层次分析法数学建模范例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
承诺书
我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A
我们的参赛报名号为(如果赛区设置报名号的话):A甲0616
所属学校(请填写完整的全名):
参赛队员(打印并签名) :1.
2.
3.
指导教师或指导教师组负责人(打印并签名):
日期: 2011 年 8 月20 日
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):
对学生建模论文的综合评价分析
摘要
本文研究的是五篇建模论文的评价和比较问题。首先,研读分析了五篇论文,并写出评语。其次,进行综合量化评价,主要运用的方法是层次分析法和模糊综合评判。最后,依据所得权重大小对论文排序。
针对问题一,我们对论文进行了横向比较和纵向分析。依据数学建模竞赛论文评分基本原则,首先,在研读论文的基础上,对论文分块进行了横向比较,并按照优、良、中、差四个等级作出评价。其次,采取纵向分析的方法,找到论文的优点与不足,写出每篇论文的评语。最后,结合横向比较和纵向分析对论文综合评价。
针对问题二,在建立数学模型时,首先从建模理念的应用意识、数学建模、创新意识出发利用模糊评判的二级评判模型把所给论文的建模摘要、模型与求解、模型评价与推广、其他作为第一级因素集,把问题描述等作为第二级因素集。在用模糊综合评判方法时,确定评估数据(评判矩阵)和权重分配是两项关键性的工作,求权重分配时,我们通过往年评分标准确定数据后用层次分析法计算出二级权重和一级权重;对于评判矩阵,我们通过对五篇论文进行评阅打分(用平均分数作为每项得分),用每一项得分占五篇论文该项得分的比重(商值法),建立评价矩阵。
最终,我们通过matlab编程处理得出的综合量化比较结果是所给5篇论文由好到差依次为论文4,论文2,论文1,论文5,论文3。并在模型结束时付上了对五篇论文的评语。
关键词:层次分析法;模糊综合评判;统计分析:matlab编程;论文评价
一、问题重述
数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题、解决问题的能力的必备手段之一。
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致可见下图。
需要解决问题是
(1)请根据数学建模竞赛论文评分基本原则,对所给5篇论文进行评阅,写出评语。
(2)利用层次分析法,或其他综合评判方法,对这五篇论文进行综合评价,进行排序。
二、问题分析
2.1 对建型摘要的理解
模型要实用,有效,有特色,以解决问题有效为原则,而模型的摘要开门见山,在对问题简单描述后点名建模思路、建模方法、及运行结果。使读者对论文的可行性、创造性及模型的大致思路有个大体的了解。可以说论文摘要是除了模型最重要的一部分,它论文的点睛之处。
2.2 对模型建立与求解的理解
分析:中肯、确切
术语:专业、内行
原理、依据:正确、明确
表述:简明,关键步骤要列出,可将公式与中文说明相结合
忌:外行话,专业术语不明确,表述混乱,冗长。
2.3结果的合理性
此题最大的特点之一是拥有大量的数据处理和明确结果。我们先通过对各个方面的因素进行分析,从中找出对我们评价影响最大的几个数据进行细节分析,再将这些细节综合起来进行总体分析,并将一些繁复的数据简单化,把影响小的数据忽略不计,以免影响我们评价的质量,最后通过和标准答案比较最终确定分值。
2.4 其他
这里对其他的理解主要是对论文的整体印象及论文写作的规范程度,主要包括文字流畅、格式规范等,在这方面主观因素影响较大,所以采用三名队员同时打分并取均值作为每篇论文的最后得分。
三、问题假设
1、假设调查的数据(往年的评分标准)是合理的。
2、假设建模的创造性结果的合理性表述的清晰程度以外的因素对所给论文的的优良造成影响小,我们暂不考虑。
3.假设组内成员对论文的评判是公正的。
四、符号说明
U1 摘要
U2 模型建立与求解
U3 模型的评价与推广
U4 其他
u11 问题描述
u12 建模方法
u13 具体模型
u14 合理结果
u21 问题假设
u22 问题分析
u23 模型建立与求解
u24 问题结果
u31 模型检验
u32 评价与推广
u41 文字流畅
u42 格式规范
u43 内容完整
ω1 U i各分量的权向量
R 总的评判矩阵
R i 各分量的评判矩阵
v i 第i篇论文
a1i问题描述得分
a2i 建模方法得分
a3i 具体模型得分
b1i 模型的建立与求解得分
c1i 模型的评价与推广得分
d1i 其他方面得分
M 新的评判标准
F 论文分数
η每篇论文获得优的因素集的比例
λ新评判标准加权值
∧最大下界运算
∨最大上界运算
五、模型的建立与求解
5.1 论文的评判
首先引入综合评价的要素概述,并结合数学建模竞赛论文评分基本原则对问题展开分块横向比较,然后采取纵向分析的方法找到论文优缺点,并写出评语。最后,结合以上分析,对五篇论文进行综合评价。
5.1.1 对论文的横向比较
5.1.1.1综合评价的一般步骤:
明确评价目的;确定被评价对象;建立评价指标体系(包括评价指标的原始值、评价指标的若干预处理等);确定与各项评价指标相对应的权重系数;选择或构造综合评价模型;计算各系统的综合评价值,并给出综合评价结果。
(1) 被评价对象
被评价对象就是综合评价问题中所研究的对象,或称为系统。通常情况下,在一个问题中被评价对象是属于同一类的,且个数要大于1,不妨假设一个综合评价问题中有n个被评价对象(或系统),分别记为S1,S2,…S n(n>1)。
(2)评价指标
评价指标是反映被评价对象(或系统)的运行(或发展)状况的基本要素。通常的问题都是