人教版初二数学下册《中位数和众数》
八年级数学下册(人教版)20.1.3中位数和众数(第一课时)优秀教学案例
(二)问题导向
1.引导学生提出问题,培养学生的提问能力。
2.设计具有启发性的问题,引导学生独立思考,培养学生解决问题的能力。
3.注重问题之间的逻辑关系,引导学生发现知识之间的联系。
4.鼓励学生主动参与课堂讨论,培养学生的表达能力和思维能力。
3.使学生了解中位数和众数在生活中的应用,感受数学与生活的紧密联系。
4.培养学生运用列表、画图等方法展示数据,提高学生数据分析的能力。
(二)过程与方法
1.通过生活情境的创设,引导学生发现并提出问题,培养学生提出问题的能力。
2.利用小组合作、讨论交流的方式,让学生在探究中掌握中位数和众数的求解方法,培养团队协作能力和沟通能力。
3.引导学生从实际问题中总结规律,培养学生的归纳总结能力。
4.注重启发式教学,引导学生运用数学思维分析问题,提高学生的数学思维能力。
(三)情感态度与价值观
1.让学生在探究中体验到数学的乐趣,激发学生学习数学的兴趣。
2.培养学生积极思考、主动探究的学习态度,养成良好的学习习惯。
3.使学生认识到数学与生活的紧密联系,增强学生运用数学解决实际问题的意识。
4.培养学生尊重数据、实事求是的态度,树立正确的价值观。
三、教学策略
(一)情景创设
1.结合生活实际,创设有趣、富有挑战性的问题情境,激发学生的学习兴趣。
2.通过展示现实生活中的大量数据,让学生感受到中位数和众数在生活中的重要性。
3.设计不同难度的问题,满足不同层次学生的需求,使学生在解决问题中感受到成功的喜悦。
2.教师对学生的学习过程进行评价,关注学生的进步和发展。
3.注重评价的激励作用,让学生在评价中感受到成功的喜悦,增强自信心。
人教版八年级数学下册:中位数和众数【精品课件】
解:
=3.7(个)
(2)每天丢弃废旧塑料袋的个数的中位数是3.5
个,没有众数.
正 (解1):平均数:(2×6+3×16+4×15+5×13)÷50
=3.7(个)
(2)这组数据共有50个,其中2出现了6次,3出现 了16次,4出现了15次,5出现了13次,所以每 天丢弃废旧塑料袋的个数的中位数是4个,众数 是3个.
这个中位数的意义:根据这个中位数,可以估计 其车间工人日加工零件个数大于或小于这个数的人数 各占一半.
知识点 2 众数
众数:一组数据中出现次数最多的数据. 众数反映了一组数据的集中趋势,当众数出现 的次数越多,它就越能代表这组数据的整体状况.但 当各数据重复出现的次数大致相等时,众数往往就 没有什么特别意义了.
1
1
1
3
6
1 11 1
(2)若用(1)算得的平均数反映公司全体员 工月收入水平,你认为合适吗?
从上表可以看出平均数远远大于绝大多数人(22人)的 实际月工资,绝大多数人“被平均”,不合适.
怎样准确的反映公司全体员工
月收入水平? 采用中位数
1.什么叫中位数?怎样确定一组数据的中位数? 将一组数据按照从小到大(或从大到小)的顺序
2. 某校男子足球队的年龄分布如下面条形图 所示.请找出这些队员年龄的平均数、众数、中位 数,并解释它们的意义.
解:由图知13岁2人,14岁6人,15岁8人,16岁 3人,17岁2人,18岁1人,一共22人.
所以足球队员年龄的平均数为:15岁;众 数为:15岁;中位数为:15岁.
它们的含义分别是:校男子足球队员的平 均年龄为15岁;校男子足球队员中年龄为15岁 的队员最多;校男子足球队员的年龄不足15岁 和超过15岁的人数相当.
人教版八年级数学下册3中位数和众数
合作探究
一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如 表所示. 你能根据表中的数据为这家鞋店提供进货建议吗?
尺码/cm 22 22.5 23 23.5 24 24.5 25
销售量/双 1
2
5
11
7
3
1
分析:一般来讲,鞋店比较关心哪种尺码的鞋销售量最大,也就是关 心卖出的鞋的尺码组成的一组数据的众数. 一段时间内卖出的30双女鞋的 尺码组成一个样本数据,通过分析样本数据可以找出样本数据的众数. 进 而可以估计这家鞋店销售哪种尺码的鞋最多.
万元 (平均数).因为从样本数据看,在平均数、中位数和众数中,平
均数最大. 可以估计,月销售额定为每月20万元是一个较高目标,
大约会有
1 3
的营业员获得奖励.
合作探究
(3)如果想让一半左右的营业员能够达到销售目标,月销售额可以 定为每月18万元(中位数). 因为从样本情况看,月销售额在18万元以 上(含18万元)的有16人,占总人数的一半左右. 可以估计,如果 月销售额定为18万元,将有一半左右的营业员获得奖励.
(3)如果想让一半左右的营业员都能达到销售目标,你认为月销售 额定为多少合适?说明理由.
合作探究
分析:商场服装部统计的每位营业员在某月的销售额组成一个 样本,通过分析样本数据的平均数、中位数、众数来估计总体的 情况,从而解决问题.
确定一个适当的月销售目标是一个关键问题,如果目标定得太 高,多数营业员完不完成任务,会使营业员失去信心;如果目标 定得太低,不能发挥营业员的潜力.
中位数和众数
第2课时
学习目标
1.理解众数的概念,掌握众数的作用,会用众数分析实际问题. 2.进一步认识平均数、中位数、众数都可以反映一组数据的集中趋势. 3.了解平均数、中位数、众数各自的特点,能选择适当的量反映数据 的集中趋势.
人教版八年级下册第二十章:20.1中位数与众数(教案)
小组讨论环节,学生的参与度很高,但我观察到一些学生在讨论中并没有完全理解中位数与众数在实际生活中的应用。这提示我,在引导讨论时,应该提供更多实际情境,让学生能够将抽象的数学概念与具体的生活实际联系起来。
人教版八年级下册第二十章:20.1中位数与众数(教案)
一、教学内容
人教版八年级下册第二十章:20.1中位数与众数
1.中位数的定义与性质
2.中位数的计算方法
3.众数的定义与性质
4.众数的计算方法
5.中位数与众数在实际问题中的应用
-分析一组数据的集中趋势
-解决与数据集中趋势相关的实际问题
6.练习题:针对中位数与众数的计算与应用进行练习与巩固
3.逻辑推理:培养学生运用中位数与众数解决实际问题的逻辑推理能力,提高问题解决的素养。
4.数学建模:通过实际案例分析,培养学生建立数学模型,运用中位数与众数进行数据分析和解决实际问题的能力。
5.数学表达:训练学生清晰、准确地表达中位数与众数的计算过程和结果,提升数学语言表达能力。
6.团队合作:在小组讨论与练习中,培养学生合作交流、共同解决问题的团队协作素养。
1.使用更加生动的例子,增强学生对概念的理解。
2.提供更多的实际操作机会,让学生在实践中学习和巩固知识。
3.加强基本技能的训练,如排序和计数,为学生解决更复杂的问题打下基础。
4.在小组讨论中,提供更多实际情境,帮助学生将数学知识应用到现实生活中。
-计算给定数据集的中位数与众数
20.1.2 中位数和众数 课件2024-2025学年人教版数学八年级下册
平均成绩
众数
得分
77
81
a
80
82
80
b
求被遮盖的两个数据a和b.
【自主解答】见全解全析
12
【举一反三】
1.(2023·金华中考)上周双休日,某班8名同学课外阅读的时间如下(单位:时):
1,4,2,4,3,3,4,5,这组数据的众数是
A.1时
B.2时
( D)
C.3时
D.4时
2.已知一组数据:7,a,6,5,5,7的众数为7,求这组数据的中位数.
【解析】∵一组数据:7,a,6,5,5,7的众数为7,
∴a=7,∴这组数据按从小到大的顺序排列为5,5,6,7,7,7,
∴这组数据的中位数是(6+7)÷2=6.5.
13
【技法点拨】
众数的特征
(1)一组数据的众数一定出现在这组数据中.
(2)一组数据的众数可能不止一个.如1,1,2,3,3,5中众数是1和3.
(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户
所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否
发生变化?
6
8
【举一反三】
1.(奇数位求法)已知两组数据3,2a,5,b与a,4,2b的平均数都是6,若将这两组数据
5
合并为一组数据,则这组新数据的中位数是_______.
2.(偶数位求法)一组数据:1,0,4,5,x,8.若它们的中位数是3,求x的值.
【解析】除x外5个数由小到大排列为0,1,4,5,8,
∵原数据有6个数,且这组数据的中位数是3;
所以,只有x+4=2×3时才成立,即x=2.
初二数学下册《中位数和众数》课件 新人教版
•例.某商场服装部为了调动营业员的积极性,决定实 行目标管理,即确定一个月的销售目标,根据目标完成 的情况对营业员进行适当的奖惩.为了确定一个适当 的目标,商场统计了30位营业员在某月的销售额,数据 如下:(单位万元)
• 17 18 16 13 24 15 28 26 18 19 22
•1练、习选:择题(选项A:平均数 B:中位数 C: 众数)
①为了反映八(1)班同学的平均年龄,
应关注学生年龄的______。 ②•为A 了资金的迅速周转和减少商品库存 积压某手机销售商在进货时要•C关注各品牌 ③为了考手察机某销同量学的在_一__次__测•B。验中数学成 绩是占上等还是占下等水平,应关注这次
• 这20个家庭的年平均收入为—•—1—.6—万元。 •(2).数据中的中位数是—•—1—.2—万元,众数是—•—1—.3—万元。
•3.(中考链接)5个正整数从小到 大排列,若这组数据的中位数是3, 众数是7且唯一,则这5个正整数 的和是( )
• A.20 B.21 C.22 D.23
•小 结 •1、众数的定义
•例:某公司销售部有营销人员15人,销售部为了制定某 种商品的月销售定额,统计了这15人某月销售量如下:
每人 1800 510 250 210 150 120 销售 件数 人数 1 1 3 5 3 2
•(1)求这15位营销人员该月销售量的平均数、中位 数和众数
•(2)假定销售部负责人把每位营销员的月销售额定为 320件,你认为是否合理?为什么?如不合理,请你给 出一个较合理的销售定额。
• 17 16 19 32 30 16 14 15 26 15 32
• 23 17 15 15 28 28 16 19
人教版八年级下册数学《中位数与众数》课件
快速抢答
2.下列各组数据的众数是多少?
(1)3,2,5,4,3,6的众数是__3__.
(2)3,2,5,2, 4,3,6的众数是 _3_,__2
注意:
1、众数是一组数据中出现次数最多 的数据,是一组数据中的原数据。
2、一组数据中的众数有时不只一个。
闯关夺奖
第一关
第二关
第三关
第四关
第五关
第一关
1、在一次数学竞赛中,5名学生的成绩从低到高排列依 次是 55,57,61,62,98,那么他们的中位数是多少?
众数:一组数据中出现次数最多的那 个数据叫这组数据的众数。
快速抢答
1、下列这组数据的中位数分别是什么? 75485
4 5 5 78
8248 9 6 24 68 8 9
注意:1、一定要先排序!2、中位数可能不是数据中的原数据
n 1
n 为奇数时,中间位置是第 2 个
n为偶数时,中间位置是第
n 2
,
n 1 个 2
课堂检测
1、某学习小组7位同学,为地震灾区捐款,
捐款金额分别为5元,10元,6元,6元,7
元,8元,9元,则这组数据的中位数与众
数分别为
。
2、为了考察某同学在一次测验中数学成 绩是占上等还是占下等水平,应关注这次 数学成绩的 。
平均数、中位数和众数的比较
统计量 相同点 不同点 不足
平均数 中位数 众数
答案:40cm, 关键看众数是 哪个.
42cm 9% 38cm 13%
41cm 25%
39cm 19%
40cm 34%
第五关
3、为了参加市中学生篮球运动会,一支篮球队准备 购买10双运动鞋,各种尺码统计如下表:
八年级数学下册教学课件《中位数和众数》
中位数、众数
概念 求法 数据描述
实际应用
八年级下册
创设情境,导入新课
活动一: 由报纸上的一则招聘启事,引发了小明求职的故事. 应聘者小明:你们公司员工月收入到底怎么样呢? 老板:我这里待遇不错,月平均工资是6276元,你在这 里好好干。 应聘者小明:好的,老板我就跟您干了。 第二天,小明上班了几天后,小明了解到这里员工的月 工资中等收入才3400元,大部分员工月工资为3000元,觉得 自己被老板忽悠了,于是找到老板,而老板拿出公司的工资 报表,说绝对没有忽悠他.
(4)你认为哪个数据更具有代表性?
答:3400更具有代表性.
将一组数据按照由小到大(或由大到 小)的顺序排列,如果数据的个数是奇数, 则称处于中间位置的数为这组数据的中位 数;如果数据的个数是偶数,则称中间两 个数据的平均数为这组数据的中位数.
【对应训练】
某班有5个学习小组,每组的人数分别为6,10,
解:(1)先将样本数据按照由小到大的顺序排列:
124 129 136 140 145 146 148 154 158 165 175 180
这组数据的中位数为处于中间的两个数 146,148 的平均数,即 146 + 148 = 147
2 因此样本数据的中位数是147.
(2)根据(1)中得到的样本数据的中位数,可以估 计,在这次马拉松比赛中,大约有一半选手的 成绩快于147min,有一半选手的成绩慢于 147min,这名选手的成绩是142min,快于中 位数147min,可以推测他的成绩比一半以上选 手的成绩好.
4,5,4,则这组数据的中位数是( B ).
A.4
B.5
C.6
D.10
月收 入/元 45000 18000 10000 5500
人教版数学八年级下册第二十章《20.1.2中位数、众数》课件
20.1.2中位数、众数
一、情境引入
上周周测数学成绩如下,请你计算出平均成绩.
成绩 100 95
90
85
80
人数
12
8
7
6
2
小明同学成绩为95分,回家给妈妈讲的成绩高于平均分, 所以我的成绩是中上水平,对吗?
不对!平均成绩会受极端数据的影响,此处应考虑中位数.
二、探究新知 1.一组数据1、2、3、4、5中中位数是( 3).
2.一组数据3、4、2、6、7、1、5中中位数是( ).
解:(1)排序:从大到小或从小到
大
如果数据有偶数个呢?
1、2、3、4、5、6、7.
思考中:位什数么为是4.中位数?
将一组数据从小到大(从大到小)排序,处在中间位置的数称为
中位数.
二、探究新知
3.一组数据1、2、3、4,中位数为(2.5).
4.一组数据3、4、2、6、7、1、5、8中中位数是(4.5).
成绩
70
80
90
100
人数
3
5
4
2
四、例题展示
图表类
例3 八年级3班第一组学生数学成绩如下,求成绩的中位数.
8
7
6
5 4
4
3
2
1
0 70分
5 80分
7
90分
2 100分
注意:数据的个数是条柱高度的和.
4+5+7+2=18 所以中间位置是第9、10两个数,分别为
80分、90分,平均值为85分.
五、众数
10个数——第5、6个数的平均
值
... ...
n个数——第
人教版八年级数学下册20.1.2中位数与众数 课件
2、 一家鞋店在一段时间内销售了某种 女鞋30双,各种尺码鞋的销售量如下表所 示,你能根据表中的数据为鞋店提供哪些 进货建议呢?
尺码/cm 34 35 36 37 38 39 40
销售量/ 双
1
3
6
11
7
1
1
3、下面的条形图描述了某车间工人日 加工零件数的情况。
请找出这些工人日加工零件数的中位数, 并说明这个中位数的意义。
2.用平均数5000元,反映这家公司员工的一般工资水 平合适吗?为什么?
(二)、探索新知,形成概念
疑问:究竟用什么数据能反映这家公 司员工的一般工资呢?
阅读课本P116-P118内容,完成下面填空。
1、中位数的定义: 将一组数据按照_从__小_到_大___(或_从__大__到__小_)的顺序排列;
学的答题情况绘制成条形统计图,根据图表,全班 每位同学答对的题数的中位数和众数分别为( D )
学生数
25
20
20 18
15
10
5
4
学生数
8
0
7
8
9
10
答对 题数
A 8,8 B 8,9 C 9,9 D 9,8
1 、求下列各组数据的中位数和众数:
数据
中位数
众数
5,6,2,3,2, 3,7,6,8,8,40,10
n 为奇数时,中间位置是第 n 1 个 2
n为偶数时,中间位置是第 n , n 1 个 22
同学相互出题,考考其他同学能不 能“找”出这组数据的中位数
例2 某校女子排球队员的年龄分布如下表:
年龄
13
14
15
人数
4
人教版八年级下册第二十章数据的分析第26讲_中位数和众数 讲义
初中八年级数学下册第26讲:中位数和众数一:知识点讲解知识点一:中位数➢定义:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数➢意义:中位数是刻画一组数据“中等水平”的一个代表,反映了一组数据的集中趋势,一组数据的中位数是唯一的➢求法:1.把数据由小到大(或由大到小)排列2.确定这组数据的个数3.当数据是奇数个时,取最中间的一个数作为中位数;当数据是偶数个时,取最中间两个数的平均数作为中位数例1:求数据2、3、14、16、7、8、10、11、13的中位数例2:10名工人某天生产同一种零件的个数是15、17、14、10、15、19、17、16、14、12。
求这一天10名工人生产零件的中位数。
知识点二:众数➢定义:一组数据中出现次数最多的数据称为这组数据的众数➢意义:众数是刻画一组数据“大多数水平”的重要代表,在我们日常生活中,经常用众数来解决一些实际问题➢求法:众数是出现次数最多的数据,而不是出现次数,若一组数据中有两个或两个以上数据出现的次数并列最多,则这些数据都是众数,故众数可能不止一个。
例3:一组数据2、3、x、5、7的平均数是4,则这组数据的众数是。
知识点三:平均数、中位数和众数的综合➢平均数✧优点:平均数能充分利用各数据提供的信息,在实际生活中常用样本的平均数估计总体的平均数。
✧缺点:在计算平均数时,所有的数据都参与运算,所以它易受极端值的影响。
➢中位数✧优点:中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用中位数来描述数据的集中趋势。
✧缺点:不能充分地利用各数据的信息。
➢众数✧优点:众数考察的是各数据所出现的频数,其大小只与部分数据相关,当一组数据中某些数据多次重复出现时,众数往往更能反映问题。
✧缺点:当各数据重复出现的次数大致相等时,它往往就没有什么特别意义。
人教版八年级下册数学中位数和众数课件全文
随堂练习
3.一组数据按照从小到大的顺序排列是:3、5、9、9、x、 11、13、15,它的中位数是10,则 x 的大小是多少?
课堂小结
中 位 数
概念
①从大到小排列(或从小到大排列) ②中间的数或中间两个数的平均数
新知探究
知识点:中位数
中位数:将一组数据按照从小到大(或从大到小)的顺序 排列,如果数据的个数是奇数,则称处于中间位置的数为 这组数据的中位数;如果数据的个数是偶数,则称中间两 个数据的平均数为这组数据的中位数.
新知探究
(1)确定中位数时,一定要按照数据大小顺序进行排列; (2)一组数据的中位数是唯一的,它可能是这组数据中 的某个数,也可能不是这组数据中的数(当数据的个数 为偶数时).
往更能反映出问题的实质.
2.缺点:当各数据重复出现的
次数大致相等时,研究众数就没什么意义了.
三者的联系:(1)都能体现一组数据的集中趋势; (2)实际问题中求得的平均数、中位数和众数的单位与原数 据的单位一致.
随堂练习
1.某校七年级举办“诵读大赛”,10 名学生的参赛成绩分 别是:85分、90分、94分、85分、90分、95分、90分、96 分、95分、100分,则这 10 名学生成绩的众数是( B ).
解:从表中可以看出,在鞋的尺码组成的数据中,23.
6
B.
(2)若用(1)算得的平均数反映公司全体员工月收入水平,你认为合适吗?
数在数据中的作用. 课堂导入-新知探究-随堂练习-课堂小结-拓展提升
课堂导入-新知探究-随堂练习-课堂小结-拓展提升 解析:先通过平均数计算出 x 的值,然后再按照中位数的定义进行求解.
人教八年级数学下册- 中位数和众数(附习题)
2. 某校男子足球队的年龄分布如下面条形图 所示.请找出这些队员年龄的平均数、众数、中位 数,并解释它们的意义.
解:由图知13岁2人,14岁6人,15岁8人,16岁 3人,17岁2人,18岁1人,一共22人.
所以足球队员年龄的平均数为:15岁;众 数为:15岁;中位数为:15岁.
它们的含义分别是:校男子足球队员的平 均年龄为15岁;校男子足球队员中年龄为15岁 的队员最多;校男子足球队员的年龄不足15岁 和超过15岁的人数相当.
根据例4中的样本数据,你还有其 他方法评价(2)中这名选手在这次比 赛中的表现吗?
练习
下面的条形图描述了某车间工人日加工 零件数的情况.
请找出这些 工人日加工零件 数的中位数,并 说明这个中位数 的意义.
解:由条形图知这组数据中从小到大排列为:4个3, 5个4,8个5,9个6,6个7,4个8共36个数,则这组数 据的中位数为处在中间两个数6,6的平均数,因此这 些工人日加工零件的中位数为6.
它的意义是:23.5cm的鞋销量最大.因此可以 建议鞋店多进23.5cm的鞋.
练习
1. 下面的扇形图描述了某种运动服的S号,M 号,L号,XL号,XXL号在一家商场的销售情况. 请你为这家商场提出进货建议. 解:由扇形图可以看出,在某种运 动服大小型号组成的一组数据当中, M号最多为30%.因此可以建议这家 商场多进M号的运动服.
2.在一次女子体操比赛中,八名运动员的年
龄(单位:岁)分别为:12、14、12、15、14、14、 16、15,这组数据的众数是( B )
A.12
B.14
C.15
D.16
综合应用
如图是连续十周测试甲、乙两名运动员体能 训练成绩的折线统计图,教练组规定:体能测试 成绩70分以上(包括70分)为合格.
人教版数学八年级下册 20.1.2 中位数和众数 课件 (共20张PPT)
中位数
3000 2000 900 800 750 650 600 600 600 600 500
用中位数代表这组数据的 一般水平更合适。
求出下面这组数据的中位数。
? 10 15 18 25 32 34 48 50 中位数
(25+32)÷2=28.5
这组数据中间两 个数的平均数
当一组数据的个数是偶数时,中 位数取中间两个数的平均数。
某商店销售5种领口尺寸分别为 38cm,39cm,40cm,41cm,42cm的衬衫, 为了了解各种领口衬衫的销售情况,商 店统计了某月的销售情况(见下表) 你认为商店应多进 那种衬衫?
领口尺寸
(cm)
38 39 13 19
40 34
41 15
42 9
售出件数
小调查
在一些比赛中,计算选手的最 后得分时,往往先去掉一个最高 分和一个最低分,在计算剩下的 得分的平均数,把他作为该选手 的最后得分。你知道为什么?
(3000+2000+900+800+750+650+600+600+600+600+500)÷11 =11000÷11 =1000(元)
用平均数.
这个超市每个人 的月平均工资是 1000元.
3000 2000 900
800 750 650 600 600 600 600 500
大多数人的工资都比 平均数低
某某超市人事部 2008年9月15日
某超市工作人员月工资如下表.
单位:元
经理 月工 3000 资 副经 理 员 员工 员 员 员 员 工A B 工C 工D 工E 工F 员 员 员 工G 工H 工I
2000 900 800
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中位数与众数(第一课时)
一、教学目标
1.我能熟记中位数及众数的概念;
2.我能计算数据中的中位数和众数;
3.我能体会中位数和众数的意义。
二、教学重点
计算数据中的中位数和众数。
三、教学难点
体会中位数和众数的意义。
.
四、教学方法
1. 教法
情景教学法:创设具体的问题情境,让数学知识生活化.
探究式教学法: 设置一系列递进的问题,通过师生互动,小组探究引出中位数和众数的概念。
2. 学法:小组探究、合作交流.
五、教具
多媒体
六、教学过程
1、复习导入老师复习平均数的概率及求法,复习平均数的意义。
2、讲授新知
问题:下表是某公司员工月收入的资料。
(老师给学生五分钟的时间小组讨论下列3个问题,并试着归纳中位数和众数的概念,并请小组代表发言)
(1)、该公司的平均工资有6276元对不对?(设计意图:让学生复习平均数的求法)
答:对
(2)、你觉得用平均数反应该公司的所有员工月收入水平合适吗?如果不合适,那么“平均数”和“中等水平”谁更合理地反映了该公司绝大部分员工的月工资水平?这个问题中,中等水平的含义是什么?(设计意图:让学生讨论,引发学生兴趣,并引出中位数的概念)
答:不合适,因为平均数远远大于绝大多数人(22人)的实际月工资;中等水平;一半人月工资高于该数值,另一半人月工资低于该数值;中等水平的含义是中位数.
(3)、如果小张是该公司的一名普通员工,那么你认为他的月工资最有可能是多少元?并与同学交流。
(设计意图:让学生讨论,探究从一组数据中引出众数的概念)
答:3000元,因为3000元是这组数据中出现次数最多的,作为普通员工很合理。
中位数及众数的概念:
中位数:将一组数据按照由小到大(或者由大到小)的顺序排列,如果数据的个数是奇数,则称处于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数。
确定中位数的一般步骤:先排序、看奇偶,再确定中位数
众数:一组数据中出现次数最多的数。
注意:众数是这组数据中出现最多的数,而不是出现的次数.
3、应用新知
例1. 在一次男子马拉松长跑比赛中,抽得12名选手所用的时
间(单位:min)如下:
136 140 129 180 124 154
146 145 158 175 165 148
样本数据(12名选手的成绩)的中位数是多少?(设计意图:让学生应用中位数的概念及求中位数的方法)
解答过程见板书
例2. 一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表所示,你能根据表中的数据为这家鞋店提供进货建议吗?(设计意图:让学生应用众数的概念及求中位数的方法)
解答过程见板书
4、当堂检测
练习:下面两组数据的中位数、众数分别是多少?
(1)4, 5, 6, 3, 4
(2)7, 8, 3, 5, 4, 7
温馨提示:确定中位数要先排序、看奇偶,再确定中位数;确定众数找出现次数最多的数据。
(老师要求:让小组讨论完成这两小题, 并最后请两名同学来讲授这两题练习)
设计意图:运用新知,并提高学生的积极性,让学生感受数学的乐趣。
解:(1)中位数是4,众数是4;(2)中位数是6, 众数是7.
七、课堂小结
(1)如何确定一组数据的中位数和众数?
(2)中位数和众数分别反映出一组数据的什么信息?设计意图:让学生查缺补漏本节课所学知识,让数学回归生活。
八、布置作业
请同学们教科书第117 页练习;第118页练习1,2
九、板书设计
课题例题解答过程。