一次函数与面积的关系动点问题

合集下载

一次函数中的面积问题ppt课件

一次函数中的面积问题ppt课件
6
形状变式
如图所示:直线y=kx+b经过点B
与点C(-1,3),且与(x轴0交,与3 点)A,经过点E(-
2,0)的 直线与OC平行,并且与直线y=kx+b交与点D,
2
(1)求BC所在直线的函数解析式;
(2)求点D的坐标;
(3)求四边形CDEO的面积。
y D
C B
A
x
E
O
7
形状逆向变式
如图,由x轴,直线y=kx+4及分别过(1,0),(3,0),且平行于y轴的两条直线所围成的梯 形ABCD的面积为 ,求y=kx+4的解析式。
16
3
y
A B
oD
C
x
8
背景变式 1、如图,已知直线y=-x+2与x轴,y轴分别相交于A、B两点,另一直线y=kx+b经 过B和点C,将△AOB面积分成相等的两部分,求k和b的值.
9
2、如图,已知直线y=-x+2与x轴、y轴分别交于点A和点B,另已知直线y=kx+b (k≠0)经过点C(1,0),且把△AOB分成两部分. 若△AOB被分成的两部分面积比为1:5,求k和b的值.
一次函数中的面积问题
1
基础问题
1.直线y=3x-6与坐标轴围成的三角形的面积为
.
2.已知两条直线y=2x-3和y=5-x,求出这两条直线与x轴围成的三角形的面积.
2
方法小结 1、解题策略:画图像,看图像,求交点,分解图形 2、数学思想:数形结合思想。
3
逆向变式 1、若一次函数y=3x+m解析式。
注意:用坐标值表示线段长时要加上绝对值符号,以防漏解
4
2、如图,一次函数的图像交x轴于点B(-6,0),交正比例函数的图像于点A,且点A的横坐 标为-4,S△AOB =15,求一次函数和正比例函数的解析式.

一次函数之动点问题 (习题及答案).

一次函数之动点问题  (习题及答案).

一次函数之动点问题(习题)1.如图,在平面直角坐标系中,四边形AOBC 是正方形,已知点A 的坐标为(0,2),点D 在x 轴正半轴上,B 是线段OD 的中点,连接CD.动点P 从点O 出发,以每秒1 个单位长度的速度沿O→A→C→B 的路线向终点B 运动,动点Q 从点O 同时出发,以相同的速度沿O→B→D→B 的路线向终点B 运动.设△OPQ 的面积为S,点P 运动的时间为t 秒(0<t<6).求S 与t 之间的函数关系式,并写出自变量t 的取值范围.2 2. 如图,直线 y =x +4 与 x 轴、y 轴分别交于点 A ,B ,直线 y =-x +b过点 B ,且与 x 轴交于点 C .动点 P 从点 C 出发,沿 CA 方向以每秒 1 个单位长度的速度向终点 A 运动,动点 Q 从点 A 同 时出发,沿折线 AB -BC 以每秒 个单位长度的速度向终点 C 运动.设点 P 运动的时间为 t 秒.(1) 设△CPQ 的面积为 S ,求 S 与 t 之间的函数关系式,并写出自变量 t 的取值范围;(2) 当 t = 时,PQ ∥AB ;(3) 当 0<t ≤4 时,若△APQ 是等腰三角形,求 t 的值.⎨ 【参考答案】⎧ 1 t 2(0 < t ≤2) 2 1. S = ⎪ 2 < t ≤ 4) . ⎨t ( ⎪ 1 2⎪ t - 7t + 24(4 < t < 6) ⎩ 2⎧ 1 t 2(0 < t ≤ 4) 2. (1) S = ⎪ 2 ⎪- 1 ⎩ 2(2) 16 ;3; t 2 + 4t (4 < t < 8) (3)t 的值为8 - 8 , 8 或 4. 32 ⎪。

完整版)八年级数学一次函数动点问题

完整版)八年级数学一次函数动点问题

完整版)八年级数学一次函数动点问题八年级数学一次函数动点问题1、如图所示,以等边三角形OAB的边OB所在直线为x 轴,点O为坐标原点,在第一象限建立平面直角坐标系。

其中,△OAB边长为6个单位。

点P从O点出发沿折线OAB 向B点以3单位/秒的速度运动,点Q从O点出发沿折线OBA向A点以2单位/秒的速度运动。

两点同时出发,运动时间为t(单位:秒),当两点相遇时运动停止。

①点A的坐标为(3,3),P、Q两点相遇时交点的坐标为(3,3);②当t=2时,△OPQ的面积为3/2;当t=3时,△OPQ的面积为9/4;③设△OPQ的面积为S,求S关于t的函数关系式为S=(3t-t^2)/4;④当△OPQ的面积最大时,在y轴上无法找到一点M,使得以M、P、Q为顶点的三角形是直角三角形。

2、如图所示,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动。

设点P、Q移动的时间为t秒。

1) 直线AB的解析式为y=-x+6;2) 当t=5时,△APQ的面积为24/5平方单位;3) △OPQ为直角三角形的时间范围为2≤t≤4;4) 无论t为何值,△OPQ都不可能为正三角形。

若点Q的运动速度为4个单位/秒,则此时t=2.3、如图所示,在直角三角形△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以点O为坐标原点建立坐标系,设P、Q分别为AB、OB边上的动点。

它们同时分别从点A、O向B 点匀速运动,速度均为1cm/秒。

设P、Q移动时间为t(≤t≤4)。

1)过点P做PM⊥OA于M,求证:AM:AO=PM:BO=AP:AB,并求出P点的坐标(用t表示)。

证明:由于△OPM与△OAB相似,因此有PM/OB=AO/AB,即PM=AO*OB/AB=9/5.又因为△APM与△AOB相似,因此有AM/OA=PM/OB,即AM=OA*PM/OB=27/20.因此AM:AO=PM:BO=AP:AB=9:15:20.P点的坐标为(3t/5,18t/5)。

一次函数之面积问题ppt课件

一次函数之面积问题ppt课件
(1)用m,n表示A,B,P的坐标.
(2)若AB=2,四边形PQOB的面积为5/6,求点P的坐 标.

11.如图,直线y=2x+2与坐标轴交于A,B点.
(1)求出A,B的坐标.(2) 直线y=kx(k≠0)交直线y=2x+2于点P,把 △ABC分成两部分,
①若△AOP与 △BOP的面积之比为1:2,求k值和P的坐标.
点B的坐标为(1,0)∴OB=∣1∣=1
三角形ABP的高为点P的纵坐标的绝对值∣2∣=2
∴S△ABP=
1 2
(5+1)
×2=6
6.在同一直角坐标系中画出直线y=x+3与y=x+1的图像.(1)求出两条直线与x轴的两个交点 A,B间的距离.(2)求两条直线的交点C的坐标.(3) 求△ABC的面积.
7.已知,直线y=2x+3与直线y=-2x-1. (1)求两直线交点C的坐标; (2)求△ABC的面积. (3)在直线BC上能否找到点P,使得S△APC=6,
5.已知直线y=2x+3与x轴交于点A,与y轴交于点 B,
• (1)求A,B的坐标.
• (2)过点B作直线BP与x轴交于点P,且使 OP=2OA,求△ABP的面积
例1、
{ 解:
y=0.5x+2.5 y=-x+1
{ 解方程组得: X=-1 y=2
∴点p的坐标为(-1,2)
(2)点A的坐标为(-5,0)∴OA=∣-5∣=5
• 1.(黄石中考)将函数y=-2x的图像l1向上平移4个单 位得直线l2,(1)求直线l2与坐标轴的交点坐标.(2)求 直线l2与坐标轴围成的三角形面积.
2.直线经过(1,2)、(-3,4)两点,求直 线与坐标轴围成的图形的面积。

一次函数与面积的关系动点问题PPT

一次函数与面积的关系动点问题PPT

2
3
2
3
2x 18
∵点P在第二象限内,且在直线EF上运动
∴- 9<x<0
3
如图,直线y = kx+6与x轴y轴分别相交于点E,F. 点E的 坐标为(- 9, 0), 点A的坐标为(- 6,0). 点P(x,y)是 第二象限内的直线上的一个动点。 (3)探究:当△OPA的面积为3.6时,求P的坐标
成两部分。
x
(1)求△ABO的面积。 y1 B P
(2)若△ABO被直线CP分成 的两部分面积相等,求点
C
Ay
P的坐标及直线CP的函数表达式。
y2
11
3.如图,一次函数y=kx+1.5 的图象过点M(2,0),与 正比例函数y= —1.5x的图象交于点A,过点A作AB垂直 于x轴于点B。 (1)求k的值并计算y=kx+1.5图象与坐标轴围成的三角 形的面积;
一次函数与面积的关系 动点问题
1
例1.如图,直线y=kx+6与x轴y轴分别相交于点E,F.点E的
坐标为(- 9, 0),点A的坐标为(-6,0),点P(x,y)是第二
象限内的直线上的一个动点。
(1)求k的值;
(2)当点P运动过程中,试写出△OPA的面积S与x的函数
关系式,并写出自变量x的取值范围;
2
x
6)
(x,y)p F
∵点P在第二象限
3
PH 2 x 6 2 x 6
3
3
E
A(-6,0) H O
x
∵ A(6,0) OA 6
S△OPA
1 OA PH 2
1 6(2 x 6) 2x 18
OA=__6__,PH=_|_2|_yx_|_6_|。

由动点引出的几种面积问题(含答案)

由动点引出的几种面积问题(含答案)

专题9:由动点引出的几种面积问题动点题是近年来中考的一个热点问题也是难点问题,而因动点产生的面积问题是这类题目考查的重点. 解这类题目要掌握几个基本图形及思路,而后“以静制动”、“转化求解”. 即把动态问题变为静态问题,变为我们所熟知的模型来解。

基本模型一利用“铅垂高、水平宽”求三角形面积.面积公式:S =12ah 基本模型二CABD其中::ACD BCD S S AD BD =△△: ,:ACD BCA S S AD BA =△△: 基本模型三OB()12AOB ACB AOBC S S S a h OA =+=+△△四边形 类型一、一次函数由动点问题引出的面积问题例1. 如图例1-1,在平面直角坐标系中,直线121y x =+和直线2443y x =-+交于点A . 直线y n =从x 轴出发以每秒2个单位的速度向上运动,至通过A 点时停止. 在运动过程中,直线y n =分别交y 1、y 2两条直线于C 、B 两点,交y 轴于点D . 连接OC 、OB .(1)设运动时间为t (s ),求t 的取值范围.(2)求出△OBC 的面积S 与t 的函数关系式,并求出S 的最大值及此时n 的值.y=n类型二、二次函数由动点问题引出的面积问题例2. 如图例2-1,二次函数y =ax 2+bx +c 的图像与x 轴的交点为A 、D (A 在D 的右侧),与y 轴的交点为C ,且A (4,0),C (0,-3),对称轴是直线x =1. (1)求二次函数的解析式;(2)若M 是第四象限抛物线上一动点,且横坐标为m ,设四边形OCMA 的面积为S .请写出S 与m 之间的函数关系式,并求出当m 为何值时,四边形OCMA 的面积最大.图例2-1图例2-2类型三、反比例函数由动点问题引出的面积问题例3. 如图例3-1,直线y=2x+6与反比例函数kyx(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?图例3-1类型四、利用三角函数求解由动点问题引出的面积问题例4. 如图例4-1,在矩形OABC中,点O为原点,边OA的长度为8,对角线AC=10,抛物线y =-49x 2+bx +c 经过点A 、C ,与AB 交于点D .(1)求抛物线的解析式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ =CP ,连接PQ ,设CP =m ,△CPQ 的面积为S . 求S 关于m 的函数表达式并求出S 最大时的m 值.图例4-1.类型五、由动点问题引出的面积存在性问题例5. 如图例5-1,在平面直角坐标系中,△ABC 是等腰直角三角形,∠BAC =90°,A (1,0),B (0,2),C (3,1)抛物线2122y x bx =+-的图象过C 点,交y 轴于点D . (1)在后面的横线上直接写出点D 的坐标及b 的值: ,b = ;(2)平移该抛物线的对称轴所在直线l ,设l 与x 轴交于点G (x ,0),当OG 等于多少时,恰好将△ABC的面积分为相等的两部分?AOxyBCGF H E图例5-1 图例5-2类型六、利用转化思想解决由动点问题引出的面积问题如图例6-1,在平面直角坐标系中,抛物线24 5y ax x c=++与直线2255y x=--交于A、B两点,已知点B的横坐标是4,直线2255y x=--与x、y轴的交点分别为A、C,点P是抛物线上一个动点.(1)求抛物线的解析式;(2)若点P在直线2255y x=--上方,求△P AC的最大面积.OxyPACBGEH 图例6-1专题9:由动点引出的几种面积问题动点题是近年来中考的一个热点问题也是难点问题,而因动点产生的面积问题是这类题目考查的重点. 解这类题目要掌握几个基本图形及思路,而后“以静制动”、“转化求解”. 即把动态问题变为静态问题,变为我们所熟知的模型来解。

一次函数动点问题含答案

一次函数动点问题含答案

例题1:如图,直线1l 的解析表达式为 ,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式;(3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.例题2:如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 的面积为个平方单位?当堂巩固:如图,直线 与x 轴、y 轴分别交于点E 、F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0)。

(1)求k 的值;(2)若点P (x ,y )是第二象限内的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)探究:当点P 运动到什么位置时,△OPA 的面积为278,并说明理由。

524例题3、如图1,等边△ABC中,BC=6cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s的速度沿AB向终点B移动;点Q以1cm/s的速度沿BC向终点C移动,其中一点到终点,另一点也随之停止.连接PQ,设动点运动时间为x秒.(图2、图3备用)(1)填空:BQ= ,PB= (用含x的代数式表示);(2)当x为何值时,PQ∥AC?(3)当x为何值时,△PBQ为直角三角形?一次函数压轴题1.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC 。

(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.2.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.3.如图①,过点(1,5)和(4,2)两点的直线分别与x轴、y轴交于A、B两点.(1)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.图中阴影部分(不包括边界)所含格点的个数有10个(请直接写出结果);(2)设点C(4,0),点C关于直线AB的对称点为D,请直接写出点D的坐标(6,2);(3)如图②,请在直线AB和y轴上分别找一点M、N使△CMN的周长最短,在图②中作出图形,并求出点N的坐标.4.已知如图,直线y=﹣x+4与x轴相交于点A,与直线y=x相交于点P.(1)求点P的坐标;(2)求S△OPA的值;(3)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,F的坐标为(a,0),矩形EBOF 与△OPA重叠部分的面积为S.求:S与a之间的函数关系式.5.如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A点的坐标是(1,0).(1)直线经过点C,且与x轴交于点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F()且与直线y=3x平行.将(2)中直线l沿着y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积.1.考点:一次函数综合题。

中考复习函数专题06 一次函数中的动点问题(学生版)

中考复习函数专题06 一次函数中的动点问题(学生版)

专题06 一次函数中的动点问题知识对接考点一、怎样解一次函数图象的平移问题1、直线的平移规律(1)直线)0(≠+=k b kx y 可由直线)0(≠=k kx y 向上或向下平移得到,当b>0时,将直线kx y =沿y 轴向上平移b 个单位长度得到直线b kx y +=;当b<0时,将直线kx y =沿y 轴向下平移b 个单位长度得到直线b kx y +=.简而言之,“上加下减”(2)直线)(m x k y +=可由直线kx y =向左或向右平移得到,当m<0时,将直线kx y =沿x 轴向右平移m 个单位长度,可得到直线)(m x k y +=;当>0时,将直线kx y =沿x 轴向左平移m 个单位长度,可得到直线)(m x k y +=,简而言之,“左加右减”(3)一次函数的图象平移,不会改变图象的形状与大小,平移后的图象与原来的图象平行,直线平移后的解析式中,k 的值不变,只有b 的值发生变化.专项训练一、单选题1.一次函数y =kx +b 的图象是由函数y =2x 的图象向左平移3个单位长度后得到的,则该一次函数的解析式为( )A .y =2x +6B .y =﹣2x +6C .y =2x ﹣6D .y =﹣2x ﹣6 2.若一次函数的y =kx +b (k <0)图象上有两点A (﹣2,y 1)、B (1,y 2),则下列y 大小关系正确的是( )A .y 1<y 2B .y 1>y 2C .y 1≤y 2D .y 1≥y 23.已知一次函数的图象过点(2,0)和点(1,1)-,则这个函数的解析式为( )A .2y x =-B .2y x =+C .2y x =--D .2y x =--4.将一次函数1y x =-+的图象向上平移3个单位,则新的一次函数的解析式为( ) A .21y x =+ B .4y x =-- C .4y x =-+ D .41y x =-+5.定义:对于给定的一次函数y ax b =+(a 、b 为常数,且0a ≠,把形如()()00ax b x y ax b x ⎧+≥⎪=⎨--<⎪⎩的函数称为一次函数y ax b =+的“相依函数”,已知一次函数1y x =+,若点()2,P m -在这个一次函数的“相依函数”图象上,则m 的值是( )A .1B .2C .3D .46.若把一次函数y =kx +b 的图象先绕着原点旋转180°,再向右平移2个单位长度后,恰好经过点A (4,0)和点B (0,﹣2),则原一次函数的表达式为( )A .y =﹣12x ﹣1B .y =﹣12x +1C .y =12x +1D .y =12x ﹣1 7.数学课上,老师提出问题:“一次函数的图象经过点(3,2)A ,(1,6)B --,由此可求得哪些结论?”小明思考后求得下列4个结论:①该函数表达式为24y x =-;①该一次函数的函数值随自变量的增大而增大;①点(2,44)P a a -该函数图象上;①直线AB 与坐标轴围成的三角形的面积为8.其中正确的结论有( )A .1个B .2个C .3个D .4个 8.下列函数关系式:(1)y x =-;(2)1y x =-;(3)1y x =;(4)2y x ,其中一次函数的个数是( )A .1B .2C .3D .49.如图,在等腰Rt ABC ∆中,2AB AC cm ==,动点Q 从点C 出发沿C A B →→路径以1/cm s的速度运动,设点Q 运动时间为()t s ,BCQ ∆的面积为S ,则S 关于t 的函数图象大致为( )A .B .C .D . 10.如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰Rt①ABC ,使①BAC=90°,设点B 的横坐标为x ,设点C 的纵坐标为y ,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .二、填空题11.若一次函数(0)y kx b k =+≠的图象可以由2y x =的图象平移得到,且经过点(0,1),则这个一次函数的表达式为_________.12.若一个一次函数的图象经过点()02,,则这个一次函数的解析式可以是(写出一个即可)__________.13.若一次函数y kx b =+(b 为常数)的图象过点()5,4,且与y x =的图象平行,这个一次函数的解析式为_______.14.如图,在平面直角坐标系中,直线l :28y x =+与坐标轴分别交于A ,B 两点,点C 在x 正半轴上,且OC =O B .点P 为线段AB (不含端点)上一动点,将线段OP 绕点O 顺时针旋转90°得线段OQ ,连接CQ ,则线段CQ 的最小值为___________.15.如图①,在梯形ABCD 中,AD①BC ,①A=60°,动点P 从A 点出发,以1cm/s 的速度沿着A→B→C→D 的方向不停移动,直到点P 到达点D 后才停止.已知①PAD 的面积S (单位:)与点P 移动的时间t (单位:s )的函数关系式如图①所示,则点P 从开始移动到停止移动一共用了_________秒(结果保留根号).三、解答题16.如图,在平面直角坐标系中,点()1,1A ,点()4,2B ,点A 关于x 轴的对称点为A '.(1)点A '的坐标为________;(2)已知一次函数的图象经过点A '与B ,求这个一次函数的解析式;(3)点(),0P x 是x 轴上的一个动点,当x =________时,PAB △的周长最小;(4)点(),0C t ,()2,0D t +是x 轴上的两个动点,当t =________时,四边形ACDB 的周长最小;(5)点(),0M m ,点()0,N n 分别是x 轴和y 轴上的动点,当四边形ANMB 的周长最小时,m n +=________,此时四边形ANMB 的面积为________.17.已知:一次函数y =kx +b 的图象经过M (0,2),N (1,3)两点.(1)求一次函数的解析式,画出此一次函数的图象并利用图象回答:当x 取何值时,函数值y >0;(2)将该函数图象平移,使它过点(﹣2,﹣2),求平移后直线的解析式.18.已知一次函数的图象经过点A (3,5)与点B (﹣4,﹣9).(1)求这个一次函数的解析式;(2)将该函数图像向下平移3个单位,求平移后图像的函数表达式.19.在平面直角坐标系中,一次函数 y=kx+b (k ≠ 0)的图象由函数 y=x 的图象平移得到, 且经过点 A (1,2).(1)求这个一次函数的解析式;(2)在所给的平面直角坐标系中画出这个一次函数的图象.若此图象与 x 轴交于点 B ,则①ABO 的面积为 .(3)当 x >1 时,对于每一个 x 的值,函数 y=mx (m ≠ 0)的值都大于一次函数 y=kx+b 的值,请你直接写出 m 的取值范围: .20.在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象是由函数y =2x 的图象平移得到,且经过点(1,3).(1)求这个一次函数的表达式;(2)当x >1时,对于x 的每一个值,函数y =mx (m ≠0)的值大于一次函数y =kx +b (k ≠0)的值,直接写出m 的取值范围.21.如图,一次函数y =(m ﹣3)x ﹣m +1图象分别与x 轴正半轴、y 轴负半轴相交于点A 、B .(1)求m 的取值范围;(2)若该一次函数的图象向上平移4个单位长度后可得某正比例函数的图象,试求这个正比例函数的解析式.22.在平面直角坐标系xOy 中,一次函数y kx b =+的图象经过(2,0)A -,()1,3B 两点. (1)求这个一次函数的解析式;。

一次函数与面积问题

一次函数与面积问题

一次函数与面积问题一次函数与面积问题结合起来一起考查,是一类常考题型,它要求学生充分理解点的坐标的几何意义,能在坐标系中表示出线段的长度,会将面积问题转化为线段、坐标的关系问题,同时对于较复杂的问题能够依据题意画出图象,并借助图象进行分析与解答.一次函数与面积问题的相关类型如下.三角形的底在坐标轴上 三角形的底在坐标轴上时,利用点到坐标轴的距离求出高后直接求面积即可,注意点到坐标轴的距离要带绝对值. 如图①,S △OAC =21·OA ·CH=21·︱x A ︱·︱y C ︱; 如图②,S △OBC =21·OB ·CH=21·︱y B ︱·︱x A ︱三角形的底平行于坐标轴三角形的底平行于坐标轴时,利用平行于坐标轴的直线上的两点间距离求出底和高,最后用面积公式求出面积 如图①,S △ABC =21·AB ·CH=21·︱x B -x A ︱·︱y C -y H ︱;如图②,S △ABC =21·AB ·CH=21·︱y B -y A ︱·︱x C -x H ︱补形法或分割法如果三角形的边都不平行于坐标轴,可以采用补形法构造出有边平行于坐标轴的三角形或四边形后再求解. 如图①,S △ABC = S △OBC + S △OAC + S △AOB ; 如图②,S △ABC = S 梯形OACD + S △BCD + S △AOB ;如图③,S △ABC = S 梯形BOEC + S △ACE -S △AOB ; 如图④,S △ABC = S 矩形OAFD - S △BCD - S △ACF - S △AOB ;通过作平行于坐标轴的直线将三角形分成左右两个三角形或上下两个三角形来求解面积.作三角形铅锤高是解决三角形面积问题的一个好办法.如图①,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽a ”,中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高h ”.我们可得出一种计算三角形面积的新方法:S △ABC =0.5ah ,即三角形面积等于水平宽与铅垂高乘积的一半.图①中,S △ABC =21·︱x A -x B ︱·︱y C -y M ︱,如图②,S △ABC = S △ACM + S △BCM ;如图③,S △ABC = S △ABN + S △BCN 平行线转移法通过作平行线,利用平行线间的距离处处相等和底高关系转移三角形面积.如图④,AB ∥CG ,S △ABC =S △ABG例题1:一次函数y=kx+b(k≠0)的图象经过点A(﹣1,2)和点B(0,4).(1)求出这个一次函数的解析式;(2)画出一次函数图象;(3)求一次函数图象与x轴、y轴所围成的三角形的面积?分析:(1)将两点坐标代入函数表达式中,用待定系数法求解即可;(2)用两点法画函数的图象(确定两点,描点,连线).(2)利用交点点坐标求出三角形面积可.解:(1)依题意得:,解得,所以该一次函数的解析式为y=2x+4;(2)画出一次函数图象;(3)一次函数图象与x轴、y轴所围成的三角形的面积为:S=×2×4=4.例题2:已知直线y=﹣3x+6与x轴交于A点,与y轴交于B点.(1)求A,B两点的坐标;(2)求直线y =﹣3x+6与坐标轴围成的三角形的面积.分析:(1)分别令x=0、y=0求解即可得到与坐标轴的交点;(2)根据三角形的面积公式列式计算即可得解:(1)当x=0时,y=﹣3x+6=6,当y=0时,0=﹣3x+6,x=2.所以A(2,0),B(0,6);(2)直线与坐标轴围成的三角形的面积=S△ABO=×2×6=6.例题3:求一次函数y=x+、一次函数y=﹣2x+6与x轴围成的三角形面积.分析:分别设一次函数y=x+、一次函数y=﹣2x+6与x轴的交点为A、B,两函数图象的交点为C,则可分别求得A、B、C的坐标,则可求得△ABC的面积.解:设一次函数y=x+、一次函数y=﹣2x+6与x轴的交点为A、B,两函数图象的交点为C,在y=x+中,令y=0可解得x=﹣1,故A(﹣1,0),在y=﹣2x+6中,令y=0可解得x=3,故B(3,0),∴AB=3﹣(﹣1)=4,联立两函数解析式可得,解得,故C(2,2),∴在△ABC中,AB边上的高为2,∴S△ABC =×4×2=4,即一次函数y=x+、一次函数y=﹣2x+6与x轴围成的三角形面积为4.例题4:已知一次函数的图象与x轴交于点A(6,0),又与正比例函数的图象交于点B,点B在第一象限,且横坐标为4,如果△AOB(O为坐标原点)的面积为15,求这个一次函数与正比例函数的函数关系式.分析:如图作BC⊥OA于C,先根据三角形面积公式求出BC=5,则B点坐标为(4,5),然后利用待定系数法分别求正比例函数和一次函数解析式.解:如图,作BC⊥OA于C,∵S△OAB=OA•BC,∴×6×BC=15,∴BC=5,∴B点坐标为(4,5),设正比的解析式为y=kx+b,把A(6,0)、B(4,5)代入得,解得,∴一次函数解析式为y=﹣x+15.例题5:如图,已知一次函数图象交正比例函数图象于第二象限的A点,交x轴于点B(﹣6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式分析:作AC⊥OB于C点,如图,根据等腰三角形的性质得BC=OC=BC=3,则C(﹣3,0),再利用三角形面积公式得×6•AC=15,解得AC=5,所以A(﹣3,5),然后利用待定系数法分别求直线OA的解析式和直线AB的解析式即可.解:作AC⊥OB于C点,如图,∵AB=AO,∴BC=OC=BC=3,∴C(﹣3,0),∵△AOB的面积为15,∴OB •AC=15,即×6×AC=15,解得AC=5,∴A(﹣3,5),设直线OA的解析式为y=kx,把A(﹣3,5)代入得﹣3k=5,解得k=﹣,∴直线OA的解析式为y=﹣x;设直线AB的解析式为y=ax+b,把A(﹣3,5)、B (﹣6,0)分别代入得,解得,∴直线AB的解析式为y=x+10,即正比例函数和一次函数的解析式分别为y=﹣x,y=x+10例题6:已知函数y=(m+1)x+2m﹣6,(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=﹣3x+1的交点,并求出这两条直线与y轴所围成三角形的面积.分析:(1)将点(﹣1,2)代入函数解析式求出m即可;(2)根据两直线平行即斜率相等,即可得关于m 的方程,解方程即可得;(3)联立方程组求得两直线交点坐标,再求出两直线与y轴的交点坐标,根据三角形面积公式列式计算即可.解:(1)∵函数y=(m+1)x+2m﹣6的图象过(﹣1,2),∴2=(m+1)×(﹣1)+2m﹣6,解得:m=9,故此函数的解析式为:y=10x+12;(2)由函数图象与直线y=2x+5平行知二者斜率相等,即m+1=2,解得:m=1,故函数的解析式为:y=2x﹣4;(3)如图,由题意,得:,解得:,∴两直线的交点A(1,﹣2),y=2x﹣4与y轴交点B(0,﹣4),y=﹣3x+1与y轴交点C(0,1)∴S△ABC=×5×1=.例题7:如图,直线y=kx+6与x轴、y轴分别交于点E、F,点E的坐标为(﹣3,0),点A的坐标为(﹣2.5,0).(1)求k的值;(2)若点P(x,y)是第二象限内的直线上的一个动点,在点P的运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;(3)探究:当点P运动到什么位置(求点P 的坐标)时,△OPA的面积为5,并说明理由.分析:(1)由直线与x 轴的交点的坐标,代入即可求出k 的值;(2)过点P 作x 轴的垂线段,能够发现P 点到x 轴的距离为P 点的纵坐标,代入直线方程用x 表示出来P 点的纵坐标,再套用三角形面积公式即可得出结论,再由点P 在第二象限,即可确定x 的取值范围;(3)分两种情况,一种P 点在x 轴上方,一种在x 轴下方,分类讨论即可得出结论.解:(1)∵点E (﹣3,0)在直线y =kx+6的图象上,∴有0=-3k+6,解得:k =2.故k 的值为2.(2)过点P 作PB ⊥x 轴,垂足为点B ,如图1.∵点P (x ,y )是第二象限内的直线上的一个动点,∴P 点横坐标介于E 、F 的横坐标之间,∴﹣3<x <0.∵点P 在直线y =2x+6上,∴y =2x+6.∵PB ⊥x 轴,且P 点在第二象限,且点A 的坐标为(-2.5,0),∴PB =y =2x+6,OA =2.5.∴△OPA 的面积S =21·OA •PB =2.5x+7.5.故△OPA 的面积S 与x 的函数关系式为S =2.5x+7.5(-3<x <0).(3)∵令(2)中的关系式中x =0,解得S =7.5>5,∴若点P 在x 轴上方时,必在第二象限,点P 在x 轴下方时,必在第三象限.①当点P 在x 轴上方时,有△OPA 的面积S =2.5x+7.5,令S =5,即2.5x+7.5,解得:x=-1.此时点P 的坐标为(-1,4);②当点P 在x 轴下方时,如图2,此时PB=-y=-2x-6,△OPA 的面积S =21·OA •PB =0.5·×2.5×(﹣2x ﹣6)=﹣2.5x ﹣7.5=5,解得:x=-5.此时点P 的坐标为(-5,-4).综上可知:点P 运动到(-1,4)或(-5,-4)时,△OPA 的面积为5.例题8:如图,已知l 1:y =2x+m 经过点(﹣3,﹣2),它与x 轴,y 轴分别交于点B 、A ,直线l 2:y =kx+b 经过点(2,﹣2)且与y 轴交于点C (0,﹣3),与x 轴交于点D .(1)求直线l 1,l 2的解析式;(2)若直线l 1与l 2交于点P ,求S △ACP :S △ACD 的值分析:(1)利用待定系数法求得两直线的解析式即可;(2)观察两个三角形,它们具有相同的底边,因此它们面积的比就是它们高的比,即点P 和点D 横坐标绝对值的比.解:(1)∵l 1:y =2x+m 经过点(﹣3,﹣2),∴﹣2=2×(﹣3)+m ,解得:m =4,∴l 1:y =2x+4;∵l 2:y =kx+b 经过点(2,﹣2)且与y 轴交于点C (0,﹣3),∴,解得:k =,b =﹣3,∴l 2:y =x ﹣3;(2)令,解得:,∴点P (﹣,),∵△ACP 和△ABD 同底,∴面积的比等于高的比,∴S :S =PM :DO =:6=7:9.例题9:如图,已知直线y=x+4与x轴、y轴交于A,B两点,直线l经过原点,与线段AB交于点C,并把△AOB的面积分为2:3两部分,求直线l的解析式.分析:根据直线y=x+4的解析式可求出A、B两点的坐标,当直线l把△ABO的面积分为S△AOC:S△BOC=2:3时,作CF⊥OA于F,CE⊥OB于E,可分别求出△AOB与△AOC的面积,再根据其面积公式可求出两直线交点的坐标,从而求出其解析式;当直线l把△ABO的面积分为S△AOC:S△BOC=2:3时,同(1).解:直线l的解析式为:y=kx,对于直线y=x+4的解析式,当x=0时,y=4,y=0时,x=﹣4,∴A(﹣4,0)、B(0,4),∴OA=4,OB=4,∴S△AOB=×4×4=8,当直线l把△AOB的面积分为S△AOC:S△BOC=2:3时,S△AOC=,作CF⊥OA于F,CE⊥OB于E,∴×AO•CF=,即×4×CF=,∴CF=.当y=时,x=﹣,则=﹣k,解得,k=﹣,∴直线l的解析式为y=﹣x;当直线l把△ABO的面积分为S△AOC:S △BOC=3:2时,同理求得CF=,解得直线l的解析式为y=﹣x.故答案为y=﹣x或y=﹣x.例题10:如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标分析:(1)已知l1的解析式,令y=0求出x的值即可;(2)设l2的解析式为y=kx+b,由图联立方程组求出k,b的值;(3)联立方程组,求出交点C的坐标,继而可求出S△ADC;(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是点C到AD的距离.解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0,∴x=1,∴D(1,0);(2)设直线l2的解析表达式为y=kx+b,由图象知:x=4,y=0;x=3,,代入表达式y=kx+b,∴,∴,∴直线l2的解析表达式为;(3)由,解得,∴C(2,﹣3),∵AD=3,∴S△ADC=×3×|﹣3|=;(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是点C到直线AD的距离,即C纵坐标的绝对值=|﹣3|=3,则P到AD距离=3,∴P纵坐标的绝对值=3,点P不是点C,∴点P纵坐标是3,∵y=1.5x ﹣6,y=3,∴1.5x﹣6=3x=6,所以P(6,3).跟踪练习1.如图,一次函数的图像与x轴交于点B(-6,0),交正比例函数的图像于点A,点A的横坐标为-4,△ABO的面积为15,求直线OA的解析式2.点B在直线y=-x+1上,且点B在第四象限,点A(2,0)、O(0,0),△ABO的面积为2,求点B的坐标3.如图,已知两直线y=0.5x+2.5和y=-x+1分别与x轴交于A、B两点,这两直线的交点为P.(1)求点P的坐标;(2)求△PAB的面积4.已知直线y=ax+b(b>0)与y轴交于点N,与x轴交于点A且与直线y=kx交于点M(2,3),如图它们与y轴围成的△MON的面积为5.(1)求这两条直线的函数关系式(2)求它们与x轴围成的三角形面积5.已知两条直线y=2x-3和y=6-x.(1)求出它们的交点A的坐标;(2)求出这两条直线与x轴围成的三角形的面积6.已知直线y=2x+3与直线y=-2x-1与y轴分别交于点A、B.(1)求两直线交点C的坐标;(2)求△ABC的面积;(3)在直线BC上能否找到点P,使得△APC的面积为6,求出点P的坐标,若不能请说明理由.7.如图,已知直线y=x+6的图象与x轴、y轴交于A、B两点.(1)求点A、点B的坐标和△AOB的面积.(2)求线段AB的长.(3)若直线l经过原点,与线段AB交于点P(P为一动点),把△AOB的面积分成2:1两部分,求直线L的解析式.8.已知如图,直线l1:y=﹣x+4与x轴、y轴分别交于点A、点B,另一直线l2:y=kx+b(k≠0)经过点C(4,0),且把△AOB分成两部分.(1)若l1∥l2,求过点C的直线的解析式.(2)若△AOB被直线l2分成的两部分面积相等,求过点C的直线的解析式.9.已知:如图,直线y=kx+6与x轴y轴分别交于点E,F.点E的坐标为(8,0),点A的坐标为(6,0).(1)求k的值;(2)若点P(x,y)是第一象限内的直线y=kx+6上的一个动点,当点P运动过程中,试写出△OPA 的面积S与x的函数关系式,并写出自变量x的取值范围;(3)探究:当P运动到什么位置时,△OPA的面积为9,并说明理由10.如图,直线y=kx+12与x轴y轴分别相交于点E,F.点E的坐标(16,0),点A的坐标为(12,0).点P (x,y)是第一象限内的直线上的一个动点(点P不与点E,F重合).(1)求k的值;(2)在点P运动的过程中,求出△OPA的面积S与x的函数关系式.(3)是否存在点P(x,y),使△OPA的面积为△OEF的面积的?若存在,求此时点P的坐标;若不存在请说明理由.11.已知正比例函数y=k1x和一次函数y=k2x+br的图象如图所示,它们的交点A(﹣3,4),且OB=OA.(1)求正比例函数和一次函数的解析式;(2)求△AOB的面积和周长.12.直线PA 是一次函数y=x+n 的图像,直线PB 是一次函数y=-2x+m (m >n >0)的图像,(1)用m 、n 表示A 、B 、P 的坐标(2)直线PB 交y 轴于点Q ,四边形PQOB 的面积是65,AB=2,求直线PA 、直线PB 的解析式13.△AOB 的顶点O (0,0)、A (2,1)、B (10,1),直线CD⊥x 轴且△AOB 面积二等分,若D (x ,0),求x 的值14.如图,已知由x 轴、一次函数y =kx+4(k <0)的图象及分别过点C (1,0)、D (4,0)两点作平行于y 轴的两条直线所围成的图形ABDC 的面积为7,试求这个一次函数的解析式.15.已知长方形ABCD 的边长AB =9,AD =3,现将此长方形置于平面直角坐标系中,使AB 在x 轴的正半轴上,经过点C 的直线y =x ﹣2与x 轴交于点E ,与y 轴交于点F .(1)求点E 、B 的坐标;(2)求四边形AECD 的面积;(3)在y 轴上是否存在一点P ,使△PEF 为等腰三角形?若存在,则求出点P 的坐标;若不存在,请说明理由.16.正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在X 轴的正半轴上,且A 点的坐标是(1,0).(1)直线y =x经过点C ,且与x 轴交与点E ,求四边形AECD 的面积;(2)若直线l 经过点E ,且将正方形ABCD 分成面积相等的两部分,求直线l 的解析式;(3)若直线l 1经过点F (﹣,0),且与直线y =3x 平行,将(2)中直线l 沿着y 轴向上平移个单位交轴x 于点M ,交直线l 1于点N ,求△NMF 的面积.17.直线L 1:y=kx+b 过点B (-1,0)与y 轴交于点C,直线L 2:y=mx+n 与L1交于点P (2,5),且过点A (6,0),过点C 与L 2平行的直线交x 轴与点D .(1)求直线CD 的函数解析式(2)求四边形APCD 的面积.18.直线y=-33x+1与x 轴y 轴分别交点A 、B ,以线段AB 为直角边在第一象限内作等腰直角△ABC, BAC=900,点P (a ,1/2)在第二象限,△ABP 的面积与△ABC 面积相等,求a 的值.19.已知直线y=-x+2与x 轴、y 轴分别交于点A 和点B ,另一直线y=kx+b (k ≠0)经过点C (1,0),且把△AOB 分为两部分,(1)若△AOB 被分成的两部分面积相等,求k 和b 的值;(2)若△AOB 被分成的两部分面积为1:5,求k 和b 的值20.直线y=-32x+3交x 、y 两坐标轴分别于点A 、B ,交直线y=2x-1于点P ,直线y=2x-1交x ,y 坐标轴分别为C 、D ,求△PAC 和△PBC 的面积各是多少?21.如图,直线l 1的解析式为y =3x ﹣3,且l 1与x 轴交于点D ,直线l 2经过点A 、B ,直线l 1,l 2相交于点C .(1)求点D 的坐标;(2)求△ADC 的面积.22.已知直线l 1:y =k 1x+b 1经过点(-1,6)和(1,2),它和x 轴、y 轴分别交于B 和A ;直线l 2:y =-0.5x-3,它和x 轴、y 轴的交点分别是D 和C .(1)求直线l 1的解析式;(2)求四边形ABCD 的面积;(3)设直线l 1与l 2交于点P ,求△PBC 的面积23.如图,直角坐标系xoy 中,一次函数y=-0.5x+5的图像l 1分别与x ,y 轴交于A 、B 两点,正比例函数的图像l 2与l 1交于点C (m ,4).(1)求m 的值及l 2的解析式;(2)求S △AOC -S △BOC 的值;(3)一次函数y=kx+1的图像为l 3,且l 1,l 2,l 3不能围成三角形,直接写出k 的值一次函数与面积问题答案1.解:过点A 作AC ⊥OB 于点C ,设AC =m (m >0)由△AOB 的面积为15,OB =6得21OB ×m =15,即21×6×m =15,∴m =5,得A (-4,5).设正比例函数解析式y =k 1x (k 1≠0)把x =-4,y =5代入得k 1=−45,∴y =−45x .设一次函数解析式y =k 2x +b (k 2≠0),把x =-4,y =5和x =-6,y =0代入得:⎩⎨⎧+-=+-=b k b k 226045,解得k 2=25,b=15.∴y =25x+15. 2.点B 在直线y=-x+1上,且点B 在第四象限,点A (2,0)、O (0,0),△ABO 的面积为2,求点B 的坐标解:过点B 作BC ⊥x 轴于点C ,∵△ABO 的面积为2,∴21OA ×BC=2,OA ×BC=4,∵OA=2,∴BC=2,∵B 点在第四象限,∴B 点的纵坐标是-2,∵B 点在y=-x+1上,∴当y=-2时,-x+1=-2,x=3,∴B 的坐标是(3,-2)3.分析:(1)联立两个解析式,组成方程组,再解方程即可得到P 点坐标;(2)分别利用函数解析式计算出A 、B 两点的坐标,在求△APB 的面积即可.解:(1),解得,故P (﹣1,2);(2)∵函数y =()x+2.5中,当y =0时,x =﹣5,∴A (﹣5,0),∵函数y =﹣x+1中,当y =0时,x =1,∴B (1,0),∴S △APB =×6×2=6.4.(1)y=kx 过M(2,3),∴3=2k,k=32,∴y=32x.∵y=ax+b 过M(2,3),则2a+b=3,b=3-2a,∴y=ax+(3-2a),∵S ΔOMN =21×|3-2a|×2=|3-2a|=5,∴2a-3=±5,a=4或a=-1,∴直线y=ax+b 的解析式为y=4x+5或y=-x-5;(2)①当y=4x+5时,令y=0得x=-5/4,∴y=4x+5与x 轴交于A(-5/4,0),S ΔOAM =21×45×3=15/8;②当y=-x-5时,令y=0得x=-5,∴y=-x-5与x 轴交于B(-5,0),S ΔOBM =21×5×3=15/2 5.分析:(1)根据两直线相交的问题,通过解方程组即可得到两直线的交点坐标;(2)先根据x 轴上点的坐标特征求出两直线与x 轴的交点坐标,然后根据三角形面积公式求解.解:(1)解方程组得,所以两直线的交点坐标为(3,3);(2)当y =0时,2x ﹣3=0,解得x =,则直线y 1=2x ﹣3与x 轴的交点坐标为(,0);当y =0时,6﹣x =0,解得x =6,则直线y 2=6﹣x 与x 轴的交点坐标为(0,6);所以这两条直线与x 轴所围成的三角形面积=×(6﹣)×3=. 6.分析:(1)解方程组即可得出交点坐标;(2)分别求出A ,B 的坐标即可求出三角形的面积;(3)假设在直线y =﹣2x ﹣1上存在点P 使得S △APC =6,设点P (x ,y ),分类讨论x 的取值后即可得出答案;解:(1)解方程组解得:x =﹣1,y =1,所以点C 的坐标为(﹣1,1);(2)直线y =2x+3与y 轴的交点A 的坐标为(0,3),直线y =﹣2x ﹣1与y 轴的交点B 的坐标为(0,﹣1),所以AB =4,S △ABC =×4×|﹣1|=2;(3)假设在直线y=﹣2x﹣1上存在点P使得S△APC=6,设点P(x,y),则①当x<﹣1时,有S△APB﹣S △ABC=6,即×4×|x|﹣2=6,解得x=4(舍去)或x=﹣4,把x=﹣4代入y=﹣2x﹣1,得y=7,②当x>0时,有S△APB+S△ABC=6,即×4×x+2=6,解得x=2,把x=2代入y=﹣2x﹣1得y=﹣5,所以在直线y=﹣2x﹣1上存在点P(﹣4,7)和P(2,﹣5),使得S△APC=6.7.分析:(1)把x=0,和y=0代入解析式y=x+6解答即可,再利用三角形的面积公式计算即可;(2)利用两点间的距离公式计算即可;(3)设P点的坐标为(m,m+6),然后分两种情况求得P的坐标,进而利用待定系数法即可求得直线L的解析式.解:(1)∵直线y=x+6的图象与x轴、y轴交于A、B两点,∴A(0,6)B(﹣6,0),∴OA=6,OB=6,∴S△AOB =OA•OB=×6×6=18;(2)∵A(0,6)B(﹣6,0),∴AB==6;(3)设P点的坐标为(m,m+6),∴S△POB=OB•(m+6)=3(m+6),∵把△AOB的面积分成2:1两部分,∴S△POB:S△AOB=2:3或1:3,∴=或,解得m=﹣2或﹣4,∴P(﹣2,4)或(﹣4,2),设直线L的解析式为y=kx,∴4=﹣2k或2=﹣4k,解得k=﹣2或k=﹣,∴直线L的解析式为或y=﹣2x.8.分析:(1)当l1∥l2时,k=﹣,然后将C(4,0)代入l2的解析式中即可求出b的值.(2)容易求得C(4,0),且C是OA的中点,所以直线l2是△AOB的中线,从而求出C的直线解析式.解:(1)由题意可知:k=﹣,∴直线的解析式为:y=﹣x+b,把(4,0)代入上式,∴b=2,∴直线的解析式为:y=﹣x+2;(2)令y=0代入y=﹣x+4,∴x=8,∴点A(8,0),令x=0代入y=﹣x+4,y=4,∴B (0,4),∴C是OA的中点,若△AOB被直线l2分成的两部分面积相等,则直线l2与△AOB的中线重合,即直线l2过点B把(0,4)和(4,0)代入y=kx+b,∴,解得:,∴直线l2的解析式为:y=﹣x+4 9.分析:(1)直接把E的坐标为(8,0)代入y=kx+6就可以求出k的值;(2)根据三角形的面积公式S△OPA=,然后把y转换成x,△OPA的面积S与x的函数关系式就可以求出了;(3)直接把S=9代入(2)中的解析式里.就可以求出x,然后确定P的坐标.解:(1)把点E(8,0)代入y=kx+6,得8k+6=0,解得,k=;(2)∵点P(x,y)在第一象限内的直线y=x+6上,∴点P的坐标为(x,x+6)且x>0,x+6>0,过点P作PD⊥x轴于点D,则△OPA的面积=OA×PD,即.∴(0<x<8);(3)由S=9得,,解得x=4,把x=4代入y=x+6,得y=×4+6=3,这时,P有坐标为(4,3);即当P运动到点(4,3)这个位置时,△OPA的面积为9.10.分析:(1)直接把点E的坐标代入直线y=kx+12求出k的值即可;(2)过点P作PD⊥OA于点D,用x表示出PD的长,根据三角形的面积公式即可得出结论;(3)把△OPA的面积为△OEF的面积的,得出△OPA的面积代入(2)中关系式,求出x的值,把x的值代入直线y=﹣x+12即可得出结论.解:(1)∵直线y=kx+12与x轴交于点E,且点E的坐标(16,0),∴16k+12=0,解得k=﹣,∴y=﹣x+12;(2)过点P作PD⊥OA于点D,∵点P(x,y)是第一象限内的直线上的一个动点,∴PD=﹣x+12.∵点A的坐标为(12,0),∴S=×12×(﹣x+12)=﹣x+72;(3)∵y=﹣x+12,∴当y=0时,x=16,∴OF=16,OE=16,∵△OPA的面积为△OEF的面积的,∴△OPA的面积=,∴﹣x+72=36,解得x=8,将x=8代入y=﹣x+12得y=6,∴P(8,6).11.分析:(1)先利用两点间的距离公式计算出OA=5,易得OB=3,则B(3,0),然后利用待定系数分别求正比例函数和一次函数的解析式;(2)先利用两点间的距离公式计算出AB,然后根据三角形面积公式和周长的定义求解.解:(1)∵点A(﹣3,4),∴OA==5,而OB=OA,∴OB=3,∴B(3,0),把A(﹣3,4)代入y=k1x得﹣3k1=4,解得k1=﹣,∴自变量函数解析式为y=﹣x;把A(﹣3,4)、B(3,0)分别代入y=k2x+b得,解得,∴一次函数解析式为y=﹣x+2;(2)AB==2,△AOB的面积=×3×4=6,△AOB的周长=3+5+2=8+2.12.分析:二元一次方程组与一次函数的综合运用,再加上四边形的面积.首先根据一次函数求出点的坐标,求第(2)问时,设PB与y轴交于一点M,四边形面积等于三角形MOB的面积﹣三角形MQP的面积,从而得出结果.解:(1)设A(a,0),B(b,0),P(x,y).由题意得:a+n=0①,﹣2b+m=0②,由①②得a=﹣n,b=.解方程组,得.故A(﹣n,0),B(,0),P(,);(2)设PB与y轴交于一点M,则M(0,m),Q(0,n).则S MOB=m=,S MQP==.所以=③,又=2④,由③④联立,解得.∴点P的坐标为(,),直线PA的解析式为y=x+1,直线PB的解析式为y=﹣2x+2.13.分析:先用待定系数法求出直线OB的解析式,再设CD交AB于点E,交OB于点F,故可得出F点的坐标及EF、EB、AB的长,再根据S△BEF=S△AOB即可得出x的值,进而得出结论.解:设直线OB的解析式为y=kx(k≠0),∵B(10,1),∴1=10k,解得k=,∴直线OB的解析式为y=x,∵D(x,0),∴F(x,),∴EF=1﹣,EB=10﹣x,AB=10﹣2=8,∴S△BEF=××(10﹣x)=,∴S△AOB=×8×1=2×,解得x=10﹣2.14.分析:根据点A、B在一次函数y=kx+4的图象上得出A(1,k+4),B(4,4k+4)且k+4>0,4k+4>O,根据四边形ABDC的面积为7代入即可求出k的值.解:∵点A、B在一次函数y=kx+4的图象上,∴A(1,k+4),B(4,4k+4)且k+4>0,4k+4>O,∵四边形ABDC 的面积为7,∴[(k+4)+(4k+4)]•3=7,∴k=﹣,∴一次函数的解析式为y=﹣x+4.15.分析:(1)对于直线y=x﹣2,分别令x与y为0求出y与x的值,确定出E与F坐标,根据四边形ABCD为矩形,得到对边相等,求出BC的长,即为C纵坐标,代入直线解析式求出C横坐标,即可确定出B坐标;(2)由B与E的横坐标之差求出EB的长,四边形AECD面积=矩形ABCD面积﹣三角形ECB面积,求出即可;(3)在y轴上存在一点P,使△PEF为等腰三角形,如图所示,分三种情况考虑:若P1F=EF;若EF=P2F;若P3F=P3E;分别求出P的坐标即可.解:(1)对于直线y=x﹣2,令x=0,得到y=﹣2;令y=0,得到x=4,∴E(4,0),F(0,﹣2),∵四边形ABCD 为矩形,∴BC =AD =3,DC =AB =9,把y =3代入直线y =x ﹣2,得:x =10,即B (10,0);(2)∵E (4,0),B (10,0),∴EB =10﹣4=6,∴S 四边形AECD =S 矩形ABCD ﹣S △ECB =9×3﹣×6×3=27﹣9=18;(3)存在,如图所示,分三种情况考虑:若P 1F =EF ==2,∴OP 1=OF+P 1F =2+2,此时P 1(0,﹣2﹣2);若EF =P 2F =2,∴OP 2=P 2F ﹣OF =2﹣2,此时P 2(0,2﹣2);若P 3F =P 3E ,此时P 3在线段EF 垂直平分线上,线段EF 垂直平分线为y+1=﹣2(x ﹣2),即y =﹣2x+3,令x =0,得到y =3,此时P 3(0,3),综上,在y 轴上存在一点P ,使△PEF 为等腰三角形,此时P 的坐标为(0,﹣2﹣2)或(0,2﹣2)或(0,3).16.分析:(1)求得C 的坐标,以及E 的坐标,则求得AE 的长,根据直角梯形的面积公式即可求得四边形的面积;(2)经过点E 且将正方形ABCD 分成面积相等的两部分的直线与CD 的交点F 到C 的距离一定等于AE ,则F 的坐标可以求得,利用待定系数法即可求得直线EF 的解析式;(3)根据直线l 1经过点F (﹣,0)且与直线y =3x 平行,知k =3,把F 的坐标代入即可求出b 的值即可得出直线11,同理求出解析式y =2x ﹣3,进一步求出M 、N 的坐标,利用三角形的面积公式即可求出△MNF 的面积..解:(1)在y =x 中,令y =4,即x =4,解得:x =5,则B 的坐标是(5,0);令y =0,即x =0,解得:x =2,则E 的坐标是(2,0).则OB =5,OE =2,BE =OB ﹣OA =5﹣2=3,∴AE =AB ﹣BE =4﹣3=1,边形AECD =(AE+CD )•AD =(4+1)×4=10;(2)经过点E 且将正方形ABCD 分成面积相等的两部分,则直线与CD 的交点F ,必有CF =AE =1,则F 的坐标是(4,4).设直线的解析式是y =kx+b ,则,解得.则直线l 的解析式是:y =2x ﹣4;(3)∵直线l 1经过点F (﹣,0)且与直线y =3x 平行,设直线11的解析式是y 1=kx+b ,则k =3,代入得:0=3×(﹣)+b ,解得b =,∴y 1=3x+,已知将(2)中直线l 沿着y 轴向上平移个单位,则所得的直线的解析式是y =2x ﹣4+,即:y =2x ﹣3,当y =0时,x =,∴M (,0),解方程组得:,即:N (﹣7,﹣19),S △NMF =×[﹣(﹣)]×|﹣19|=.答:△NMF 的面积是.17.将B 和P 点带入y=kx+b 中,得:0=-k+b,5=2k+b 即:k=b=35,所以L1为:y=35 x+35,C 的坐标:(0,5/3) 将P 和A 带入y=mx+n 中,得5=2m+n ,0=6m+n ,解得:m=-5/4,n=15/2,即L 2的方程为:y=-45x+215,∵CD ∥AP , ∴CD 直线的解析式可以设为:y=-45x+b ′,∵x=0时,y=35×0+35=35,∴C 的坐标是(0,35),把C 的坐标带入CD 的解析式中,得b ′=35,∴CD 的直线解析式为y=-45x+35,由y=-45x+35与x 轴交于点D ,得D 坐标为:(4/3,0),由P 做PM ⊥x 轴于M ,则PM=5,∵A 的坐标是(6,0),B 的坐标是(-1,0),D 的坐标是(4/3,0),C 的坐标是(0,35),∴AB=7,BD=37,OC=35,∴四边形APCD 的面积=三角形BAP 面积-三角形BDC 面积=21×7×5-21×37×35=9140 18.分析:由已知求出A 、B 的坐标,求出三角形ABC 的面积,再利用S △ABP =S △ABC 建立含a 的方程,把S △ABP 表示成有边落在坐标轴上的三角形面积和、差,通过解方程求得答案.解:连接OP ,∵直线与x 轴、y 轴分别交于点A 、B ,∴A (,0),B (0,1),AB ==2,∴S △ABP =S △ABC =2,又S △ABP =S △OPB +S △OAB ﹣S △AOP ,∴﹣a ×1+×1﹣=4,解得a =.答:a 的值为a =.19.分析:(1)△AOB 被分成的两部分面积相等,那么被分成的两部分都应该是三角形AOB 的面积的一半,那么直线y =kx+b (k ≠0)必过B 点,因此根据B ,C 两点的函数关系式可得出,直线的函数式.(2)若△AOB 被分成的两部分面积比为1:5,那么被分成的两部分中小三角形的面积就应该是大三角形面积的,已知了直线过C 点,则小三角形的底边是大三角形的OA 边的一半,故小三角形的高应该是OB 的,即直线经过的这点的纵坐标应该是.那么这点应该在y 轴和AB 上,可分这两种情况进行计算,运用待定系数法求函数的解析式.解:(1)由题意知:直线y =kx+b (k ≠0)必过C 点,∵C 是OA 的中点,∴直线y =kx+b 一定经过点B ,C ,如图(1)所示,把B ,C 的坐标代入可得:,解得k =﹣2,b =2;(2)∵S △AOB =×2×2=2,∵△AOB 被分成的两部分面积比为1:5,那么直线y =kx+b (k ≠0)与y 轴或AB 交点的纵坐标就应该是:2×2×=,①当y =kx+b (k ≠0)与直线y =﹣x+2相交时,交点为D ,如图(2)所示,当y =时,直线y =﹣x+2与y =kx+b (k ≠0)的交点D 的横坐标就应该是﹣x+2=,∴x =,即交点D 的坐标为(,),又根据C 点的坐标为(1,0),可得:,∴,②当y =kx+b (k ≠0)与y 轴相交时,交点为E ,如图(3)所示,∴交点E 的坐标就应该是(0,),又有C 点的坐标(1,0),可得:,∴,因此:k =2,b =﹣2或k =﹣,b =.20.解:过P 分别向x 轴、y 轴分别做PM ⊥x 轴于M ,PN ⊥y 轴于N ,由y=-32x+3和y=2x-1联立可得x=23,y=2,∴p 的坐标是(23,2),∴PM=23,PN=2,易求得A 、B 、C 、D 的坐标分别为(29,0),(0,3),(21,0),(0,-1),∴AC=4,BD=4,OC=21,∴S △PAC =21AC ·PM=3,S △PBC =S △PBD -S △BCD =21BD ·PN-21BD ·OC=4-1=3. 21.分析:(1)利用直线l 1的解析式令y =0,求出x 的值即可得到点D 的坐标;(2)根据点A 、B 的坐标,利用待定系数法求出直线l 2的解析式,得到点A 的坐标,再联立直线l 1,l 2的解析式,求出点C 的坐标,然后利用三角形的面积公式列式进行计算即可得解.解:(1)∵直线l 1的解析式为y =3x ﹣3,且l 1与x 轴交于点D ,∴令y =0,得x =1,∴D (1,0);(2)设直线l 2的解析式为y =kx+b (k ≠0),∵A (4,0),B (3,),∴,解得,∴直线l 2的解析式为y =﹣x+6.由,解得,∴C (2,3).∵AD =4﹣1=3,∴S △ADC =×3×3=.22.分析:(1)因为点(﹣1,6)和(1,2)在直线l 1:y =k 1x+b 1,所以把这两点的坐标代入解析式求出k 1、b 1的值就可以了.(2)知道直线l 2的解析式就可以求出C 、D 的坐标,根据l 1的解析式就可以求出A 、B 的坐标就可以求出BD 、OA 、OC 的长利用三角形的面积公式求出四边形ABCD 的面积.(3)利用l 1、l 2的解析式求出交点坐标P ,就可以求出△PDB 的面积,然后求出三角形DCB 的面积,这两个三角形的面积之差就是△PBC 的面积. 解:(1)∵直线l 1:y =k 1x+b 1经过点(﹣1,6)和(1,2),∴,解得,∴直线l 1的解析式为:y =﹣2x+4;(2)∵直线l 1的解析式为:y =﹣2x+4,当x =0时,y =4,∴A (0,4),∴OA =4,当y =0时,x =2,∴B (2,0),∴OB =2,∵直线l 2:y =﹣x ﹣3,当x =0时,y =﹣3,即C (0,﹣3).∴OC =3,当y =0时,x =﹣6,即D (﹣6,0),∴OD =6,∴BD =8,∴S 四边形ABCD =+=12+16=28;(3)过点P 作PE ⊥BD 于E ,由l 1、l 2的解析式得:解得:,∴P (,﹣),∴OE =,PE =,∴S △PBC =﹣=﹣12=.23.分析:(1)先求得点C 的坐标,再运用待定系数法即可得到l 2的解析式;(2)过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD =4,CE =2,再根据A (10,0),B (0,5),可得AO =10,BO =5,进而得出S △AOC ﹣S △BOC 的值;(3)分三种情况:当l 3经过点C (2,4)时,k =1.5;当l 2,l 3平行时,k =2;当11,l 3平行时,k =﹣0.5;故k 的值为1.5或2或﹣0.5.解:(1)把C (m ,4)代入一次函数y =﹣0.5x+5,可得4=﹣0.5m+5,解得m =2,∴C (2,4),设l 2的解析式为y =ax ,则4=2a ,解得a =2,∴l 2的解析式为y =2x ;(2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD =4,CE =2,y =﹣0.5x+5,令x =0,则y =5;令y =0,则x =10,∴A (10,0),B (0,5),∴AO =10,BO =5,∴S △AOC ﹣S △BOC =0.5×10×4﹣0.5×5×2=20﹣5=15;(3)一次函数y =kx+1的图象为l 3,且11,l 2,l 3不能围成三角形,∴当l 3经过点C (2,4)时,k =1.5;当l 2,l 3平行时,k =2;当11,l 3平行时,k =﹣0.5;故k 的值为1.5或2或﹣0.5.。

一次函数与面积的关系动点问题

一次函数与面积的关系动点问题

一次函数与面积的关系
当函数的导数为常数时,函数的图像为
图像下面积的计算
2
直线,与x轴和y轴围成的图形面积与x轴 之间的积分成正比,即面积等于函数导
在一次函数的图像下方,面积与反比例
数在定义域上的积分。
函数成正比,可以通过用反比例函数来
计算函数面积。
3
图像上方面积的计算
在一次函数的图像上方,面积பைடு நூலகம்反比例
一次函数与面积的关系动 点问题
在本次的PPT中,我们将会一起探究一次函数与面积的关系动点问题。了解什 么是一次函数,如何求解函数的解析式以及如何计算面积的变化。让我们开 始吧!
什么是一次函数?
一次函数是指函数的最高次项为1的一类函数。它具有简单的线性关系,对于初学者来说是数学 中的基础。
1 定义和性质
将复杂图形分解成若干个简单图形,计算每个图形的面积,然后将它们相加起来。
2
特殊图形的面积计算
掌握特殊图形的计算公式,如扇形和梯形的面积计算公式。
3
应用例题
用面积的知识解决实际问题。
探究一次函数与面积的关系
了解一次函数与面积之间的关系,探究线性函数的图像和面积之间的联系,以及如何在图像上求解面积。
1
了解线性函数的基本概念和特点。
2 解析式的确定
掌握如何根据给定的条件来确定一次函数的解析式。
3 实际问题求解
学会如何用一次函数的知识解决实际问题。
面积的定义和性质
面积是二维图形所占的空间大小。它是一种抽象的概念,但是却具有广泛的应用。
面积的定义
通过正方形面积的概念引入面积的定义。
面积的性质
了解面积在几何学中的一些基本性质,比如面积叠 加和面积不变形。

一次函数面积问题——已知面积求解析式(一)

一次函数面积问题——已知面积求解析式(一)

l
在直线 l 上求两点 M、N(M 在左) ,使得 MN=a,并使 AM+MN+NB 最短。 将 A 向右平移 a 个单位到 A’,对称 A’到 A’’,连结 A’’B 与 l 交点即为 N, 左平移 a 个单位即为 M.
4.
L1
L2
在直线 L1、L2 上分别求点 M、N,使△PMN 周长最小。 分别将点 P 关于两直线对称到 P’、P’’,连结 P’P’’与两直线交点即为 M、 N. 5.
已知直线 PA : y x n(n 0) 与 x 轴交于 A, 与 y 轴交于 Q, 另一条直线
y 2 x m(m n)与x 轴交于 B,与直线的坐标(用 m 或 n 表示) 5 (2)若 AB=2,且 S 四边形 PQOB= ,求两个函数的解析式. 6
L1
L2
在直线 L1、L2 上分别求点 M、N,使四边形 PMNQ 周长最小。 将 P、Q 分别对称到 P’、Q’,连结 P’Q’与直线的交点即为 M、N. 6.
l
在直线 l 上求点 P,使|AP-BP|最大。 作直线 AB 与 l 的交点即为点 P. 7.
l
在直线 l 上求点 P,使|AP-BP|最大。 将点 B 对称到 B’,作直线 AB’与 l 的交点即为点 P. 8.
y A
y A
y A
O
B x
O
B x
O
B
x
① 点 A 坐标为_____________, P、 Q 两点相遇时交点的坐标为________________; ② 当 t=2 时, S△OPQ ____________;当 t=3 时, S△OPQ ____________; ③ 设△OPQ 的面积为 S,试求 S 关于 t 的函数关系式;

专题09 一次函数中的面积与动点问题(解析版)

专题09 一次函数中的面积与动点问题(解析版)

专题09一次函数中的面积与动点问题(重难点突破)静态面积问题【例1】如图,已知一次函数y kx b =+的图象经过(2,1)A --,(1,3)B 两点,并且交x 轴于点C ,交y 轴于点D .(1)求该一次函数的解析式;(2)求AOB D 的面积.【解答】解:(1)把(2,1)A --,(1,3)B 代入y kx b =+得213k b k b -+=-ìí+=î,解得4353k b ì=ïïíï=ïî.所以一次函数解析式为4533y x =+;(2)把0x =代入4533y x =+得53y =,所以D 点坐标为5(0,3,所以AOB D 的面积AOD BODS S D D =+1515212323=´´+´´52=.【变式训练1】如图,在平面直角坐标系中,一次函数22y x =+与x 轴,y 轴分别交于点A 和B ,一次函数5y x =-+与x 轴,y 轴分别交于点C 和D,这两个函数图象交于点P .(1)求P 点坐标;(2)求PBC D 的面积;【解答】解:(1)由225y x y x =+ìí=-+î得:14x y =ìí=î,\点P 的坐标为(1,4);(2)Q 一次函数22y x =+与x 轴,y 轴分别交于点A 和B ,\点(1,0)A -,(0,2)B ,1OA \=,2OB =,Q 一次函数5y x =-+与x 轴交于点C ,\点(5,0)C ,5OC \=,6AC \=,116462622PBC PAC ABC S S S D D D \=-=´´-´´=;【变式训练2】如图,一次函数1y kx =+与22y x =-的图象分别交坐标轴于A ,B ,C ,D 四点,直线AB ,CD 交于E ,已知点E 的横坐标为65.(1)求点E 的纵坐标及k 值;(2)证明:OAB OCD D @D ;(3)计算BCE D 的面积.【解答】(1)解:当65x =时,622255y =´-=,\点E 的坐标为6(5,25.Q 点E 在一次函数1y kx =+的图象上,\26155k =+,12k \=-.(2)证明:当0y =时,1102x -+=,解得:2x =,\点A 的坐标为(2,0),2OA =;当0x =时,10112y =-´+=,\点B 的坐标为(0,1),1OB =;当0x =时,2022y =´-=-,\点C 的坐标为(0,2)-,2OC =;当0y =时,220x -=,解得:1x =,\点D 的坐标为(1,0),1OD =.在OAB D 和OCD D 中,90OA OC AOB COD OB OD =ìïÐ=Ð=°íï=î,()OAB OCD SAS \D @D .(3)解:过点E 作EF y ^轴于点F ,则65EF =,如图所示.Q 点B 的坐标为(0,1),点C 的坐标为(0,2)-,1(2)3BC \=--=,116932255BCE S BC EF D \==´´=g .【变式训练3】如图,在平面直角坐标系中,直线210y x =-+与y 轴交于点A ,与x 轴交于点B ,另一条直线经过点A 和点(2,8)C -,且与x 轴交于点D .(1)求直线AD 的解析式;(2)求ABD D 的面积.【解答】解:(1)Q 直线210y x =-+与y 轴交于点A ,(0,10)A \.设直线AD 的解析式为y kx b =+,Q 直线AD 过(0,10)A ,(2,8)C -,\1028b k b =ìí-+=î,解得110k b =ìí=î,\直线AD 的解析式为10y x =+;(2)Q 直线210y x =-+与x 轴交于点B ,(5,0)B \,Q 直线AD 与x 轴交于点D ,(10,0)D \-,15BD \=,(0,10)A Q ,ABD \D 的面积1115107522BD OA ==´´=g .面积与动点存在性【例2】如图,直线1l 的解析表达式为:33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A ,B ,直线1l ,2l 交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式;(3)求ADC D 的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP D 与ADC D 的面积相等,请直接写出点P 的坐标.【解答】解:(1)由33y x =-+,令0y =,得330x -+=,1x \=,(1,0)D \;(2)设直线2l 的解析表达式为y kx b =+,由图象知:4x =,0y =;3x =,32y =-,代入表达式y kx b =+,\40332k b k b +=ìïí+=-ïî,\326k b ì=ïíï=-î,\直线2l 的解析表达式为362y x =-;(3)由33362y x y x =-+ìïí=-ïî,解得23x y =ìí=-î,(2,3)C \-,3AD =Q ,193|3|22ADC S D \=´´-=;(4)ADP D 与ADC D 底边都是AD ,面积相等所以高相等,ADC D 高就是点C 到直线AD 的距离,即C 纵坐标的绝对值|3|3=-=,则P 到AD 距离3=,P \纵坐标的绝对值3=,点P 不是点C ,\点P 纵坐标是3,1.56y x =-Q ,3y =,1.563x \-=6x =,所以(6,3)P.【变式训练1】如图,直线AB 与x 轴交于点(1,0)A ,与y 轴交于点(0,2)B -.(1)求直线AB 的解析式;(2)若直线AB 上的点C 在第一象限,且2BOC S D =,求点C 的坐标.【解答】解:(1)设直线AB 的解析式为(0)y kx b k =+¹,Q 直线AB 过点(1,0)A 、点(0,2)B -,\02k b b +=ìí=-î,解得22k b =ìí=-î,\直线AB 的解析式为22y x =-.(2)设点C 的坐标为(,)x y ,2BOC S D =Q ,\1222x =g g ,解得2x =,2222y \=´-=,\点C 的坐标是(2,2).【变式训练2】如图,已知直线1L 经过点(1,0)A -与点(2,3)B ,另一条直线2L 经过点B ,且与x 轴相交于点(,0)P m .(1)求直线1L 的解析式.(2)若APB D 的面积为3,求m 的值.(提示:分两种情形,即点P 在A 的左侧和右侧)【解答】解:(1)设直线1L 的解析式为y kx b =+,Q 直线1L 经过点(1,0)A -与点(2,3)B ,\023k b k b -+=ìí+=î,解得11k b =ìí=î.所以直线1L 的解析式为1y x =+.(2)当点P 在点A 的右侧时,(1)1AP m m =--=+,有1(1)332APB S m D =´+´=,解得:1m =.此时点P 的坐标为(1,0).当点P 在点A 的左侧时,1AP m =--,有1|1|332APB S m D =´--´=,解得:3m =-,此时,点P 的坐标为(3,0)-.综上所述,m 的值为1或3-.【变式训练3】如图,在平面直角坐标系中,过点(6,0)B 的直线AB 与直线OA 相交于点(4,2)A ,动点M 沿路线O A C ®®运动.(1)求直线AB 的解析式.(2)求OAC D 的面积.4【解答】解:(1)设直线AB 的解析式是y kx b =+,根据题意得:4260k b k b +=ìí+=î,解得:16k b =-ìí=î,则直线的解析式是:6y x =-+;(2)在6y x =-+中,令0x =,解得:6y =,164122OAC S D =´´=;(3)设OA 的解析式是y mx =,则42m =,解得:12m =,则直线的解析式是:12y x =,Q 当OMC D 的面积是OAC D 的面积的14时,M \的横坐标是1414´=,在12y x =中,当1x =时,12y =,则M 的坐标是1(1,)2;在6y x =-+中,1x =则5y =,则M 的坐标是(1,5).则M 的坐标是:11(1,)2M 或2(1,5)M .【变式训练4】如图,在平面直角坐标系中,过点(0,6)A 的直线AB 与直线OC 相交于点(2,4)C 动点P 沿路线O C B ®®运动.(1)求直线AB 的解析式;4【解答】解:(1)Q 点A 的坐标为(0,6),\设直线AB 的解析式为6y kx =+,Q 点(2,4)C 在直线AB 上,264k \+=,1k \=-,\直线AB 的解析式为6y x =-+;(2)由(1)知,直线AB 的解析式为6y x =-+,令0y =,60x \-+=,6x \=,(6,0)B \,1122OBC C S OB y D \==g ,OPB D Q 的面积是OBC D 的面积的14,11234OPB S D \=´=,设P 的纵坐标为m ,1332OPB S OB m m D \===g ,1m \=,(2,4)C Q ,\直线OC 的解析式为2y x =,当点P 在OC 上时,12x =,1(2P \,1),当点P 在BC 上时,615x =-=,(5,1)P \,即:点1(2P ,1)或(5,1);【变式训练5】如图,过A 点的一次函数的图象与正比例函数2y x =的图象相交于点B .(1)求该一次函数的解析式;(2)判定点(4,2)C -是否在该函数图象上?说明理由;(3)若该一次函数的图象与x 轴交于D 点,求BOD D 的面积.【解答】解:(1)在2y x =中,令1x =,解得2y =,则B 的坐标是(1,2),设一次函数的解析式是y kx b =+,则32b k b =ìí+=î,解得:31b k =ìí=-î.则一次函数的解析式是3y x =-+;(2)当4a =时,1y =-,则(4,2)C -不在函数的图象上;(3)一次函数的解析式3y x =-+中令0y =,解得:3x =,则D 的坐标是(3,0).。

一次函数中的面积问题

一次函数中的面积问题

一次函数中的面积问题学情分析:本文介绍了一次函数关于面积问题的研究方法和重点,重点是一次函数与面积的综合结合与运用,以及对于动点问题与一次函数的熟练结合与把握。

文章介绍了如何利用面积求解析式,以及如何求解含参数问题的面积。

文章还提供了三个典型例题,以帮助读者更好地理解。

研究目标与考点分析:研究目标:1、关于一次函数的面积问题利用面积求解析式;2、利用解析式求面积以及对于动点问题学会熟练的解决。

考点分析:1、一次函数的解析式与面积的充分结合。

研究重点:1、一次函数与面积的综合结合与运用;2、对于动点问题与一次函数的熟练结合与把握。

研究方法:讲练结合练巩固。

研究内容与过程:一、本节内容导入本节内容主要介绍了一次函数相关的面积问题,包括规则图形和不规则图形的求解方法,以及含参数问题的求解方法。

文章强调了在求解过程中,需要注意坐标的正负和线段的非负性。

二、典例精讲本节提供了三个典型例题,分别介绍了如何利用面积求解析式,如何求解含参数问题的面积,以及如何求解四边形的面积。

文章强调了在解题过程中,需要注意分类讨论和建立方程的思想。

本文介绍了一次函数关于面积问题的研究方法和重点,重点是一次函数与面积的综合结合与运用,以及对于动点问题与一次函数的熟练结合与把握。

文章介绍了如何利用面积求解析式,以及如何求解含参数问题的面积。

文章还提供了三个典型例题,以帮助读者更好地理解。

在研究过程中,需要注意分类讨论和建立方程的思想。

同时,需要注意坐标的正负和线段的非负性。

通过讲练结合练,可以更好地巩固所学知识。

1、已知直线y=-x+2与x轴、y轴分别交于A点和B点,另一条直线y=kx+b(k≠0)经过点C(1,m),且将△AOB分成两部分。

1)若△AOB被分成的两部分面积相等,则k=-2,b=2.2)若△AOB被分成的两部分面积比为1:5,则k=-5,b=7.2、已知一次函数y=-2/3x+3的图像与y轴、x轴分别交于点A、B,直线y=kx+b经过OA的三分之一点D,且交x轴的负半轴于点C,如果S△AOB=S△DOC,求直线y=kx+b的解析式。

初二数学 一次函数动点问题含解析

初二数学 一次函数动点问题含解析

一次函数动点问题1、如图,正方形ABCD 的边长为6cm,动点P 从A 点出发,在正方形的边上由A→B→C→D 运动,设运动的时间为t(s),△ APD的面积为S(cm2),S与t 的函数图象如图所示,请回答下列问题:(1)点P 在AB 上运动时间为s,在CD 上运动的速度为cm/s,△APD 的面积S 的最大值为cm2;(2)求出点P 在CD 上运动时S 与t 的函数解析式;(3)当t 为s 时,△APD 的面积为10cm2.2、如图1,等边△ ABC 中,BC=6cm,现有两个动点P、Q 分别从点A 和点B 同时出发,其中点P 以2cm/s 的速度沿AB 向终点B 移动;点Q 以1cm/s 的速度沿BC 向终点C 移动,其中一点到终点,另一点也随之停止.连接PQ,设动点运动时间为x 秒.(图2、图3 备用)(1)填空:B Q= ,P B= (用含x 的代数式表示);(2)当x 为何值时,PQ∥AC?(3)当x 为何值时,△ PBQ 为直角三角形?3、如图,矩形ABCD 中,AB=6,BC=8,点P 从A 出发沿A→B→C→D 的路线移动,设点P 移动的路线为x,△ PAD 的面积为y.(1)写出y 与x 之间的函数关系式,并在坐标系中画出这个函数的图象.(2)求当x=4 和x=18 时的函数值.(3)当x 取何值时,y=20,并说明此时点P 在矩形的哪条边上.4、如图1,在矩形ABCD 中,点P 从B 点出发沿着四边按B→C→D→A 方向运动,开始以每秒m 个单位匀速运动,a秒后变为每秒2 个单位匀速运动,b秒后又恢复为每秒m 个单位匀速运动.在运动过程中,△ ABP 的面积S 与运动时间t 的函数关系如图2 所示.(1)求矩形ABCD 的长和宽;(2)求m、a、b 的值5、如图1 所示,在直角梯形ABCD 中,AB∥DC,∠B=90°.动点P 从点B 出发,沿梯形的边由B→C→D→A 运动.设点P 运动的路程为x,△ ABP 的面积为y.把y 看作x 的函数,函数的图象如图2 所示,试求当0≤x≤9 时y 与x 的函数关系式.6、如图1,在矩形ABCD 中,AB=12cm,BC=6cm,点P 从A 点出发,沿A→ B→C→D 路线运动,到D 点停止;点Q 从D 点出发,沿D→C→B→A 运动,到A 点停止.若点P、点Q 同时出发,点P 的速度为每秒1cm,点Q 的速度为每秒2cm,a 秒时点P、点Q 同时改变速度,点P的速度变为每秒b(cm),点Q的速度变为每秒c(cm).如图2 是点P出发x秒后△ APD 的面积S1(cm2)与x(秒)的函数关系图象;图3 是点Q 出发x 秒后△ AQD 的面积S2(cm2)与x(秒)的函数关系图象.根据图象:(1)求a、b、c 的值;(2)设点P离开点A的路程为y1(cm),点Q到点A还需要走的路程为y2(cm),请分别写出改变速度后y1、y2 与出发后的运动时间x(秒)的函数关系式,并求出P 与Q 相遇时x 的值.动点答案1、解:(1)点P在AB上运动的速度为6÷6=1cm/s,在CD上运动的速度为6÷3=2cm/s,当点P 运动到点B 时,△APD 的面积S 最大,最大值是×6×6=18cm2;(2)PD=6﹣2(t﹣12)=30﹣2t,S= AD•PD= ×6×(30﹣2t)=90﹣6t;(3)当0≤t≤6 时,S=3t,12≤t≤15 时,90﹣6t=10,t=,所以当t 为(s)、(s)时,△APD的面积为10c△ APD 的面积为10cm2,即S=10 时,3t=10,t= ,当m2.2、解:(1)根据题意,B Q=x,P B=6﹣2x;(2)若PQ∥AC,有,即,解之得:x=2;(3)当∠BPQ=90°时,根据三角函数关系,可知BQ=2BP,∴x=2(6﹣2x),解之得:x= ,当∠BQP=90°时,2BQ=BP,即6﹣2x=x,解之得:x= .3、解:(1)当点P在线段AB上时,此时AP=x,AD=8,根据三角形的面积公式可得:y= •AD•AP= ×8×x=4x,当点P 在线段BC 上运动时,面积不变;当点P 在线段CD 上,运动时,DP=6+8+6﹣x=20﹣x,AD=8根据三角形的面积公式可得:y= •AD•DP=×8×(20﹣x)=80﹣4x,∴y 与x 之间的函数关系式为y=(2)当x=4 时,y=4x=4×4=16,当x=18 时,y=80﹣4×18=8;(3)当y=4x=20,解得x=5,此时点P 在线段AB 上,当y=80﹣4x=20,解得x=15,此时点P 在线段CD 上.4、解:(1)从图象可知,当6≤t≤8 时,△ A B P面积不变即6≤t≤8 时,点P 从点C 运动到点D,且这时速度为每秒2 个单位∴CD=2(8﹣6)=4∴AB=CD=4(2 分)当t=6 时(点P运动到点C),S△ABP=16∴AB•BC=16∴×4×BC=16∴BC=8(4 分)∴长方形的长为8,宽为4.(2)当t=a 时,S△ABP=8=×16即点P 此时在BC 的中点处∴PC= BC= ×8=4∴2(6﹣a)=4∴a=4(6 分)∵BP=PC=4∴m=BP÷a=4÷4=1,当t=b 时,S△ABP=AB•AP=4∴ ×4×AP=4,AP=2∴b=13﹣2=11(9 分);5、解:由题意知:BC=4,DC=9﹣4=5,AD=5…(3 分)…(5 分)当0≤x≤4 时,…(8 分)当4<x≤9 时,…(9 分)6、解:(1)观察图象得,S△APQ=PA•AD=×(1×a)×6=24,解得a=8(秒)b= =2(厘米/秒)(22﹣8)c=(12×2+6)﹣2×8解得c=1(厘米/秒)(2)依题意得:y1=1×8+2(x﹣8),即:y1=2x﹣8(x>8),y2=(30﹣2×8)﹣1×(x﹣8)=22﹣x(x>8)又据题意,当y1=y2 时,P 与Q 相遇,即2x﹣8=22﹣x,解得x=10(秒)∴出发10 秒时,P 与Q 相遇.。

一次函数之面积问题 (习题及答案).

一次函数之面积问题 (习题及答案).

一次函数之面积问题(习题)1.如图,一次函数y=kx+b 的图象经过A(-2,-1),B(1,3)两点,并且与x 轴交于点C,与y 轴交于点D,则△AOB 的面积为.第1 题图第2 题图2.如图,直线y =1x +1 经过点A(1,m),B(4,n),点C 的坐2标为(2,5),则△ABC 的面积为.3.如图,直线y=-x+3 经过点A(4,m),B(-1,n),若点P 的坐标为(6,2),则S△ABP= .4.如图,直线l1:y=x-3 与直线l2:y=2x 交于点A,点B(5,m)在直线l1 上,点C(2,n)在直线l2 上,则△ABC 的面积为.5.如图,直线y =1x +1 与x 轴、y 轴分别交于点A,B,直线2y=kx-3 与x 轴、y 轴分别交于点C,D,两直线相交于点P,若S△ADP=20,则k 的值为.6.如图,在平面直角坐标系中,已知A(2,4),B(10,5),C(8,2),则四边形OABC 的面积为.7.如图,在平面直角坐标系中,已知直线l1,l2 相交于点A(2,1),点B(8,4)在直线l1 上,直线l2 的表达式为y=3x-5.C 为直线l2 上的一个动点,且在点A 右侧,若△ABC 的面积为15,则点C 的坐标为.8. 如图,直线 y =-x +2 与 x 轴、y 轴分别交于点 A ,B ,以 A 为直角顶点,线段 AB 为腰在第一象限内作等腰 Rt △ABC ,点 P 为直线 x =1 上的一点,若 S △ABP =S △ABC ,则点 P 的坐标为 .9. 如图,已知直线 y = - 1 x + 4 与 x 轴、y 轴分别相交于点 A ,B , 2再将△AOB 折叠,使点 A 与点 B 重合,折痕与 x 轴交于点 C , 与 AB 交于点 D .(1) 点 A 的坐标为 ,点 B 的坐标为 .(2) 求线段 OC 的长及直线 BC 的表达式.(3) 直线 BC 上是否存在一点 M ,使△ABM 的面积与△ABO 的面积相等?若存在,请直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.【参考答案】1.522.923. 25 24. 205. 16. 257. (4,7)8. (1,5)或(1,-3)9. (1)(8,0),(0,4);(2)线段OC 的长为3,直线BC 的表达式为y =-4x + 4 ;3(3)存在,点M 的坐标为( 24,-12)或( -24,52).5 5 5 5。

8年级数学专题10 一次函数中动点坐标与面积之间的问题

8年级数学专题10 一次函数中动点坐标与面积之间的问题
【详解】(1)设一次函数的解析式为y=kx+b,
将点 和点 的坐标代入,得

解得 ,
∴一次函数的解析式为: ;
(2)∵点(a,2)在该函数的图象上,
∴2a-1=2,
解得 ;
(3)当y=0时,得到2x-1=0,解得x= ,
∴C点坐标为 ,
∵P点在直线上,
∴ ,
∴ ,
当 时, ,
当 时, .
【点睛】此题考查了待定系数法求函数解析式,利用解析式求出点的坐标,一次函数图象与坐标轴的交点问题,一次函数图象与几何图形.
5.已知A( , ),B( , ),点C与点A关于坐标原点对称,经过点C的直线与y轴交于点D,与直线AB交于点E,且E点在第二象限。
(1)求直线AB的解析式;
(2)若点D(0,1),过点B作 于F,连接BC,求 的度数及 的面积;
(3)若点G(G不与C重合)是动直线CD上一点,且 ,试探究 与 之间满足的等量关系,并加以证明.
3.如图,直线OC、BC的函数关系式分别是y1=x和y2=﹣2x+6,动点P(x,0)在OB上运动(0<x<3),过点P作直线m与x轴垂直.
(1)求点C的坐标,并回答当x取何值时y1>y2;
(2)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式;
(3)当x为何值时,直线m平分△COB的面积.
专题10一次函数中动点坐标与面积之间的问题
【专题说明】
此类问题 两个难点:
一、根据已知直线的解析式表示动点坐标;
二、用动点及已知点的坐标来表示所需线段的长度;
三、根据动点所处不同位置进行分类讨论.
另外,需要注意自变量 取值范围.
1.已知四条直线 , ,y=3,x=1所围成的四边形的面积为12,求m的值.

一次函数与动点全等面积

一次函数与动点全等面积

如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是(0,0),B点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E,F分别在AD,AB上,且F点的坐标是(2,4).(1)求G点坐标;(2)求直线EF解析式;(3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.已知,如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).(1)求直线l1,l2的表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CD∥y轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.①设点C的纵坐标为a,求点D的坐标(用含a的代数式表示);②若矩形CDEF的面积为108,求出点C的坐标.如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB落在x轴正半轴上,直线经过点C,与x轴交于点E.(1)求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F(-,0)且与直线y=3x平行,将(2)中直线l沿着y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积.如图1,在平面直角坐标系中,直线y=(m>0)与x轴,y轴分别交于点A,B,过点A作x轴的垂线交直线y=x于点D,C点坐标(m,0),连接CD.(1)求证:CD⊥AB;(2)连接BC交OD于点H(如图2),求证:DH=BC.图1 图2如图,在平面直角坐标系中,点A的坐标为(2,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>2),连接BC,以BC为边在第四象限内作等边△CBD.(1)试问△OBC与△ABD全等吗?并证明你的结论;(2)直线AD与y轴交于点E,在C点移动的过程中,E点的位置是否发生变化?如果不变求出它的坐标;如果变化,请说明理由.如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边OA在x轴的正半轴上,点B坐标为(,1),以OB 所在直线为对称轴将△OAB作轴对称变换得△OCB.现有动点P从点O出发,沿线段OA向点A运动,动点Q从点C出发,沿线段CO向点O运动,两点同时出发,速度都为每秒1个单位长度.设运动时间为t秒.(1)求∠AOC的度数;(2)若四边形BCQP的面积为S(平方单位),求S与t之间的函数关系式;(3)设PQ与OB交于点M,当△OMQ为等腰三角形时,求t的值.如图,在直角坐标系中,O是坐标原点,A,B,C三点的坐标分别为A(18,0),B(18,8),C(6,8),四边形OABC 是梯形,点P,Q同时从原点出发,分别做匀速运动,其中点P沿OA向终点A运动,速度为每秒2个单位,点Q沿路线O→C→B运动,速度为每秒3个单位,当一点到达终点则另一点也停止运动,设运动的时间为t秒.(1)求直线OC的解析式;(2)从运动开始,梯形被直线PQ分割后的图形中是否存在平行四边形,若存在,求出t的值,若不存在,请说明理由;(3)当t为何值时,直线PQ把梯形OCBA分成面积为1:7的两部分?如图,在直角坐标系中,点O是坐标原点,四边形OABC是平行四边形,点A的坐标为(14,0),点B的坐标为(18,).(1)求点C的坐标和平行四边形OABC的对称中心的点的坐标;(2)动点P从点O出发,沿OA方向以每秒1个单位的速度向终点A匀速运动,动点Q从点A出发,沿AB方向以每秒2个单位的速度向终点B匀速运动,两点同时出发,当一点到达终点时另一点停止运动.设点P运动的时间为t秒(t>0),求当t为何值时,△PQC的面积是平行四边形OABC的一半?(3)当△PQC的面积是平行四边形OABC面积的一半时,在平面直角坐标系中找到一点M,使以C,P,Q,M为顶点的四边形为平行四边形,请直接写出点M的坐标.直线与坐标轴分别交于A,B两点,动点P,Q从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A,B两点的坐标;(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;(3)当S=时,求出点P的坐标,并直接写出以点O,P,Q为顶点的平行四边形的第四个顶点M的坐标.已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OAB的路线移动,移动的时间为t秒.(1)求直线BC的解析式;(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的?(3)动点P从点O出发,沿折线OAB的路线移动过程中,设△OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围.(备用图)如图,在平面直角坐标系中,直线l1:y=分别与x轴、y轴交于点B,C,且与直线l2:y=交于点A.(1)求出点A,B,C的坐标;(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O,C,P,Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.如图,平面直角坐标系中,四边形OABC为直角梯形,CB∥OA,∠OCB=90°,CB=1,AB=,直线过A点,且与y轴交于D点.(1)求点A、点B的坐标;(2)试说明:AD⊥BO;(3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O,B,M,N为顶点的四边形是平行四边形?若存在,求出N点的坐标,若不存在,请说明理由.如图,在平面直角坐标系中,直线y=x+1与y=-x+3交于点A,两直线分别交x轴于点B和点C,点D是直线AC上的一个动点.(1)求出点A,B,C的坐标;(2)在直线AB上是否存在点E,使得以点E,D,O,A为顶点的四边形是平行四边形?如果存在,求出点E的坐标;如果不存在,请说明理由.【2012-12-11 (周二)】如图,一次函数y=的函数图象与x轴、y轴分别交于点A,B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,),试用含m的代数式表示△APB的面积,并求当△APB与△ABC面积相等时m的值;(3)在坐标轴上是否存在一点Q,使△QAB是等腰三角形?若存在,请直接写出点Q所有可能的坐标;若不存在,请说明理由.如图,在直角坐标系中,一次函数y=的图象与x轴交于点A,与y轴交于点B.(1)已知OC⊥AB于C,求C点坐标;(2)在x轴上是否存在点P,使△PAB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.1. 如图,直线y=-x+2与x轴、y轴分别交于点A和点B,另已知直线y=kx+b(k≠0)经过点C(1,0),且把△AOB分成两部分.(1)若△AOB被分成的两部分面积相等,求k和b的值.(2)若△AOB被分成的两部分面积比为1︰5,求k和b 的值.2. 如图,A、B分别是x轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,.(1)△COP的面积是多少?(2)求点A的坐标及p的值.(3)若,求直线BD的函数解析式.1. 已知正比例函数和一次函数的图象都经过M(3,4),且正比例函数和一次函数的图象与y轴围成的面积为,求此正比例函数和一次函数的解析式.2. 如图,已知直线经过点A(-1,0)与点B(2,3),另一条直线经过点B,且与轴相交于点P(m,0).(1)求直线的解析式;(2)若△APB的面积为3,求m的值.先试着自己做一做再看答案哦~~1. 已知一次函数y=kx+b的图象与y=2x+1的交点的横坐标为2,与直线y=-x-8的交点的纵坐标为-7,求直线的表达式.2. 有两条直线和,学生甲解出它们的交点为(3,-2),学生乙因把c抄错而解出它们的交点为,试写出这两条直线的表达式.如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是(0,0),B点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E、F分别在AD、AB上,且F点的坐标是(2,4).(1)求G点坐标;(2)求直线EF解析式.1. 已知直线y=kx+b经过且与坐标轴所围成的三角形的面积为,求该直线的表达式.2. 求下列一次函数的解析式:(1)图象过点(1,-1)且与直线y=5-2x平行;(2)图象和直线y=-3x+2在y轴上相交于同一点,且过(2,-3)点.【2012-11-30 ( 周五)】如图,在平面直角坐标系中,四边形OABC为平行四边形,其中O为坐标原点,且点B(4,4),C(1,3),OB,AC相交于点D.(1)求A,D两点坐标;(2)求四边形OABC的面积.【2012-11-29 ( 周四)】如图,在平面直角坐标系中,点B在x轴正半轴上,点A在第一象限,OE是△AOB的中线,已知OB=OE=5,S△AOB=15.求A、E两点的坐标.【2012-11-28 ( 周三)】如图所示,A(-,0),B(0,1)分别为x轴,y轴上的点,△ABC为等边三角形,点P(3,a)在第一象限内,且满足2S△ABP=S△ABC,求a的值.【2012-11-27 (周二)】慧慧在一次数学课上,将一副30°,60°,90°和45°,45°,90°的三角板如图放在直角坐标系中,发现点A的坐标刚好是(,0),求图中两个三角板的交点P的坐标.【2012-11-26 (周一)】如图所示,已知边长为1的正方形OABC在直角坐标系中,B,C两点在第二象限内,OA与x 轴的夹角为60°,求点B的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数与面积的关系 动点问题
例1.如图,直线y=kx+6与x轴y轴分别相交于点E,F.点E的 坐标为(- 9, 0),点A的坐标为(-6,0),点P(x,y)是第二 象限内的直线上的一个动点。 (1)求k的值; (2)当点P运动过程中,试写出△OPA的面积S与x的函数 关系式,并写出自变量x的取值范围; (3)探究:当△OPA的面积为3.6时,求P的坐标。 y 解: (1)将E(-9,0)代入y = kx+6 F p 得-9k+6=0 2 得k= 3 E A O x
H
----
E A(-6,0)
3
P(x, 2 x 6 )
O
x
变式(2): 如图,直线y = kx+6与x轴y轴分别相交于点E,F. 点E的 坐标为(- 9, 0), 点A的坐标为(- 6,0). 点P(x, y)是 第三象限内直线上的一个动点。 探究:当△OPA的面积为3.6时,求P的坐标 解:令S=3.6 即-2x-18=3.6解得x=-10.8 y F
如图,直线y = kx+6与x轴y轴分别相交于点E,F. 点E的 坐标为(- 9, 0), 点A的坐标为(- 6,0). 点P(x,y)是 第二象限内的直线上的一个动点。 (3)探究:当△OPA的面积为3.6时,求P的坐标 解:令S=3.6 即2x+18=3.6 解得x=-7.2 y 2 将x=-7.2代入 y = 3 x+6 得, F y =1.2 ∴当△OPA的面积为3.6时, P的坐标P(-7.2,1.2) E p
2 2.如图,在平面直角坐标系中,已知直线 y1 x 2 3
与x轴、y轴分别交于点A和点B,直线y2=kx+b(k≠0) 经过点C(1,0)且与线段AB交于点P,并把△ABO分 成两部分。 x y1 (1)求△ABO的面积。 B P A (2)若△ABO被直线CP分成 y C 的两部分面积相等,求点 y2 P的坐标及直线CP的函数表达式。
y A M B O x
4.如图,直线OC、BC的函数关系式分别是y1=x和y2=2x+6,动点P(x,0)在OB上运动(0<x<3),过点P 作直线m与x轴垂直. (1)求出点C的坐标,并回答当x取何值时y1>y2 (2)设△COB中位于直线m左侧部分的面积为s,求出 s与x之间函数关系 (3)当x为何值时,直线m平分△COB的面积?
A
O
x
自学检测
变式一(1): 若点P(x, y) 是第三象限内的直线上的一个动点;其他 条件不变。 当点P运动过程中,试写出△OPA的面积S与x 的函数关系式,并写出自变量x的取值范围; y
2 2 | x x 6 6|。 6 OA=____,PH=______ 3 3
F
1 S△OPA OA PH 2 1 2 6 ( x 6) 2 3 2 x 18 (x<-9)
将x=-10.8代入
2 y= x-6 得, y =-1.2 3 ∴当△OPA的面积为3.6时, P的坐标P(-10.8,-1.2) H
----
E A
O
x
p
3.如图,直线y = kx+6与x轴y轴分别相交于点E,F. 点E的 坐标为(- 9, 0), 点A的坐标为(- 6,0). 点P(x,y)是 直线上y = kx+6(k≠0)的一个动点。当点P运动过程 中, 试写出△OPA的面积S与x的函数关系式,并写 出自变量x的取值范围; y y F p E H
3.如图,一次函数y=kx+1.5 的图象过点M(2,0),与 正比例函数y= —1.5x的图象交于点A,过点A作AB垂直 于x轴于点B。 (1)求k的值并计算y=kx+1.5图象与坐标轴围成的三角 形的面积; (2)求交点A的坐标,计算AM的长; (3)在x轴上是否存在点P,使得以三点P、A、M组成的 三角形AMP为等腰三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由。
----
F
H E A
----
O
x
O
x
p
S=2x+18(-9<x<0)
S=-2x-18(x<-9)
变式二(1): 当点P在直线上运动过程中,若△OPA是以OA为底的等腰 三角形时,试求出点P坐标 变式(2): 在变式(1)的基础上平面内是否存在点D使以点A、O、P、 D为顶点的 四边形 是平行四边形,若存在直接写出点D的 y 坐标;若不存在请说明理由。 F p E A
-------------------------
H Oபைடு நூலகம்
x
变式三: 当点P在直线上运动过程中,若直线AP平分△OEF的面积 时,试求出直线AP的解析式和点P坐标
y
F p
M
E A O x
巩固练习1.已知点A(x,y)在第一象限内,且 x+y=10,点B(4,0)时△OAB的面积为S. (1)求S与x的函数关系式,直接写出x的取值范 围,并画出函数的图象; (2)△OAB的面积为6时,求A点的坐标;
2 (2) :由(1)得y x 6, 过点P作PH ⊥OA 于H; 3 y
连结PA、PO
2 ∵点 P在直线 y x 6上 3 2 点P的坐标可以表示为 ( x, x 6) 3 ∵点P在第二象限
(x,y)p E
F
∵点P在第二象限内,且在直线EF上运动 ∴ - 9 < x< 0
2 2 PH x 6 x 6 x A(-6,0) H O 3 3 ∵ A(6,0) OA 6 2|y| | x 6 |。 1 6 OA=____,PH=______ S△OPA OA PH 3 2 1 2 S△OPA 6 ( x 6) 1 2 2 3 6 ( x 6) 2 x 18 2 x 18 2 3
相关文档
最新文档