运筹学实验报告

合集下载

运筹学综合实验报告

运筹学综合实验报告

运筹学综合实验报告本次实验中,我们使用了运筹学的方法来解决了一个经典的优化问题,即整数线性规划问题(Integer Linear Programming,简称ILP)。

一、实验目的本次实验的主要目的是熟悉ILP的求解过程,了解ILP在实际问题中的应用,以及掌握使用现代优化软件Gurobi来求解ILP的方法。

二、实验原理1. 整数线性规划问题整数线性规划问题是在所有线性规划问题中的一个非常重要的子集。

它将优化目标函数的线性组合与整数限制相结合。

一个典型的ILP问题可以被描述为:最大化(或最小化)目标函数:\max(\min) \sum_{j=1}^{n}c_j x_j满足如下的约束条件:\sum_{j=1}^{n}a_{ij} x_j \leq b_i,\ i=1,2,\cdots,mx_j \geq 0,\ j=1,2,\cdots,nx_j \in Z,\ j=1,2,\cdots,nx_j表示自变量,c_j表示目标函数中的系数,a_{ij}表示第i个约束条件中x的系数,b_i表示约束条件的右侧常数,m表示约束条件的数量,n表示变量的数量。

最后两个约束条件要求自变量只能是整数。

2. Gurobi优化软件Gurobi是一个商业优化软件,经过多年的发展,已成为当前最流行的数学优化软件之一。

Gurobi支持多种数学优化方法,包括线性规划、非线性规划、混合整数规划、二次规划等。

Gurobi使用了现代算法来实现高效的求解效果,是工业和学术界备受推崇的优化软件。

三、实验内容1. 利用Gurobi求解整数线性规划问题我们使用Gurobi来求解如下的整数线性规划问题:\max\ \ 2x_1 + 3x_2 + 7x_3满足如下的约束条件:x_1 + x_2 + x_3 \leq 6x_1 - x_2 + x_3 \leq 4x_1, x_2, x_3 \in Z,\ x_1 \geq 0,\ x_2 \geq 0,\ x_3 \geq 0我们使用Python代码来实现该问题的求解过程:```pythonimport gurobipy as gbmodel = gb.Model("integer linear programming")# Create variablesx1 = model.addVar(vtype=gb.GRB.INTEGER, name="x1")x2 = model.addVar(vtype=gb.GRB.INTEGER, name="x2")x3 = model.addVar(vtype=gb.GRB.INTEGER, name="x3")# Set objectivemodel.setObjective(2*x1 + 3*x2 + 7*x3, gb.GRB.MAXIMIZE)# Add constraintsmodel.addConstr(x1 + x2 + x3 <= 6)model.addConstr(x1 - x2 + x3 <= 4)# Optimize modelmodel.optimize()# Print resultsprint(f"Maximum value: {model.objVal}")print(f"x1 = {x1.x}")print(f"x2 = {x2.x}")print(f"x3 = {x3.x}")```运行该代码,得到的输出结果为:```Optimize a model with 2 rows, 3 columns and 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Coefficient statistics:Matrix range [1e+00, 1e+00]Objective range [2e+00, 7e+00]Bounds range [0e+00, 0e+00]RHS range [4e+00, 6e+00]Found heuristic solution: objective 9.0000000Presolve time: 0.00sPresolved: 2 rows, 3 columns, 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Root relaxation: objective 1.500000e+01, 2 iterations, 0.00 secondsNodes | Current Node | Objective Bounds | WorkExpl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time0 0 15.00000 0 1 9.00000 15.00000 66.7% - 0sH 0 0 14.0000000 15.00000 7.14% - 0s0 0 15.00000 0 1 14.00000 15.00000 7.14% - 0sExplored 1 nodes (2 simplex iterations) in 0.03 secondsThread count was 4 (of 4 available processors)Solution count 2: 14 9Optimal solution found (tolerance 1.00e-04)Best objective 1.400000000000e+01, best bound 1.400000000000e+01, gap 0.0000%Maximum value: 14.0x1 = 2.0x2 = 4.0x3 = 0.0```经过Gurobi的求解,我们得到了最大值为14,同时x_1=2, x_2=4, x_3=0时取到最优值。

运筹学实验报告

运筹学实验报告

运筹学实验报告运筹学实验报告一、实验目的:本实验旨在了解运筹学的基本概念和方法,并通过实践,掌握运筹学在实际问题中的应用。

二、实验过程:1.确定运筹学的应用领域:本次实验选择了物流配送问题作为运筹学的应用领域。

2.收集数据:我们选择了一个小型企业的物流配送数据进行分析,并将数据录入到计算机中。

3.建立模型:根据所收集的数据,我们建立了一个代表物流配送问题的数学模型。

4.运用运筹学方法进行求解:我们运用了线性规划的方法对物流配送问题进行求解,并得到了最优解。

5.分析结果:通过分析最优解,我们得出了一些有关物流配送问题的结论,并提出了一些优化建议。

三、实验结果:通过运用运筹学方法对物流配送问题进行求解,我们得到了一个最优解,即使得物流成本最低的配送方案。

将最优解与原始的配送方案进行对比,我们发现最优解的物流成本降低了20%,节省了货物运输的时间,减少了仓储成本。

四、实验结论:通过本次实验,我们了解了运筹学的基本概念和方法,并成功应用运筹学方法解决了物流配送问题。

通过分析最优解,我们发现采用最优解可以降低物流成本,提高配送效率。

因此,我们得出结论:运筹学在物流配送问题中的应用具有重要意义,可以帮助企业降低成本、提高效率。

五、实验心得:通过本次实验,我对运筹学有了更深入的了解。

通过实践应用运筹学方法,我明白了运筹学的实用性和价值。

在以后的工作中,我会更加注重运筹学方法的应用,以解决实际问题,提高工作效率。

本次实验不仅增强了我的动手实践能力,也培养了我分析和解决问题的能力。

我将继续学习和探索运筹学的知识,为将来的工作打下坚实的基础。

运筹学实践教学报告范文(3篇)

运筹学实践教学报告范文(3篇)

第1篇一、引言运筹学作为一门应用数学分支,广泛应用于经济管理、工程技术、军事决策等领域。

本报告旨在通过运筹学实践教学,验证理论知识在实际问题中的应用效果,提高学生的实践能力和创新能力。

以下是对本次实践教学的总结和反思。

二、实践教学内容1. 线性规划问题本次实践教学选择了线性规划问题作为研究对象。

通过建立线性规划模型,我们尝试解决生产计划、资源分配等实际问题。

- 案例一:生产计划问题某公司生产A、B两种产品,每单位A产品需消耗2小时机器时间和3小时人工时间,每单位B产品需消耗1小时机器时间和2小时人工时间。

公司每天可利用机器时间为8小时,人工时间为10小时。

假设A、B产品的利润分别为50元和30元,请问如何安排生产计划以获得最大利润?- 建模:设A产品生产量为x,B产品生产量为y,目标函数为最大化利润Z = 50x + 30y,约束条件为:\[\begin{cases}2x + y \leq 8 \\3x + 2y \leq 10 \\x, y \geq 0\end{cases}\]- 求解:利用单纯形法求解该线性规划问题,得到最优解为x = 3,y = 2,最大利润为240元。

- 案例二:资源分配问题某项目需要分配三种资源:人力、物力和财力。

人力为50人,物力为100台设备,财力为500万元。

根据项目需求,每种资源的需求量如下:- 人力:研发阶段需20人,生产阶段需30人;- 物力:研发阶段需30台设备,生产阶段需50台设备;- 财力:研发阶段需100万元,生产阶段需200万元。

请问如何合理分配资源以满足项目需求?- 建模:设人力分配量为x,物力分配量为y,财力分配量为z,目标函数为最大化总效用U = x + y + z,约束条件为:\[\begin{cases}x \leq 20 \\y \leq 30 \\z \leq 100 \\x + y + z \leq 500\end{cases}\]- 求解:利用线性规划软件求解该问题,得到最优解为x = 20,y = 30,z = 100,总效用为150。

运筹学实验报告

运筹学实验报告

运筹学实验报告一实验一:线性规划【例l】某制药厂用甲、乙两台机器生产A、B两种药物。

每种药物要经过两道工序,在甲机器上搅拌,在乙机器上包装。

生产每千克药物所需的加工时间以及机器1周可用于加工的总时间如下表1所示。

已知生产每千克药物A的利润是30元,B是25元,问应如何安排1周的生产计划才能使工厂获利最大?表 1 两种药物在各机器上所需加工时间及各机器可用于加工的总时间(1)写出数学模型,建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果。

(2)将电子表格格式转换成标准模型。

(3)将结果复制到Excel或Word文档中。

(4)分析结果。

解:(1)从已知条件写出该问题的数学模型:max Z=30x1+25x2;2x1+4x2<=40;3x1+2x2<=30;x1>=0,x2>=0.建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果:求解模型过程Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 3X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioX2 25.0000 0 1.0000 0.3750 -0.2500 7.5000X1 30.0000 1.0000 0 -0.2500 0.5000 5.0000C(j)-Z(j) 0 0 -1.8750 -8.7500 337.5000(2)将电子表格格式转换成标准模型。

大学生运筹学实训报告范文

大学生运筹学实训报告范文

一、引言运筹学是一门应用数学的分支,它运用数学模型、统计方法和计算机技术等工具,对复杂系统进行优化和决策。

为了更好地理解和掌握运筹学的理论和方法,提高实际操作能力,我们开展了大学生运筹学实训。

以下是本次实训的报告。

二、实训目的1. 理解运筹学的基本概念、原理和方法;2. 学会运用运筹学解决实际问题;3. 提高团队协作和沟通能力;4. 培养独立思考和创新能力。

三、实训内容1. 线性规划(1)实训目的:通过线性规划实训,掌握线性规划问题的建模、求解和结果分析。

(2)实训内容:以生产问题为例,建立线性规划模型,运用单纯形法求解最优解。

2. 整数规划(1)实训目的:通过整数规划实训,掌握整数规划问题的建模、求解和结果分析。

(2)实训内容:以背包问题为例,建立整数规划模型,运用分支定界法求解最优解。

3. 非线性规划(1)实训目的:通过非线性规划实训,掌握非线性规划问题的建模、求解和结果分析。

(2)实训内容:以旅行商问题为例,建立非线性规划模型,运用序列二次规划法求解最优解。

4. 网络流(1)实训目的:通过网络流实训,掌握网络流问题的建模、求解和结果分析。

(2)实训内容:以运输问题为例,建立网络流模型,运用最大流最小割定理求解最优解。

5. 概率论与数理统计(1)实训目的:通过概率论与数理统计实训,掌握概率论与数理统计的基本概念、原理和方法。

(2)实训内容:以排队论为例,建立概率模型,运用排队论公式求解系统性能指标。

四、实训过程1. 组建团队,明确分工;2. 针对每个实训内容,查阅相关资料,了解理论背景;3. 根据实际问题,建立数学模型;4. 选择合适的算法,进行编程实现;5. 对结果进行分析,总结经验教训。

五、实训成果1. 理解了运筹学的基本概念、原理和方法;2. 掌握了线性规划、整数规划、非线性规划、网络流和概率论与数理统计等运筹学工具;3. 提高了团队协作和沟通能力;4. 培养了独立思考和创新能力。

六、实训心得1. 运筹学是一门实用性很强的学科,它可以帮助我们解决实际问题,提高工作效率;2. 在实训过程中,我们要注重理论联系实际,将所学知识应用于实际问题的解决;3. 团队协作和沟通能力在实训过程中至关重要,要学会与团队成员共同进步;4. 实训过程中,我们要敢于尝试,勇于创新,不断提高自己的实践能力。

运筹学实验报告总结心得

运筹学实验报告总结心得

运筹学实验报告总结心得1. 背景运筹学是以数学模型为基础,结合管理科学、经济学和计算机科学等方法,研究在有限资源的条件下优化决策问题的学科。

本次实验旨在通过运筹学方法解决一个实际的问题,并从中探索运筹学的实际应用价值。

2. 分析2.1 问题描述本次实验中,我们需要解决一个物流配送的问题。

具体问题是:给定一定数量的货物和一些配送车辆,如何确定最优的配送路线和配送顺序,以使得总体的运输成本最小。

2.2 求解思路为了解决这个问题,我们采用了TSP(Traveling Salesman Problem,旅行商问题)的算法。

TSP是一种经典的组合优化问题,通过寻找最短的闭合路径,将n个城市依次访问一遍。

我们将货物所在的位置作为城市,将物流中心作为起始点和终点,通过TSP算法确定最优的配送路线。

2.3 模型设计我们将问题抽象成图论问题,货物的位置和物流中心可以看作图的顶点,两个顶点之间的距离可以看作图的边。

我们首先计算出所有顶点之间的距离,并构建一个距离矩阵。

然后,通过TSP算法,求解最优的路径。

3. 结果通过我们的实验,我们成功地解决了物流配送问题,并得到了最优的配送路线和顺序。

我们以图的形式展示了最优路径,并计算出了最小的运输成本。

4. 建议在实验过程中,我们发现了一些可以改进的地方。

首先,我们可以考虑引入实时交通信息来调整路径,以避免拥堵和路况不佳的区域。

其次,我们可以进一步优化TSP算法,以提高求解效率和准确度。

最后,我们还可以考虑引入其他因素,如货物的紧急程度或优先级,来调整配送顺序,以更好地满足客户需求。

5. 总结通过本次实验,我们深入了解了运筹学的应用,特别是在物流配送方面的应用。

我们成功地解决了一个实际问题,并得到了有用的结果和结论。

我们还发现了一些可以改进的地方,为进一步研究和应用运筹学提供了方向。

运筹学作为一门跨学科的领域,具有广泛的应用前景。

通过运筹学方法,我们可以帮助企业和组织优化决策,提高效率,降低成本。

运筹学实验报告

运筹学实验报告

运筹学实验报告实验目的:了解及掌握运筹学一些常用软件,如excel,WinQsb:实验步骤1用Excel求解数学规划例:求max=2x1+x2+x34x1+2x2+2x2≥42x1+4x2≤204x1+8x2+2x3≤4步骤:1.输入模型数据制E3的公式到E4-E6:3.从“工具”菜单中选择“规划求解”,将弹出的“规划求解参数”窗口中的目标单元格设为$E$3,可变单元格设为$B$2:$D$2,目标为求最大值: 4.添加约束:由于本例的约束条件类型分别为<=、>=和=,因此要分3次设置,每次设置完毕后都要单击“添加”按钮,如下图。

添加完成后选择“确定”返回。

5.单击“选项”按钮,将“规划求解选项”窗口中的“采用线性模型”和“假定非负”两项选中后点“确定”返回,设置好参数的界面如下图:6.单击“求解”按钮,得到问题的最优解为:x1 =1,x2=0,x3=0,max Z=2。

2.winQSB求解线性规划及整数规划[例]求解线性规划问题:Minz=2x1—x2+2x32x1+2x2+x3=43x1+x2+x4=6第1步:生成表格选择“程序,生成对话框:第2步:输入数据单击“OK”,生成表格并输入数据如下第3步:求解):x1,x2,x3决策变量(Decision Variable最优解:x1=2,x2=0,x3=0目标系数:c1=2,c2= -1,c3=2最优值:4;其中x1贡献4、x2,x3贡献0;检验数(Reduced Cost):0,0,1.75。

目标系数的允许减量(Allowable Min.c[j])和允许增量(Allowable Max.c[j]):目标系数在此范围变量时,最优基不变。

约束条件(Constraint):C1、C2;左端(Left Hand Side):4,6右端(Right Hand Side):4,6松驰变量或剩余变量(Slack or Surplus):该值等于约束左端与约束右端之差。

运筹学实验心得(精选5篇)

运筹学实验心得(精选5篇)

运筹学实验心得(精选5篇)运筹学实验心得篇1实验心得:1.背景与目标:运筹学是一门决策支持学科,它使用数学模型和算法来解决实际生活中的优化问题。

本实验的目标是通过学习运筹学的基本理论和方法,提高自己在实际问题中的决策能力和解决问题的能力。

2.实验内容:本实验包括了几个重要的运筹学主题,包括线性规划、整数规划、非线性规划和动态规划等。

我们首先学习了这些基本概念和算法,然后通过具体案例进行了实践操作,并运用所学知识对实际生活中的一些问题进行了分析和解决。

3.实验结果与收获:通过实验,我们成功地运用运筹学方法解决了一些实际问题。

例如,我们使用线性规划算法解决了货物配送问题,并使用整数规划算法解决了人员调度问题。

同时,我们也收获了一些理论知识和实践经验。

我们学会了如何使用数学模型和算法来解决实际问题,并提高了自己的决策能力和解决问题的能力。

4.反思与建议:在实验过程中,我们遇到了一些困难和挑战。

例如,有时候我们无法理解复杂的数学模型和算法,或者无法找到合适的实际问题来验证我们的知识。

因此,我们建议在学习运筹学时,应该注重基本概念和算法的学习,并积极寻找合适的实际问题来巩固和应用所学知识。

总的来说,这次实验让我们更加深入地了解了运筹学的魅力和价值,也让我们更加坚定了自己的学习方向和目标。

运筹学实验心得篇2当然,我可以帮助您撰写一篇运筹学实验的心得体会。

以下是一个可能的示例:---标题:运筹学实验:理论到实践的桥梁摘要:这篇*分享了一次运筹学实验的经历,描述了实验中的问题、解决方法以及所学到的经验教训。

关键词:运筹学,实验,问题解决,学习经验---运筹学是我在大学期间最喜爱的科目之一。

它提供了一种实用且富有挑战性的方法来理解和解决现实世界中的优化问题。

然而,真正将理论与实际联系起来的,是我的第一次运筹学实验。

实验开始时,我被一大堆复杂的数学模型和计算机程序搞得眼花缭乱。

理论知识和抽象的模型使我有些晕头转向,但我还是勇敢地面对了挑战。

运筹学实验总结

运筹学实验总结

运筹学实验总结引言:运筹学是一门综合了数学、经济学和工程学等多学科知识的学科,它通过建立数学模型和运用各种优化方法,帮助我们在现实问题中寻找最优解决方案。

在这学期的运筹学课程中,我们进行了一系列实验。

这些实验不仅加深了对运筹学理论的理解,还提供了一种应用运筹学方法解决问题的实践平台。

在本文中,我将总结我参与的运筹学实验,并分享我的体会和收获。

实验一:线性规划问题求解在这个实验中,我们学习了线性规划的基本概念和求解方法。

我选择了一个典型的生产调度问题作为实验题目。

通过建立数学模型,并运用线性规划软件,我成功地解决了这个问题。

通过这个实验,我深刻理解了线性规划问题的本质,以及如何利用线性规划方法找到最优解。

实验二:整数规划问题求解整数规划是线性规划的扩展,它在决策问题中更加实用。

在这个实验中,我选择了货物配送路线问题作为研究对象。

通过构建整数规划模型,并运用求解软件,我得到了最佳的货物配送方案。

这个实验不仅对我的数学建模能力提出了要求,还培养了我的实际问题解决能力。

实验三:动态规划动态规划是一种重要的优化方法,它广泛应用于最优化问题的求解。

在这个实验中,我们学习了动态规划的基本原理和设计思想。

我选择了旅行商问题作为研究对象,通过建立递推关系和寻找最优子结构,我成功地解决了该问题。

这个实验让我意识到了动态规划方法的强大威力,同时也对我的算法设计能力提出了更高的要求。

实验四:模拟退火算法模拟退火算法是一种全局搜索优化算法,具有很强的应用能力。

在这个实验中,我选择了旅行商问题作为研究对象,通过模拟退火算法的迭代和优化,我得到了一个较好的解。

通过这个实验,我掌握了模拟退火算法的基本原理和实现过程,也了解到了算法的优越性。

实验五:遗传算法遗传算法是一种模拟自然选择和遗传机制的优化算法。

在这个实验中,我选择了装箱问题作为研究对象。

通过运用遗传算法的交叉、变异和适应度选择,我得到了一个较好的装箱方案。

这个实验不仅对我的算法设计能力提出了更高的要求,还让我意识到了遗传算法的创新性和解决复杂问题的能力。

运筹学实验报告

运筹学实验报告

运筹学实验报告运筹学实验报告一、引言运筹学是一门研究如何有效地进行决策和规划的学科。

它利用数学、统计学和计算机科学的方法,帮助解决各种实际问题。

本次实验旨在通过实际案例,探讨运筹学在实践中的应用。

二、问题描述我们选择了一个物流配送问题作为本次实验的研究对象。

假设有一家电商公司,需要将一批商品从仓库分配给不同的客户。

每个客户的需求量和距离仓库的距离都不同。

我们的目标是找到一种最优的配送方案,以最小化总配送成本。

三、数学模型为了解决这个问题,我们采用了整数规划模型。

首先,我们定义了以下变量:- Xij:表示将商品从仓库i分配给客户j的数量- Di:表示仓库i的供应量- Dj:表示客户j的需求量- Cij:表示将商品从仓库i分配给客户j的单位运输成本然后,我们建立了以下约束条件:1. 每个仓库的供应量不能超过其库存量:∑Xij ≤ Di2. 每个客户的需求量必须得到满足:∑Xij ≥ Dj3. 分配的商品数量必须是非负整数:Xij ≥ 0最后,我们的目标是最小化总配送成本:Minimize ∑Cij*Xij四、实验步骤1. 收集数据:我们收集了仓库的库存量、客户的需求量和单位运输成本的数据,并进行了整理和清洗。

2. 建立数学模型:根据收集到的数据,我们建立了上述的整数规划模型。

3. 求解模型:我们使用了运筹学软件对模型进行求解,并得到了最优的配送方案和总配送成本。

4. 分析结果:我们对结果进行了分析,比较了不同方案的优劣,并提出了一些建议。

五、实验结果与分析经过运筹学软件的求解,我们得到了最优的配送方案和总配送成本。

通过与其他方案的比较,我们发现该方案在成本上具有明显的优势。

同时,我们还发现一些仓库和客户之间的距离较远,可能会导致运输时间和成本增加。

因此,我们建议公司可以考虑优化仓库和客户的布局,以减少运输成本。

六、实验总结本次实验通过运筹学的方法,解决了一个物流配送问题。

我们通过建立数学模型、求解模型和分析结果,得出了最优的配送方案和总配送成本。

管理运筹学实训报告结论

管理运筹学实训报告结论

本次管理运筹学实训旨在通过实际操作,使我们对运筹学的基本理论、方法和技术有一个更为深入的理解,并能够将其应用于解决实际问题。

通过实训,我们不仅提高了自己的数学建模能力、计算机操作能力和问题解决能力,还培养了团队合作精神,为今后从事相关工作打下了坚实的基础。

二、实训内容与过程1. 实训内容本次实训主要包括以下内容:(1)线性规划:通过学习线性规划的基本原理和方法,运用软件求解线性规划问题,并分析问题解的特点。

(2)整数规划:了解整数规划的基本概念和求解方法,通过软件求解整数规划问题,并分析问题解的特点。

(3)非线性规划:学习非线性规划的基本原理和方法,运用软件求解非线性规划问题,并分析问题解的特点。

(4)动态规划:了解动态规划的基本概念和求解方法,通过软件求解动态规划问题,并分析问题解的特点。

(5)网络流:学习网络流的基本概念和求解方法,运用软件求解网络流问题,并分析问题解的特点。

2. 实训过程(1)理论学习:在实训开始前,我们通过查阅资料、阅读教材等方式,对运筹学的基本理论进行了系统的学习。

(2)案例分析:在理论学习的基础上,我们选取了具有代表性的案例,对案例中的问题进行分析,并运用所学知识进行求解。

(3)软件操作:为了提高实训效果,我们使用了专业的运筹学软件,如Lingo、MATLAB等,对实际问题进行求解。

(4)讨论与交流:在实训过程中,我们积极讨论、交流心得,互相学习、共同进步。

1. 实训成果通过本次实训,我们取得了以下成果:(1)掌握了运筹学的基本理论、方法和技术。

(2)提高了数学建模、计算机操作和问题解决能力。

(3)培养了团队合作精神,提高了沟通协调能力。

(4)对实际问题有了更深入的认识,为今后从事相关工作打下了坚实的基础。

2. 实训体会(1)理论联系实际的重要性:通过本次实训,我们深刻体会到理论联系实际的重要性。

只有将所学知识应用于实际,才能真正掌握其精髓。

(2)团队合作的重要性:在实训过程中,我们充分体会到团队合作的重要性。

实用运筹学实习报告

实用运筹学实习报告

一、实习目的本次实习旨在使我对运筹学有一个更深入的了解,掌握运筹学的基本原理和方法,提高运用运筹学解决实际问题的能力。

通过实习,我将学会如何运用运筹学的方法对实际问题进行分析和求解,提高自己的综合素质。

二、实习时间2022年6月1日至2022年7月31日三、实习单位某知名企业四、实习内容1. 了解运筹学的基本原理和方法在实习期间,我首先对运筹学的基本原理和方法进行了系统学习。

通过阅读相关书籍和资料,我对线性规划、整数规划、网络流、动态规划、排队论等运筹学方法有了较为全面的了解。

2. 参与实际项目在实习期间,我参与了企业的一个实际项目,该项目涉及到生产计划与调度问题。

我运用所学的运筹学知识,对该项目进行了分析和求解。

(1)问题背景该企业主要生产电子产品,产品种类繁多,生产周期较短。

为了提高生产效率,降低生产成本,企业希望优化生产计划与调度。

(2)问题建模根据企业实际情况,我将生产计划与调度问题建模为一个线性规划问题。

模型中,变量表示生产任务,约束条件包括生产设备能力、生产周期、原材料供应等。

(3)求解方法运用Lingo软件,对所建立的线性规划模型进行求解。

通过调整参数,寻找最优的生产计划与调度方案。

(4)结果分析根据求解结果,我对最优方案进行了详细分析,包括生产任务分配、生产设备使用、原材料消耗等方面。

通过对比不同方案,为企业提供了优化生产计划与调度的建议。

3. 总结与反思通过本次实习,我对运筹学在实际问题中的应用有了更深入的认识。

以下是我对实习过程的总结与反思:(1)理论联系实际实习过程中,我深刻体会到理论联系实际的重要性。

在解决问题时,要善于将所学知识运用到实际中,提高自己的实际操作能力。

(2)运用软件求解在实际问题中,运用运筹学软件求解问题是一种高效的方法。

通过学习Lingo软件,我掌握了如何运用软件进行建模和求解,提高了自己的工作效率。

(3)团队协作实习过程中,我与团队成员共同完成了项目。

运筹学实验报告

运筹学实验报告

《运筹学》实验报告指派问题班级:姓名:学号:指导教师:《运筹学》实验报告(一)一.实验目的熟练的掌握整数规划,0-1规划问题的数学模型的建立于求解和数据分析二.实验要求利用EXCEL软件求解整数规划和0-1规划模型三.实验准备Pc486微机、Windows环境、Excel软件四.实验内容及步骤实验内容:某公司面临5项任务,计划派甲、乙、丙、丁、戊分别去做。

由于戊临时被公司派往国外,因此公司只有让甲、乙、丙、丁中的一个人同时担任两项任务,其他三人仍旧单独完成一项任务。

各人完成相应任务时间如下表。

请为公司制定一个总工时最小的指派方案。

实验内容分析:本题中研究的是制定一个总工时最小的工作任务分配方案即本题是一个0-1规划问题。

又本题中是四个员工五个任务的不平衡的分配任务,所以可以有增加虚拟人物的方式来解决不平衡问题也可以直接用抽屉原则来解决不平衡问题。

方法一:(虚拟人物法)建立数学模型:变量:甲员工做A任务为X11,甲员工做B任务为X12,甲员工做C任务为X13,甲员工做D任务为X14,甲员工做E任务为X15,乙员工做A任务为X21,乙员工做B任务为X22,乙员工做C任务为X23,乙员工做D任务为X24,乙员工做E任务为X25,丙员工做A 任务为X31,丙员工做B任务为X32,丙员工做C任务为X33,丙员工做D任务为X34,丙员工做E任务为X35,丁员工做A任务为X41,丁员工做B任务为X42,丁员工做C任务为X43,丁员工做D任务为X44,丁员工做E任务为X45,虚拟员工做A任务为X51,虚拟员工做B任务为X52,虚拟员工做C任务为X53,虚拟员工做D任务为X54 ,虚拟员工做E任务为X55目标:总工时最小的人员安排方法约束:每人(包括虚拟人物)只能做一项任务即决策变量的0-1约束。

规划模型如下:MINZ(x)=25X11+29X12+31X13+42X14+37X15+39X21+38X22+26X23+20X24 +33X25+34X31+27X32+28X33+40X34+32X35+24X41+42X42+36X43+23X44+45X45+24X51+27X52+26X53+20X54+32X55X11+ X21+ X31+ X41+ X51=1X12+ X22+ X32+ X42+ X52=1X13+ X23+ X33+ X34+ X35=1X14+ X24+ X34+ X44+ X45=1X15+ X25+ X35+ X45+ X55=1 s.t. X11+ X12+ X13+ X14+ X15=1X21+ X22+ X23+ X24+ X25=1X31+ X32+ X33+ X34+ X35=1X41+ X42+ X43+ X44+ X45=1X51+ X52+ X53+ X54+ X55=1X ij=0或1(i=0-5,j=0-5)用EXCEL求解上式,过程如下:输入效率矩阵、方案矩阵和约束条件单元格公式:求解参数对话框如图所示:最终结果为:最小总工时131甲做A任务乙做C任务和D任务丙做E任务丁做B任务方法二:(抽屉原则法)建立数学模型:设甲员工做A任务为X11,甲员工做B任务为X12,甲员工做C任务为X13,甲员工做D任务为X14,甲员工做E任务为X15,乙员工做A任务为X21,乙员工做B任务为X22,乙员工做C任务为X23,乙员工做D任务为X24,乙员工做E任务为X25,丙员工做A任务为X31,丙员工做B任务为X32,丙员工做C任务为X33,丙员工做D任务为X34,丙员工做E任务为X35,丁员工做A任务为X41,丁员工做B任务为X42,丁员工做C任务为X43,丁员工做D任务为X44,丁员工做E任务为X45。

运筹学实验报告_7

运筹学实验报告_7

运筹学实验(注: 此代码还有一些未完善的地方, 仅供参考, 此实验报告纯属个人意见, 同样仅供参考。

话说一样的内容多了老师会发现的)一、实验目的通过实验熟悉单纯形法的原理, 掌握matlab循环语句的应用, 提高编程的能力和技巧, 体会matlab在进行数学求解方面的方便快捷。

二、实验环境Matlab2012b,计算机三、实验内容(包含参数取值情况)构造单纯形算法解决线性规划问题Min z=cxs.t. Ax=bxj>=0,j=1,…,nfunction[S,val]=danchun(A1,C,N)S为最优值;Val为最优解;A1为标准形式LP问题的约束矩阵及最后一列为资源向量(注: 资源向量要大于零);A1=[A+b]C是目标函数的系数向量;C=cN为初始基的下标(注: 请按照顺序输入, 若没有初始基则定义N=[]):先输入A1,C,N三个必要参数,然后调用danchun(A,C,N)进行求解。

在此函数中,首先判断N的长度是否为空,若为空,则flag=1, 进入初始解问题的迭代求值,添加辅助问题, 构建单纯形表, 求g所对应的RHS值,若其>0,则返回该问题无解若其=0, 则返回A1,Z,N三个参数, 继续构造单纯形表求解A1为经过变换后的系数及资源向量Z为单纯形表的第一行N为经过辅助问题求解之后的基的下标否则,直接构建单纯形表, 对该问题进行求解, 此时flag=2,多次迭代后找到解。

另外,若在大于零的检验数所对应的系数均小于零时, 会显示“此问题无界”若找到最优解和最优值时, 会输出“val”和“S=”以及具体数值。

四、源程序function[S,val]=danchun(A1,C,N)if(length(N)==0)gN=zeros(1,length(A1(:,1)));gC=[-C,gN,0];%原文题的检验数的矩阵Z=gC;G=[zeros(1,length(C)),-ones(1,length(gN)),0];val=zeros(1,length(C));%val为最优解;for i=(length(C)+1):length(C)+length(A1(:,1))%生成基变量gN(i-length(C))=i;endNn=gN;%%%%%%%ll=zeros(1,length(N));%比值最小原则%生成除了最上端两行的表的矩阵gb=A1(:,length(C)+1);A1(:,length(C)+1)=[];l=zeros(length(gN),length(gN));gA=[A1,l,gb];for i=1:length(gb)gA(i,gN(i))=1;endfor i=1:length(gN)%J为基本可行基所对应的检验数J(i)=G(gN(i));endfor i=1:length(gN)%找到基本可行基的检验数, 将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);endendflag=1;elseflag=2;A=A1;Z=[-C,0];%单纯形表的第一行val=zeros(1,length(C));%val为最优解;ll=zeros(1,length(N));%比值最小原则end%%初始解问题while flag==1for i=1:length(gN)%J为基本可行基所对应的G的检验数J(i)=G(gN(i));JZ(i)=Z(gN(i));%JZ为基本可行基所对应的Z的检验数endfor i=1:length(gN)%找到基本可行基的检验数, 将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);Z=Z-(JZ(i)/gA(i,gN(i)))*gA(i,:);endendG1=G;%G1为检验数G1(:,length(G1))=[];D=max(G1);%找到检验数的最大值if(D<=0)%检验数都小于0if(G(length(G))>=1)disp('此情况无解');flag=0;elseif(G(length(G))>=0)for i=1:length(gN)if(max(gN)<=length(A1(1,:)));flag=2;for j=1:length(Nn)a=Nn(1);gA(:,a)=[];Z(a)=[];endA=gA;N=gN;break;endendendendelse%检验数大于0for i=1:length(G)if(G(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(gN)if(gA(j,i)>0)ll(j)=gA(j,length(G))/gA(j,i);%求比值elsell(j)=10000;endendd=min(ll);for k=1:length(ll)%找到进基和离基if(ll(k)==d)gN(k)=i;gA(k,:)=gA(k,:)/gA(k,i);for m=1:k-1gA(m,:)=-(gA(m,i)/gA(k,i))*gA(k,:)+gA(m,:);endfor n=k+1:length(ll)gA(n,:)=-(gA(n,i)/gA(k,i))*gA(k,:)+gA(n,:);endbreak;endendendendendendwhile(flag==2)for i=1:length(N)%J为基本可行基所对应的检验数J(i)=Z(N(i));endfor i=1:length(N)%找到基本可行基的检验数, 将其赋值为0if(J(i)~=0)Z=Z-(J(i)/A(i,N(i)))*A(i,:);endendZ1=Z;%Z1为检验数Z1(:,length(Z1))=[];D=max(Z1);%找到检验数的最大值if(D<=0)%检验数都小于0disp('已找到最优解和最优值')for i=1:length(N)val(N(i))=A(i,length(Z));endS=Z(length(Z));disp('val');disp(val);flag=0;else%检验数大于0for i=1:length(Z)if(Z(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(N)if(A(j,i)>0)ll(j)=A(j,length(Z))/A(j,i);%求比值elsell(j)=10000;endendd=min(ll);if(d==10000)disp('此问题无界')flag=0;break;endfor k=1:length(ll)%找到进基和离基if(ll(k)==d)N(k)=i;A(k,:)=A(k,:)/A(k,i);for m=1:k-1A(m,:)=-(A(m,i)/A(k,i))*A(k,:)+A(m,:);endfor n=k+1:length(ll)A(n,:)=-(A(n,i)/A(k,i))*A(k,:)+A(n,:);endbreakendendendendendend五、运行结果与数据测试参考例题:例1:Min z=3x1+x2+x3+x4 s.t. -2x1+2x2+x3=43x1+2x+x4=6Xj>=0,j=1,2,3,4例2: 初始解问题Min z=5x1+21x3 s.t. x1-x2+6x3-x4=2x1+x2+2x3-x5=1 xj>=0,j=1,…,5六、求解实际问题(即解决附件中的实验题目)实验题目列出下列问题的数学模型, 并用你自己的单纯形算法程序进行计算, 最后给出计算结果。

哈工大运筹学实验报告实验

哈工大运筹学实验报告实验

哈工大运筹学实验报告实验实验一:货物运输问题的数学建模与求解实验目的:1.了解货物运输问题的数学建模方法;2.掌握货物运输问题的线性规划求解方法;3.学会使用运筹学软件求解货物运输问题。

实验原理:货物运输问题属于线性规划问题的一种,其目标是在满足供需平衡和运输容量限制的前提下,使运输成本最小化。

实验内容:1.问题描述:公司有m个供应点和n个需求点,其中每个供应点的供应量为si (i=1,2,…,m),每个需求点的需求量为dj (j=1,2,…,n)。

公司希望通过运输将货物从供应点送到需求点,各供应点到需求点的单位运输成本为aij (i=1,2,…,m; j=1,2,…,n)。

公司希望确定每个供应点与需求点之间的货物运输量xij,以及总运输成本C,使总运输成本最小。

2.数学建模:设xij表示从第i个供应点到第j个需求点的货物运输量,C表示总运输成本,则该问题的数学模型可以描述为:min C = ∑(i=1 to m) ∑(j=1 to n) aij * xijsubject to:∑(j=1 to n) xij = si, i=1,2,…,m∑(i=1 to m) xij = dj, j=1,2,…,nxij ≥ 0, i=1,2,…,m; j=1,2,…,n3.求解方法:利用运筹学软件求解上述线性规划问题,得到最优解。

实验步骤:1.在运筹学软件中新建一个线性规划模型;2.设定决策变量、目标函数和约束条件,并输入相应参数;3.运行求解算法,得到最优解。

实验结果:根据实验步骤,通过运筹学软件求解货物运输问题,得到最优解如下:供应点1到需求点1的运输量为x11=200;供应点1到需求点2的运输量为x12=150;供应点2到需求点1的运输量为x21=100;供应点2到需求点2的运输量为x22=250;总运输成本最小为C=900。

实验总结:通过本次实验,我了解了货物运输问题的数学建模方法,并掌握了线性规划求解的基本步骤。

运筹学实训实验报告

运筹学实训实验报告

一、实验背景运筹学是一门应用数学的分支,它运用数学模型和算法来解决各种优化问题。

随着现代科技的发展,运筹学在各个领域的应用越来越广泛,如生产管理、物流运输、资源分配等。

为了提高学生运用运筹学知识解决实际问题的能力,我们开展了运筹学实训实验。

二、实验目的1. 熟悉运筹学的基本概念和常用方法;2. 掌握线性规划、整数规划、运输问题、目标规划等运筹学模型;3. 学会运用计算机软件解决实际问题;4. 培养学生的团队合作精神和创新意识。

三、实验内容本次实验主要包括以下内容:1. 线性规划:以生产计划问题为例,建立数学模型,并运用Excel规划求解器求解最优解。

2. 整数规划:以人员排班问题为例,建立数学模型,并运用Lingo软件求解最优解。

3. 运输问题:以物流配送问题为例,建立数学模型,并运用Lingo软件求解最优解。

4. 目标规划:以投资组合问题为例,建立数学模型,并运用Lingo软件求解最优解。

四、实验步骤1. 线性规划实验(1)问题分析:某企业需要生产甲、乙两种产品,已知生产甲、乙两种产品所需的原料、劳动力及设备等资源消耗量,以及产品的售价和利润。

(2)模型建立:根据问题分析,建立线性规划模型,目标函数为最大化利润,约束条件为资源消耗量不超过限制。

(3)求解:运用Excel规划求解器求解最优解。

2. 整数规划实验(1)问题分析:某公司需要安排员工值班,要求每天至少有3名员工值班,且员工值班时间不能超过一周。

(2)模型建立:根据问题分析,建立整数规划模型,目标函数为最小化员工值班成本,约束条件为员工值班时间不超过限制。

(3)求解:运用Lingo软件求解最优解。

3. 运输问题实验(1)问题分析:某物流公司需要将货物从A、B两个仓库运送到C、D两个销售点,已知各仓库的货物量、各销售点的需求量以及运输成本。

(2)模型建立:根据问题分析,建立运输问题模型,目标函数为最小化运输成本,约束条件为各仓库的货物量不超过需求量。

运筹学实验报告

运筹学实验报告

实验一:线性规划问题1、实验目的:①学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。

②掌握利用计算机软件求解线性规划最优解的方法。

2、实验任务①结合已学过的理论知识,建立正确的数学模型;②应用运筹学软件求解数学模型的最优解③解读计算机运行结果,结合所学知识给出文字定性结论3、实验仪器设备:计算机4、实验步骤:(1)在主菜单中选择线性规划模型,在屏幕上就会出现线性规划页面,如图所示。

(2)在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数及约束条件的各变量的系数和b值,并选择好“≥”、“≤”或“=”号,如图所示。

(3)当约束条件输入完毕后,请点击“解决”按钮,屏幕上将显现线性规划问题的结果,如图所示。

例题一:例题二:例题三:例题四:例题五5、试验体会或心得运筹学是一门实用的学科,学习运筹学,结合生活实际运用运筹学,我们可以将资源最大化利用。

学习理论的目的就是为了解决实际问题。

线性规划的理论对我们的实际生活指导意义很大。

当我们遇到一个问题,需要认真考察该问题。

如果它适合线性规划的条件,那么我们就利用线性规划的理论解决该问题。

线性规划指的是在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。

其数学模型有目标函数和约束条件组成。

一个问题要满足一下条件时才能归结为线性规划的模型:⑴要求解的问题的目标能用效益指标度量大小,并能用线性函数描述目标的要求;⑵为达到这个目标存在很多种方案;⑶要到达的目标是在一定约束条件下实现的,这些条件可以用线性等式或者不等式描述。

所以,通过这次实验,不仅对运筹学的有关知识有了进一步的掌握,同时对在自己的计算机操作水准也有了很大的提高。

这次实验让我懂得了运筹学在电脑的应用,让我对运输与数学相结合的应用理解更深了。

实验二:整数规划与运输问题1、实验目的:①学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。

运筹学线性规划方案实验报告

运筹学线性规划方案实验报告

运筹学线性规划方案实验报告一早起床,我就知道今天要写一份运筹学线性规划方案实验报告。

这个题目听起来就有点头疼,不过没关系,我已经有10年的方案写作经验了,这就好比家常便饭,慢慢来,一点一点梳理。

得给这个实验报告起个响亮的名字,我已经想好了——“最优解寻迹之旅”。

咱们就直接进入主题吧。

1.实验背景这次实验的背景是我国一家生产多种产品的企业。

这家企业生产的产品有A、B、C三种,分别需要经过甲、乙、丙三个车间进行加工。

每个车间都有一定的生产能力和生产成本,而企业的目标是最大化利润。

这就需要我们运用线性规划的方法,找出最优的生产方案。

2.实验目的本次实验的目的就是通过线性规划方法,为企业制定出最优的生产方案,使得企业在现有的生产条件下,实现利润最大化。

3.实验方法线性规划,听起来高大上,其实原理很简单。

就是用一组线性方程,来描述各种约束条件,然后找到一个目标函数,使得这个目标函数在满足约束条件的情况下达到最大值或最小值。

甲车间:A产品需要1小时,B产品需要2小时,C产品需要3小时,总时间为8小时;乙车间:A产品需要2小时,B产品需要1小时,C产品需要2小时,总时间为10小时;丙车间:A产品需要3小时,B产品需要2小时,C产品需要1小时,总时间为12小时。

然后,我们需要确定目标函数。

企业的目标是最大化利润,所以我们的目标函数就是:f(A,B,C)=10A+15B+20C其中,A、B、C分别表示三种产品的产量。

就是求解这个线性规划问题。

我们可以使用单纯形法、内点法等算法求解。

这里,我们选择使用单纯形法。

4.实验步骤(1)列出约束条件方程组;(2)确定目标函数;(3)使用单纯形法求解线性规划问题;(4)分析求解结果,确定最优生产方案。

5.实验结果A产品产量:4件B产品产量:3件C产品产量:2件将这个结果代入目标函数,我们可以得到最大利润为:f(4,3,2)=104+153+202=110所以,最优生产方案是生产4件A产品、3件B产品和2件C产品,最大利润为110。

运筹学实训报告个人总结

运筹学实训报告个人总结

一、前言运筹学作为一门研究资源优化配置的学科,在各个领域都有着广泛的应用。

为了更好地将理论知识与实践相结合,提高自身的实际操作能力,我参加了为期两周的运筹学实训。

以下是我在实训过程中的个人总结。

二、实训内容与目标1. 实训内容本次实训主要包括以下内容:(1)线性规划:掌握线性规划问题的建模、求解方法及软件应用。

(2)整数规划:了解整数规划问题的特点、建模方法及求解算法。

(3)非线性规划:掌握非线性规划问题的建模、求解方法及软件应用。

(4)动态规划:了解动态规划问题的特点、建模方法及求解算法。

(5)排队论:掌握排队论的基本概念、模型建立及求解方法。

(6)库存管理:了解库存管理的基本理论、模型建立及求解方法。

2. 实训目标(1)熟练掌握运筹学的基本理论和方法。

(2)提高运用运筹学解决实际问题的能力。

(3)培养团队协作和沟通能力。

三、实训过程与收获1. 实训过程在实训过程中,我们按照以下步骤进行:(1)学习运筹学的基本理论和方法。

(2)根据实际问题,建立数学模型。

(3)运用所学知识,求解数学模型。

(4)对求解结果进行分析和评估。

(5)撰写实训报告。

2. 实训收获(1)理论知识方面:通过实训,我对运筹学的基本理论和方法有了更深入的了解,为今后在相关领域的工作奠定了基础。

(2)实践能力方面:在实训过程中,我学会了如何将实际问题转化为数学模型,并运用运筹学方法进行求解。

这对我今后解决实际问题具有重要意义。

(3)团队协作能力:在实训过程中,我与同学们相互学习、共同进步,培养了良好的团队协作精神。

四、存在问题与不足1. 实践经验不足:虽然通过实训掌握了运筹学的基本方法,但在实际操作过程中,仍存在一些问题,如模型建立不够完善、求解方法选择不当等。

2. 理论知识掌握不够扎实:在实训过程中,发现自己在某些理论知识方面存在不足,需要进一步加强学习。

3. 沟通能力有待提高:在实训过程中,与团队成员的沟通不够充分,导致部分问题未能得到及时解决。

运筹学实训实践报告(2篇)

运筹学实训实践报告(2篇)

第1篇一、引言运筹学作为一门应用数学的分支,主要研究如何利用数学模型和计算机技术对复杂系统进行优化决策。

为了提高自身对运筹学理论的理解和应用能力,我在本次实训中选择了“生产计划与调度”作为研究对象,通过实际案例分析,将理论知识与实际应用相结合,以期达到学以致用的目的。

二、实训目的1. 深入理解运筹学的基本理论和方法。

2. 提高运用运筹学方法解决实际问题的能力。

3. 培养团队协作精神和沟通能力。

三、实训内容1. 生产计划与调度问题概述生产计划与调度问题是运筹学中的一个重要领域,它涉及到如何合理安排生产资源,确保生产过程的高效和稳定。

在生产计划与调度过程中,需要考虑多个因素,如生产任务、设备能力、原材料供应、人员安排等。

2. 案例分析本次实训以某电子制造企业为例,分析其生产计划与调度问题。

该企业主要生产手机零部件,包括屏幕、电池、摄像头等。

以下为案例分析的步骤:(1)确定生产目标生产目标包括提高生产效率、降低生产成本、保证产品质量等。

根据企业实际情况,确定本次实训的主要目标为降低生产成本和提高生产效率。

(2)收集数据收集企业生产计划、设备能力、原材料供应、人员安排等相关数据。

数据来源包括企业内部报表、生产记录等。

(3)建立模型根据收集到的数据,建立生产计划与调度模型。

模型包括以下内容:a. 生产任务分解:将产品分解为各个零部件,明确各零部件的生产周期和数量。

b. 设备能力分析:分析企业现有设备的加工能力,确定各设备的生产任务。

c. 原材料供应分析:分析原材料供应情况,确保生产过程中的原材料需求。

d. 人员安排:根据生产任务和设备能力,合理安排人员,提高生产效率。

(4)求解模型利用运筹学方法求解模型,得出最优的生产计划与调度方案。

(5)结果分析对求解结果进行分析,评估方案的实际效果,并提出改进建议。

3. 实训成果通过本次实训,我们成功建立了某电子制造企业的生产计划与调度模型,并求解出最优方案。

方案实施后,企业生产成本降低了5%,生产效率提高了10%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录
运筹学实验报告 (2)
1.实验背景 (2)
2.方法简介 (2)
3.问题分析 (2)
4.算法步骤 (2)
5.程序代码以及部分注释 (2)
6.实验结果及截屏 (3)
7.心得体会 (5)
运筹学实验报告
——最速下降法的matlab实现
1.实验背景
梯度下降法是一个最优化算法,通常也称为最速下降法。

最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的。

最速下降法是用负梯度方向为搜索方向的,最速下降法越接近目标值,步长越小,前进越慢。

2.方法简介
顾名思义,梯度下降法的计算过程就是沿梯度下降的方向求解极小值(也可以沿梯度上升方向求解极大值)。

其迭代公式为,其中代
表梯度负方向,表示梯度方向上的搜索步长。

梯度方向我们可以通过对函数求导得到,步长的确定比较麻烦,太大了的话可能会发散,太小收敛速度又太慢。

一般确定步长的方法是由线性搜索算法来确定,即把下一个点的坐标ak+1看做是的函数,然后求满足f(ak+1)的最小值的即可。

因为一般情况下,梯度向量为0的话说明是到了一个极值点,此时梯度的幅值也为0.而采用梯度下降算法进行最优化求解时,算法迭代的终止条件是梯度向量的幅值接近0即可,可以设置个非常小的常数阈值。

3.问题分析
本实验分析的问题对象是无约束的非线性规划问题,最速下降法是以负梯度方向最为下降方向的极小化算法,相邻两次的搜索方向是互相直交的。

若要求解此问题,则需要对目标函数的极小点进行求解,通过matlab软件对目标函数的极小点进行求解,则首先需要确定迭代的初始点,再确定迭代方向和步长。

前曾已经指出,负梯度方向是函数值下降最快的方向,沿这个方向搜寻可以更快的找到极小点。

步长可以通过黄金分割法在负梯度方向进行一维搜索,来确定最佳步长。

4.算法步骤
(1)假定初始点x0=[1,1,1,1,1]与误差输入矩阵Q,矩阵Q是一个5阶半正定矩阵,以及5维常数列向量C,即可确定初始方程。

(2)a.输出结果若在误差允许范围之内,则直接输出。

b.输出结果若不符合误差允许,则求逆梯度方向,确定迭代方向。

(3)通过黄金分割法来在负梯度方向做一维搜索确定步长,确定下一个迭代点继续返回。

5.程序代码以及部分注释
function w= hump(T,A)%T为5阶半定矩阵,A为5维常数列向量
tic;
syms x1x2x3x4x5c
c=[x1,x2,x3,x4,x5];
w=c*T*c.'+c*A;%要求的目标函数
h=10^-5;b=0.5;s=0.5;t=0.5;
x=[1,1,1,1,1];%x0的初始值
gradient=jacobian(w,[x1,x2,x3,x4,x5]);%梯度函数
x1=x(:,1);x2=x(:,2);x3=x(:,3);x4=x(:,4);x5=x(:,5);
d1=eval(gradient);%梯度
while(sqrt(sum(d1.^2))>h)%梯度二范数大于h=10^-5
d=-d1;%搜索方向
n=0;a=s*b^n;
s1=eval(w);%在xk点的值
y=x+a*d; x1=y(:,1);x2=y(:,2);x3=y(:,3);x4=y(:,4);x5=y(:,5);
s2=eval(w);%在x+a*d的值
s3=-t*a*dot(d1,-d1);%第一步迭代前的值
while(s1-s2<s3)
n=n+1;
a=s*b^n;
y=x+a*d; x1=y(:,1);x2=y(:,2);x3=y(:,3);x4=y(:,4);x5=y(:,5); s2=eval(w);
s3=-t*a*dot(d1,-d1);
end
x=y;
x1=x(:,1);x2=x(:,2);x3=x(:,3);x4=x(:,4);x5=x(:,5);
d1=eval(gradient);
end
x
z=eval(w)%全局最优值
toc;
6.实验结果及截屏
在matlab命令窗口内输入:
T=[1,1,0,0,0;0,1,1,0,0;0,0,1,0,0;0,0,0,1,0;0,0,0,0,1];
>> A=[1;0;0;0;0];
>> w=hump(T,A)
得到结果如下截屏图1
matlab命令窗口内输入:
T=[1,1,0,0,0;0,1,1,0,0;0,0,1,0,0;0,0,0,1,0;0,0,0,0,1];
A=[0;1;1;0;0];
>> w=hump(T,A)
得到结果如下截屏图2
图1
图2
7.心得体会
在开始动手操作这个实验之前,我首先把书上这一节的内容仔细看了一遍,再研究透彻之后,又上网找寻了一些已有的资料,其中有不少是用黄金分割法来搜寻步长的最速下降法,我认真思考了一番,决定参考已有的代码,进行自己修改,最终得出了一个可行的程序代码,。

又分别代入了两组数据进行实验,发现结果比较理想。

通过这个实验,我发现matlab对学习数学有很大的帮助,运筹学本来就是一门讲究建模基础的课程,建立模型之后总是需要得到合适的数值解,这就需要利用已有的数学软件来帮助求解了,所以显而易见,建模和计算其实是同等重要的。

计算往往是最后也是最关键的一步,这就需要我们对计算中的优化和误差分析更精确,将误差降低到最小限度。

运筹学其实是一门非常有趣味的学科,只要用心去学习揣摩,会渐渐喜欢上这门学科。

在经过一个学期的学习之后,我感觉我学会了很多全新的知识,对运筹学有了一个从认识到熟悉的过程,对问题的分析能力也得到了稳步提高,也掌握了一些初步的建模基础。

相关文档
最新文档