程组:(1{3x −2y +20=0,2x +15y −3=0;(2){1.5(20x +10y)=15000,1.2(110x +120y)=97200.16. 若方程组{ax +by =32ax +by =4与方程组{2x +y =3x −y =0有相同的解,求a 、b 的值.四、解答题(本大题共5小题,共46分)17. 某两位数,两个数位上的数之和为11.这个两位数加上45,得到的两位数恰好等于原两位数的两个数字交换位置所表示的数,求原两位数. (1)列一元一次方程求解.(2)如果设原两位数的十位数字为x ,个位数字为y ,列二元一次方程组. (3)检验(1)中求得的结果是否满足(2)中的方程组.18. 一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?19.某新长途客运站准备在国庆前建成营运.后期工程若请甲乙两个工程队同时施工,8天可以完工,需付两工程队施工费用7040元;若先请甲工程队单独施工6天,再请乙工程队单独施工12天也可以完工,需付两工程队施工费用6960元.问甲、乙两工程队施工一天,应各付施工费用多少元?20.已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案(即A、B两种型号的车各租几辆,有几种租车方案).21. 先阅读材料,然后解方程组.材料:解方程组{x −y −1=0,①4(x −y)−y =5.②由①,得x -y =1.③把③代入②,得4×1-y =5,解得y =-1. 把y =-1代入③,得x =0. ∴原方程组的解为{x =0,y =−1. 这种方法称为“整体代入法”.你若留心观察,有很多方程组可采用此方法解答,请用整体代入法解方程组:{2x −3y −2=0,①2x−3y+57+2y =9.②参考答案1.【答案】B【解析】 【分析】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.将x 、y 的值分别代入x -2y 中,看结果是否等于1,判断x 、y 的值是否为方程x -2y =1的解. 【解答】解:A 、当x =0,y =-12时,x -2y =0-2×(-12)=1,是方程的解; B 、当x =1,y =1时,x -2y =1-2×1=-1,不是方程的解; C 、当x =1,y =0时,x -2y =1-2×0=1,是方程的解; D 、当x =-1,y =-1时,x -2y =-1-2×(-1)=1,是方程的解. 故选B .2.【答案】A【解析】 【分析】本题主要考查了二元一次方程的概念,代数式求值,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程; 根据二元一次方程满足的条件列式求出k 的值,即可得解. 【解答】解:根据题意得:{k −2≠0|k |−1=1,解得:k =-2,∴k 2-3k -2=(-2)2-3×(-2)-2=4+6-2=8. 故选:A .3.【答案】A【解析】 【分析】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.方程组利用加减消元法求出解即可. 【解答】 解:,①+②得:3x =3, 解得:x =1,把x =1代入①得:y =2, 则方程组的解为{x =1y =2.故选:A .4.【答案】C【解析】解:设共有x 人合伙买羊,羊价为y 钱, 依题意,得:{5x +45=y7x +3=y ,解得:{x =21y =150.故选:C .设共有x 人合伙买羊,羊价为y 钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.【答案】D【解析】解:由题意可得, {x =y +22x +3(x +y)=400−50, 故选:D .根据甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程和甲工程队每天比乙工程队多施工2米,可以列出相应的二元一次方程组,本题得以解决. 本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.6.【答案】B【解析】观察方程组的特点可知,B 中的变形比较容易,7.【答案】C【解析】根据题意,得{x +y =500,90%x +60%y =500×75%,解得{x =250,y =250,故选C .8.【答案】B【解析】 【分析】本题考查了二元一次方程组的应用,解答本题的关键是仔细审题,根据题意列出方程组,难度一般. 根据每行每列及对角线上三个方格中的数字和都相等,可得出方程组,解出即可. 【解答】解:由题意,得{2x +3+2=2−3+4y,2−3+4y =2x +y +4y, 解得{x =−1,y =1. 故选B .9.【答案】D【解析】把{x =3,y =−2代入方程组得把{x =−2,y =2代入ax +by =2得-2a +2b =2,即-a +b =1,联立得{3a −2b =2,−a +b =1,解得{a =4,b =5,由得c =-2,则a +b +c =4+5-2=7.故选D .10.【答案】C【解析】略11.【答案】6【解析】解:两个方程相加,得 5x +5y =2m -2, 即5(x +y )=2m -2, 即x +y =2m−25=2.解得m =6.方程组中的两个方程相加,即可用m 表示出x +y ,即可解得m 的值.注意到两个方程的系数之间的关系,而采用方程相加的方法解决本题是解题的关键.12.【答案】m =34n【解析】由题可知x =-y ,代入方程组,得{−6y =2m,y =m −n,则-6m +6n =2m ,所以m =34n .13.【答案】甲组18人,乙组9人【解析】 【分析】此题主要考查了二元一次方程组的应用,找准等量关系是解决应用题的关键,特别注意第二个等量关系的理解.等量关系有:①乙组人数是甲组人数的一半;②乙组人数的三分之一调入甲组,即甲组现有(x +13y)人,乙组现有人数23y 人,此时甲组比乙组多15人,据此列方程组求解即可. 【解答】解:设甲组有x 人,乙组有y 人,根据乙组人数是甲组人数的一半,则y =12x ; 根据乙组人数的三分之一调入甲组时甲组比乙组多15人,得方程x +13y =23y +15, 可列方程组为:{y =12x x +13y =23y +15, 解得:{ x =18 y =9.所以甲组人数为18人,乙组人数为9人, 故答案是甲组18人,乙组9人.14.【答案】89【解析】【分析】此题考查的是解三元一次方程组,需将三元一次方程组中的一个未知数当做已知数来处理,转化为二元一次方程组来解.将x 、y 写成用z 表示的代数式然后代入即可得到答案. 【解答】 解:{2x −y −z =0①3x +4y −2z =0②①×4+②得, 11x −4z −2z =0, 解得x =6z11,将x =6z 11代入①得,12z11−y −z =0, 解得y =z11, ∴原式=6z 11−z 11+z 6z 11+z 11+z =1618=89.故答案为89.15.【答案】(1)方程组整理得×15+×2得49x =-294,解得x =-6,把x =-6代入得-12+15y =3,解得y =1, ∴方程组的解为{x =−6,y =1.(2)方程组整理得 ×12-得13x =3900,解得x =300,把x =300代入得600+y =1000,解得y =400, ∴方程组的解为{x =300,y =400.【解析】略16.【答案】解:,解得该方程组的解为{x =1y =1,由题意该方程组的解也是方程组{ax +by =32ax +by =4的解,代入ax +by =3可得a +b =3③,代入2ax +by =4可得2a +b =4④,④-③可得a =1,代入③可得b =2,∴a =1,b =2.【解析】先求出第二个方程组的解,再代入第一个方程组即可求出a 、b 的值.本题主要考查二元一次方程组的解,解答此题的关键是要弄清题意,正确求出第二个方程组的解.17.【答案】解:(1)设原两位数的个位数字为m ,则十位数字为(11-m ),依题意,得:10×(11-m )+m +45=10m +(11-m ),解得:m =8,∴11-m =3.答:原两位数为38.(2)设原两位数的十位数字为x ,个位数字为y ,依题意,得:{x +y =1110x +y +45=10y +x. (3)结合(1),可知:x =3,y =8,∴x +y =11,10x +y +45=83=10y +x ,∴(1)中求得的结果满足(2)中的方程组.【解析】(1)设原两位数的个位数字为m ,则十位数字为(11-m ),根据原两位数+45等于原两位数的两个数字交换位置所表示的数,即可得出关于m 的一元一次方程,解之即可得出结论;(2)设原两位数的十位数字为x ,个位数字为y ,根据原两位数两个数位上的数之和为11及原两位数+45等于原两位数的两个数字交换位置所表示的数,即可得出关于x ,y 的二元一次方程组,此问得解;(3)由(1)的结论可得出x ,y 的值,再将其代入(2)的方程组中验证后即可得出结论. 本题考查了一元一次方程的应用以及由实际问题抽象出二元一次方程组,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出二元一次方程组;(3)将(1)的结论代入方程组中验证方程组是否正确.18.【答案】解:(1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,依题意,得:{6(x +y)=90(6+4)(x −y)=90,解得:{x =12y =3. 答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时;(2)设甲、丙两地相距a 千米,则乙、丙两地相距(90-a )千米,依题意,得:a 12+3=90−a 12−3,解得:a =2254.答:甲、丙两地相距2254千米.【解析】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程. (1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,根据路程=速度×时间,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设甲、丙两地相距a 千米,则乙、丙两地相距(90-a )千米,根据时间=路程÷速度,即可得出关于a 的一元一次方程,解之即可得出结论.19.【答案】解:设甲工程队每天需费用x 元,乙工程队每天需费用y 元,由题意得,{8x +8y =70406x +12y =6960, 解得:{x =600y =280. 答:甲工程队每天需费用600元,乙工程队每天需费用280元.【解析】设甲工程队每天需费用x 元,乙工程队每天需费用y 元,根据题意可得:甲乙合作8天完工,需付两工程队施工费用7040元;甲队单独施工6天,再请乙工程队单独施工12天完工,需付两工程队施工费用6960元,列方程组求解.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.20.【答案】解:(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨,y 吨,根据题意得:{2x +y =10x +2y =11, 解得:{x =3y =4. 答:1辆A 型车和1辆B 型车都装满货物一次可分别运货3吨,4吨.(2)由题意可得:3a +4b =31,∴b =31−3a 4.∵a ,b 均为正整数,∴有{a =1b =7、{a =5b =4和{a =9b =1三种情况. 故共有三种租车方案,分别为:①A 型车1辆,B 型车7辆;②A 型车5辆,B 型车4辆;③A 型车9辆,B 型车1辆.【解析】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)根据等量关系,列出关于x 、y 的二元一次方程组;(2)由(1)的结论结合共运货31吨,找出3a +4b =31.(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨,y 吨,根据“用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)由(1)的结论结合某物流公司现有31吨货物,即可得出3a +4b =31,即b =31−3a 4,由a 、b 均为正整数即可得出各租车方案.21.【答案】解:由①,得2x -3y =2.③把③代入②,得2+57+2y =9,解得y =4.把y =4代入③,得2x -3×4=2, 解得x =7.∴原方程组的解为{x =7,y =4.【解析】略。

人教版七年级数学下册第八章第三节解实际问题与二元一次方程组练习试题(含答案) (63)

人教版七年级数学下册第八章第三节解实际问题与二元一次方程组练习试题(含答案) (63)

人教版七年级数学下册第八章第三节解实际问题与二元一次方程组练习试题(含答案)父子二人并排垂直站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身身高的17,父子二人的身高之和为3.2米,若设爸爸的身高为x 米,儿子的身高为y 米,则可列方程组为( )A .x+y=3.2111+x=1+y 73⎧⎪⎨⎛⎫⎛⎫ ⎪ ⎪⎪⎝⎭⎝⎭⎩ B .x+y=3.2111-x=1-y 73⎧⎪⎨⎛⎫⎛⎫ ⎪ ⎪⎪⎝⎭⎝⎭⎩ C .x+y=3.211x=y 37⎧⎪⎨⎪⎩D .x+y=3.2111-x=1-y 37⎧⎪⎨⎛⎫⎛⎫ ⎪ ⎪⎪⎝⎭⎝⎭⎩ 【答案】D【解析】【分析】 根据题意可得两个等量关系:①爸爸的身高+儿子的身高=3.2米;②父亲在水中的身高(1-13)x=儿子在水中的身高(1-17)y ,根据等量关系可列出方程组.【详解】设爸爸的身高为x 米,儿子的身高为y 米,由题意得:3.211(1)(1)37x y x y +=⎧⎪⎨-=-⎪⎩故选D.【点睛】本题考查了由实际问题抽象出二元一次方程组, 解题的关键是弄清题意,找出题目中的等量关系.22.学校举办“创建文明城”演讲比赛,张老师拿出90元钱全部购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本15元,乙种笔记本每本5元,且乙种笔记本的数量是甲种笔记本的整数倍,则购买笔记本的方案有()A.2种B.3种C.4种D.5种【答案】A【解析】【分析】设甲种笔记本购买了x本,则乙种笔记本y本,根据题意得出15x+5y=90,求出其解即可.【详解】设甲种笔记本购买了x本,乙种笔记本y本,由题意,得15x+5y=90整理,得3x+y=16因为y是x的整数倍,所以当x=2时,y=10.当x=4时,y=4.综上所述,共有2种购买方案.故选:A.【点睛】考查了列二元一次不等式解实际问题的运用,分类讨论思想在解实际问题中的运用,解答时根据条件建立等式是关键.23.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( )A.1种B.2种C.3种D.4种【答案】B【解析】【分析】首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解.【详解】解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=35,y=7-35x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.【点睛】本题主要考查二元一次方程的应用,关键在于根据题意列方程.24.使方程组216{20x myx y+=-=有自然数解的整数m()A.只有5个B.只能是偶数C.是小于16的自然数 D.是小于32的自然数【答案】A【解析】【分析】将m 看做已知数表示出y ,根据x 与y 为自然数,确定出整数m 的值即可.【详解】21620x my x y ①②+=⎧⎨-=⎩, 由②得:x=2y ,代入②得:4y+my=16,即y=164m+, 当y=1时,m=12;当y=2时,m=4;当y=4时,m=0;当y=8时,m=−2;当y=16时,m=−3,则m 的值有5个,故答案选A.【点睛】本题考查的知识点是解二元一次方程组,解题的关键是熟练的掌握解二元一次方程组.25.某种植大户计划安排10个劳动力来耕作30亩土地,这些土地可以种植蔬菜,也可以种植水稻,种植这些农作物所需要的劳动力及预算产值如下表:为了使所有的土地都种上农作物,且全部劳动力都有工作,现安排x 人种植蔬菜,余下的人种植水稻,此时总产值是y 元,则x 和y 的值分别是( )A.5,132000 B.6,486000 C.8,578000 D.10,6700【答案】A【解析】【分析】设种蔬菜a亩,种水稻b亩,根据题意可列方程组进行解答.【详解】解:设种蔬菜a亩,种水稻b亩,根据题意可列30111024a ba b+=⎧⎪⎨+=⎪⎩,解得1020ab=⎧⎨=⎩.所以x=10·12=5,y=9000·10+2100·20=132000.故答案选A.【点睛】本题主要考察二元一次方程的应用,关键是抓住题中的等量关系列方程.二、解答题26.甲乙两人同时解方程组x3y2=⎧⎨=⎩.甲解对了,得x2y2=-⎧⎨=-⎩;乙看错了m,得3a223m1482a22bb+=⎧⎪-=⎨⎪--=⎩.求a+b+m的值.【答案】193【解析】【分析】把甲的结果代入方程组,将乙结果代入第一个方程,联立求出a,b,m的值,再计算即可【详解】解:由题意知a4522 m3 b⎧⎪=⎪=-⎨⎪⎪=⎩解得a4522 m3 b⎧⎪=⎪=-⎨⎪⎪=⎩∴a+b+m=4+(-5)+223=193【点睛】本题考查了解二元一次方程组,熟练掌握运算法则是解题的关键27.有大小两种货车,3辆大车与5辆小车一次可运货24.5吨,2辆大车与3辆小车一次可运15.5吨,求每辆大车和每辆小车一次各运货多少吨?【答案】每辆大车可运4吨货,每辆小车可运货2.5吨.【解析】【分析】等量关系比较明显:3辆大车运载吨数+5辆小车运载吨数=24.5;2辆大车运载吨数+3辆小车运载吨数=15.5吨.即可算出1辆大车与1辆小车一次可以运货多少吨【详解】解:设大货车每辆装x 吨,小货车每辆装y 吨,x 4y 2.5=⎧⎨=⎩解得:ax 2mx-7y 8by +=⎧⎨=⎩答:每辆大车可运4吨货,每辆小车可运货2.5吨【点睛】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组28.七年级(1)班课外手工制作小组30名学生制作纸飞机模型,每人每小时可做20个机身或60个机翅,一个飞机模型要一个机身配两个机翅,为了使每小时制作的成品刚好配套,应该分配多少名学生做机身,多少名学生做机翅?【答案】应该分配18学生做机身,12名学生做机翅【解析】【分析】解法一:设应该分配x 名学生做机身,则有(30-x )名学生做机翅等量关系:制作的机翅总数=2×机身总数;解法二:设应该分配x 名学生做机身,y 名学生做机翅等量关系:做机身的学生数+做机翅的学生数=30;制作的机翅总数=2×机身总数;根据列出的方程组,解方程组进行求解,即可解决问题【详解】20.解法一:设应该分配x 名学生做机身,则有(30-x )名学生做机翅,由题意得:60(30一x )=2×20x ,解得:x=18,30-x=12,即应该分配18学生做机身,12名学生做机翅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学校班级姓名【本文档由书林工作坊整理发布,谢谢你的下载和关注!】单元测验卷一.选择题.1.(3分)若3x﹣2y﹣7=0,则6y﹣9x﹣6的值为()A.15 B.﹣27 C.﹣15 D.无法确定2.(3分)在方程2(x+y)﹣3(y﹣x)=3中,用含x的式子表示y,正确的是()A.y=5x+3 B.y=﹣x﹣3 C.y=5x﹣3 D.y=3.(3分)已知是方程mx+2y=﹣2的一个解,那么m为()A.B.﹣ C.﹣4 D.4.(3分)用加减消元法解方程组,下列变形正确的是()A.B.C.D.5.(3分)关于x,y的方程组的解互为相反数,则k的值是()A.8 B.9 C.10 D.116.(3分)若和都是关于x、y的方程|a|x+by=6的解,则a+b的值为()A.4 B.﹣10 C.4或﹣10 D.﹣4或107.(3分)关于x,y的二元一次方程ax+b=y的两个解是,,则这个二元一次方程是()A.y=2x+3 B.y=2x﹣3 C.y=2x+1 D.y=﹣2x+19.(3分)如果是方程组的解,那么,下列各式中成立的是()A.a+4c﹣2=0 B.4a+c=2 C.a+4c+2=0 D.4a+c+2=010.(3分)关于x、y的二元一次方程组没有解时,m的值是()A.﹣6 B.6 C.1 D.011.(3分)若方程组与有相同的解,则a、b的值为()A.2,3 B.3,2 C.2,﹣1 D.﹣1,212.(3分)若2a+5b+4c=0,3a+b﹣7c=0,则a+b﹣c的值是()A.O B.1 C.2 D.﹣1二.填空题.13.(3分)已知是方程组的解,则m2﹣n2的值为.14.(3分)若满足方程组的x、y的值相等,则k=.15.(3分)已知==,且a+b﹣c=,则a=,b=,c=.16.(3分)某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了朵.三.解答题.17.解方程组:.18.已知,xyz≠0,求的值.19.对于等式y=ax2+bx+c,有三对x,y的值;;能使等式两边值相等,试求a,b,c的值.20.甲运输公司决定分别运给A市苹果10t,B市苹果8t,但现在仅有12t苹果,还需从乙运输公司调运6t,经协商,从甲运输公司运1t苹果到A、B两市的运费分别为50元和30元,从乙运输公司运1t苹果到A、B两市的运费分别为80元和40元,要求总运费为840元,问如何进行调运?21.汽车从A地开往B地,如果在原计划时间的前一半时间每小时行驶40km,而后一半时间每小时行驶50km,可按时到达.但汽车以每小时40km的速度行至离AB中点还差40km时发生故障,停车半小时后,又以每小时55km的速度前进,结果仍按时到达B地.求A、B两地的距离及原计划行驶的时间.参考答案与试题解析一.选择题.1.(3分)若3x﹣2y﹣7=0,则6y﹣9x﹣6的值为()A.15 B.﹣27 C.﹣15 D.无法确定【考点】33:代数式求值.【专题】11 :计算题.【分析】先变形3x﹣2y﹣7=0得到3x﹣2y=7,再变形6y﹣9x﹣6得到﹣3(3x﹣2y)﹣6,然后利用整体思想进行计算.【解答】解:∵3x﹣2y﹣7=0,∴3x﹣2y=7,∴6y﹣9x﹣6=﹣3(3x﹣2y)﹣6=﹣3×7﹣6=﹣27.故选B.【点评】本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.2.(3分)在方程2(x+y)﹣3(y﹣x)=3中,用含x的式子表示y,正确的是()A.y=5x+3 B.y=﹣x﹣3 C.y=5x﹣3 D.y=【考点】93:解二元一次方程.【分析】把方程2(x+y)﹣3(y﹣x)=3写成用含x的式子表示y的形式,需要把含有y的项移到等号一边,其它的项移到另一边,然后合并同类项、系数化1就可.【解答】解:去括号,得2x+2y﹣3y+3x=3,移项、合并同类项,得﹣y=3﹣5x,系数化为1,得y=5x﹣3y.故选C.【点评】本题考查的是方程的基本运算技能:去括号、移项、合并同类项、系数化为1等.3.(3分)已知是方程mx+2y=﹣2的一个解,那么m为()A.B.﹣ C.﹣4 D.【考点】92:二元一次方程的解.【专题】11 :计算题.【分析】根据二元一次方程的解的定义,把代入方程mx+2y=﹣2,得关于m的方程,解关于m的方程即可求解.【解答】解:把代入方程mx+2y=﹣2得:3m+2×(﹣5)=﹣2,解得:m=,故选:A.【点评】本题主要考查了二元一次方程的解.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.4.(3分)用加减消元法解方程组,下列变形正确的是()A.B.C.D.【考点】98:解二元一次方程组.【分析】运用加减法解方程组时,要满足方程组中某一个未知数的系数相等或互为相反数,把原方程变形要根据等式的性质,本题中方程①×2,②×3,就可把y的系数变成互为相反数.【解答】解:①×2得,4x+6y=6③,②×3得,9x﹣6y=33④,组成方程组得:.故选C.【点评】二元一次方程组的解法有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.运用加减法解方程组时,要满足方程组中某一个未知数的系数相等或互为相反数.5.(3分)关于x,y的方程组的解互为相反数,则k的值是()A.8 B.9 C.10 D.11【考点】9C:解三元一次方程组.【分析】理解清楚题意,运用三元一次方程组的知识,把x,y用k表示出来,代入方程x=﹣y求得k的值.【解答】解:由x,y互为相反数得x=﹣y,代入(1)得y=﹣1,则x=1,把x=1,y=﹣1,代入(2)得:2k﹣k﹣1=10,则k=11.故选D.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.6.(3分)若和都是关于x、y的方程|a|x+by=6的解,则a+b的值为()A.4 B.﹣10 C.4或﹣10 D.﹣4或10【考点】92:二元一次方程的解.【专题】11 :计算题.【分析】将已知两对x与y的值代入已知方程,求出a【解答】解:将和分别代入方程|a|x+by=6得:,解得:a=±7,b=﹣3,则a+b=4或﹣10.故选C【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.7.(3分)关于x,y的二元一次方程ax+b=y的两个解是,,则这个二元一次方程是()A.y=2x+3 B.y=2x﹣3 C.y=2x+1 D.y=﹣2x+1【考点】92:二元一次方程的解;98:解二元一次方程组.【分析】把方程的解代入得出关于a、b的方程组,求出方程组的解即可.【解答】解:∵关于x,y的二元一次方程ax+b=y的两个解是,,∴代入得:,解得:a=2,b=﹣3,∴y=2x﹣3,故选B.【点评】本题考查了二元一次方程的解和解二元一次方程组的应用,关键是求出a、b的值.9.(3分)如果是方程组的解,那么,下列各式中成立的是()A.a+4c﹣2=0 B.4a+c=2 C.a+4c+2=0 D.4a+c+2=0【考点】97:二元一次方程组的解.【专题】11 :计算题.【分析】所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于a,b、c的三元一次方程组,消去b就可得到a与c的关系.【解答】解:把代入方程组得:,①+②×2得:﹣a﹣4c=2,即a+4c+2=0.故选:C.【点评】此题主要考查了二元一次方程组的消元思想.本题要求同学们不仅熟悉代入法,更需要熟悉二元一次方程组的解法,解题时要根据方程组的特点进行有针对性的计算.10.(3分)关于x、y的二元一次方程组没有解时,m的值是()A.﹣6 B.6 C.1 D.0【考点】97:二元一次方程组的解.【专题】11 :计算题.【分析】利用代入消元法消去y得到关于x的方程,由方程组无解即可确定出m 的值.【解答】解:,由①得:y=2x﹣1③,将③代入②得:mx+6x﹣3=2,即(m+6)x=5,∵方程组没有解,∴m=﹣6.故选A【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.11.(3分)若方程组与有相同的解,则a、b的值为()A.2,3 B.3,2 C.2,﹣1 D.﹣1,2【考点】97:二元一次方程组的解.【专题】11 :计算题.【分析】将第一个方程组中第一个方程与第二个方程组的第二个方程联立求出x 与y的值,代入剩下的两方程计算即可求出a与b的值.【解答】解:根据题意得:,①+②×4得:11x=22,即x=2,将x=2代入②得:4﹣y=5,即y=﹣1,将x=2,y=﹣1代入得:,解得:a=3,b=2,故选B【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.12.(3分)若2a+5b+4c=0,3a+b﹣7c=0,则a+b﹣c的值是()A.O B.1 C.2 D.﹣1【考点】9C:解三元一次方程组.【分析】首先把2a+5b+4c=0,3a+b﹣7c=0,建立关于a、b的二元一次方程组,求出的解用c表示,进一步代入求得结果即可.【解答】解:由2a+5b+4c=0,3a+b﹣7c=0得,,解得,代入a+b﹣c=3c﹣2c﹣c=0.故选:A.【点评】此题考查方程组的解法,注意把三元变为二元,把其中一个未知数看作已知数是解决问题的关键.二.填空题.13.(3分)已知是方程组的解,则m2﹣n2的值为﹣8.【考点】97:二元一次方程组的解.【专题】11 :计算题.【分析】根据题意得出关于m,n的二元一次方程组,进而求出m,n的值,进而得出答案.【解答】解:∵是方程组的解,∴,解得:,∴m2﹣n2=(﹣)2﹣32=﹣8.故答案为:﹣8.【点评】此题主要考查了二元一次方程组的解,根据题意得出m,n的值是解题关键.14.(3分)若满足方程组的x、y的值相等,则k=.【考点】97:二元一次方程组的解.【专题】11 :计算题.【分析】根据x=y,把方程组中的y换成x,得到关于x与k的二元一次方程组,求出方程组的解即可得到k的值.【解答】解:因为x=y,所以方程组化为,由①得:x=4,把x=4代入②,解得:k=.故答案为:【点评】此题考查了二元一次方程组的解法,解题中注意利用消元的数学思想,是一道基础题.15.(3分)已知==,且a+b﹣c=,则a=,b=,c=.【考点】9C:解三元一次方程组.【专题】11 :计算题.【分析】设已知第一个等式等于k,表示出a,b,c,代入第二个等式求出k的值,即可确定出a,b,c的值.【解答】解:设===k,即a=2k,b=3k,c=4k,代入a+b﹣c=,得:2k+3k﹣4k=,即k=,则a=,b=,c=.故答案为:;;【点评】此题考查了解三元一次方程组,弄清题意是解本题的关键.16.(3分)某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了4380朵.【考点】9D:三元一次方程组的应用.【专题】12 :应用题;16 :压轴题.【分析】题中有两个等量关系:甲种盆景所用红花的朵数+乙种盆景所用红花的朵数+丙种盆景所用红花的朵数=2900朵,甲种盆景所用紫花的朵数+丙种盆景所用紫花的朵数=3750朵.据此可列出方程组,设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆,用含x的代数式分别表示y、z,即可求出黄花一共用的朵数.【解答】解:设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z 盆.由题意,有,由①得,3x+2y+2z=580,即x+2y+2(x+z)=580③,由②得,x+z=150④,把④代入③,得x+2y=280,∴2y=280﹣x⑤,由④得z=150﹣x⑥.∴4x+2y+3z=4x+(280﹣x)+3(150﹣x)=730,∴黄花一共用了:24x+12y+18z=6(4x+2y+3z)=6×730=4380.故答案为:4380.【点评】本题考查了三元一次方程组在实际生活中的应用.解题的关键是发掘等量关系列出方程组,难点是由于24x+12y+18z=6(4x+2y+3z),所以千方百计“创造”(4x+2y+3z)这一整体.三.解答题.17.解方程组:.【考点】9C:解三元一次方程组.【分析】利用③求出y的数值,再代入①②建立关于x、z的二元一次方程组,求出方程组的解即可.【解答】解:,由③得﹣4y=4,y=﹣1;代入①②得,解得,所以方程组的解为.【点评】此题考查三元一次方程组的解法,注意逐步减少未知数的个数,最后变为一元一次方程解决问题.18.已知,xyz≠0,求的值.【考点】9C:解三元一次方程组.【分析】首先把三元一次方程组化为关于x、y的二元一次方程组,把x、y用z 表示,进一步代入代数式求得数值即可.【解答】解:,整理得,解得x=,代入===.【点评】此题考查方程组的解法以及代数式的求值,注意方程组的转化.19.对于等式y=ax2+bx+c,有三对x,y的值;;能使等式两边值相等,试求a,b,c的值.【考点】9C:解三元一次方程组.【专题】11 :计算题.【分析】把三对x,y的值分别代入y=ax2+bx+c得到得,由②﹣①得a﹣b=2④,③﹣②得a+b=0⑤,再解由④⑤组成的方程组,求出a、b,然后把a、b的值代入①可求出c.【解答】解:根据题意得,②﹣①得3a﹣3b=6,整理得a﹣b=2④,③﹣②得5a+5b=0,整理得a+b=0⑤,解由④⑤组成的方程组得,把a=1,b=﹣1代入①得1﹣1+c=﹣2,解得c=﹣2,所以原方程组的解为.【点评】本题考查了解三元一次方程组:利用加减消元或代入消元法把三元一次方程转化为二元一次方程.20.甲运输公司决定分别运给A市苹果10t,B市苹果8t,但现在仅有12t苹果,还需从乙运输公司调运6t,经协商,从甲运输公司运1t苹果到A、B两市的运费分别为50元和30元,从乙运输公司运1t苹果到A、B两市的运费分别为80元和40元,要求总运费为840元,问如何进行调运?【考点】9A:二元一次方程组的应用.【分析】设从甲运输公司运往A市苹果xt,运往B市苹果yt,根据甲运输公司共有12t苹果,共花运费840元,列出方程组求解.【解答】解:设从甲运输公司运往A市苹果xt,运往B市苹果yt,由题意得,,解得:,则从乙运输公司运往A市苹果2t,运往B市苹果4t.答:从甲运输公司运往A市苹果8t,运往B市苹果4t,从乙运输公司运往A市苹果2t,运往B市苹果4t.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出合适的等量关系列方程组求解.21.汽车从A地开往B地,如果在原计划时间的前一半时间每小时行驶40km,而后一半时间每小时行驶50km,可按时到达.但汽车以每小时40km的速度行至离AB中点还差40km时发生故障,停车半小时后,又以每小时55km的速度前进,结果仍按时到达B地.求A、B两地的距离及原计划行驶的时间.【考点】9A:二元一次方程组的应用.【分析】设A、B两地的距离为xkm,原计划行驶的时间为yh,根据前一半时间每小时行驶40km,而后一半时间每小时行驶50km,用y小时按时到达B地,以每小时40km的速度行至离AB中点还差40km时发生故障,停车半小时后,又以每小时55km的速度前进,仍用y小时到达B地,列出方程组求解.【解答】解:设A、B两地的距离为xkm,原计划行驶的时间为yh,由题意得,,解得:,答:A、B两地的距离为360km,原计划行驶的时间为8h.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

相关文档
最新文档