大学物理实验数据处理方法
5、常用数据处理方法
方法二:不选中数据的情况下选择菜单命令 Plot│Line+Symbol或单击2D Graphs工具条中 的Line+Symbol 按钮,在弹出的Plot Setup对 话框中将A设为X列,将B设为Y列,单击OK按钮。
6.2 Origin在处理物理实验数据中的应用 —绘制多条曲线
方法一:建立数据表,用鼠标选中“A(X1) 、B(Y1)、 C(X2)、D(Y2)”列,选择菜单命令Plot│Line+Symbol或 单击2D Graphs工具条中的Line+Symbol 按钮。
yn/2 yn yn/2 b xn xn/2
n/2
yn/2i yi
b
i 1 n/2
xn/2i xi
i 1
求得b后,可以运用累加法求截距a
n
n
yi na b xi
i 1
i 1
n
n
yi b xi
a i1
i1 y bx
n
5. 最小二乘法与曲线的拟合
图解法处理数据时,人工拟合的曲线不是最佳的。 科研工作中常用最小二乘法来拟合曲线。
• 作图纸的最小分度代表有效数字准确数的最后一位。坐标轴 的起点坐标不一定为零,原则是使作出的图线充满整个图纸。
3、实验点的标志
实验测量点的标识必须明显、突
出。例如,可以用 ,,,
等符号。
4、图线的描绘 :原则是练出一根光滑的图形, 使其通过较多的实验点,另有一些实验点则大 体均匀分布在图线两侧。
值为b0和b1
6. 软件数据处理法
6.1 Excel 在 处 理 物 理 实 验 数 据 中 的 应 用 6.2 Origin在处理物理实验数据中的应用
6.1 Excel在处理物理实验数据中的应用
大学物理实验数据处理
5.标出图线特征:
在图上空白位置标明实 验条件或从图上得出的某些 参数。如利用所绘直线可给 出被测电阻R即直线斜率的 大小:从所绘直线上读取两 点 A、B 的坐标就可求出 R 值。要注意的是,A,B两点 不能是实验测得的数据点。
I (mA)
20.00 18.00 16.00 14.00
电阻伏安特性曲线 作者:xx
• (1) 先用粗测旋钮使测头小砧接近被测物, 后用微调旋钮使测头小砧接触被测物。听 到“喀”、“喀”止动声后停止旋转。 • (2) 读数时要注意固定刻度尺上表示半 毫米的刻线是否已经露出。 • (3) 螺旋测微器读数时必须估读一位, 即估读到0.001mm这一位上。
物理天平 physical balance
0.4000
t(℃)
o
20.00 40.00
60.00
80.00 100.00
120.00 140.00
定容气体压强~温度曲线
1.2000
P(×105Pa)
改正为:
1.1500
1.1000
1.0500
t(℃)
1.0000 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00
测量值=固定刻度读数+(可动刻度格子数x精度)-L0(零点偏差)
注意:用螺旋测微计测量长度时要估读
螺旋测微计的测量方法及读数
校零:
+0.015
-0.025
读数:
5+0.033-0.015
5+0.5+0.033-(-0.025)
=5.018mm
=5.558mm
练习1
练习2
练习3
练习4
大学物理实验 常用的数据处理方法范文
1.7 常用的数据处理方法实验数据及其处理方法是分析和讨论实验结果的依据。
在物理实验中常用的数据处理方法有列表法、作图法、逐差法和最小二乘法(直线拟合)等。
1.7.1 列表法在记录和处理数据时,常常将所得数据列成表。
数据列表后,可以简单明确、形式紧凑地表示出有关物理量之间的对应关系;便于随时检查结果是否合理,及时发现问题,减少和避免错误;有助于找出有关物理量之间规律性的联系,进而求出经验公式等。
列表的要求是:(1)要写出所列表的名称,列表要简单明了,便于看出有关量之间的关系,便于处理数据。
(2)列表要标明符号所代表物理量的意义(特别是自定的符号),并写明单位。
单位及量值的数量级写在该符号的标题栏中,不要重复记在各个数值上。
(3)列表的形式不限,根据具体情况,决定列出哪些项目。
有些个别的或与其他项目联系不大的数据可以不列入表内。
列入表中的除原始数据外,计算过程中的一些中间结果和最后结果也可以列入表中。
(4)表中所列数据要正确反映测量结果的有效数字。
列表举例如表1-2所示。
表1-2铜丝电阻与温度关系1.7.2 作图法作图法是将两列数据之间的关系用图线表示出来。
用作图法处理实验数据是数据处理的常用方法之一,它能直观地显示物理量之间的对应关系,揭示物理量之间的联系。
1.作图规则为了使图线能够清楚地反映出物理现象的变化规律,并能比较准确地确定有关物理量的量值或求出有关常数,在作图时必须遵守以下规则。
(1)作图必须用坐标纸。
当决定了作图的参量以后,根据情况选用直角坐标纸、极坐标纸或其他坐标纸。
(2)坐标纸的大小及坐标轴的比例,要根据测得值的有效数字和结果的需要来定。
原则上讲,数据中的可靠数字在图中应为可靠的。
我们常以坐标纸中小格对应可靠数字最后一位的一个单位,有时对应比例也适当放大些,但对应比例的选择要有利于标实验点和读数。
最小坐标值不必都从零开始,以便做出的图线大体上能充满全图,使布局美观、合理。
(3)标明坐标轴。
大学物理实验数据处理方法总结
有效数字1、有效数字不同的数相加减时,以参加运算各量中有效数字最末一位位数最高的为准,最后结果与它对其,余下的尾数按舍入规则处理。
2、乘除法以参与运算的数值中有效位数最少的那个数为准,但当结果的第1位数较小,比如1、2、3时可以多保留一位(较小:结果的第一位数小于 有效数字最少的结果第一位数)! 例如:n=tg56° θ=56° d θ=1° θθθθθ2cos d d d dtg dn == 为保留)(,带入848.156n 15605.018056cos 1cos 22=︒=∴︒=∆︒=≈︒=∆=∆tg n θθπθθ3、可以数字只出现在最末一位:对函数运算以不损失有效数字为准。
例如:20*lg63.4 可疑最小位变化0.1 Y=20lgx01.04.631.010ln 2010ln 20ln 10ln 20≈===x dx dx dx x d dy 04.364.63lg 20=∴4、原始数据记录、测量结果最后表示,严格按有效数字规定处理。
(中间过程、结果多算几次)5、4舍5入6凑偶6、不估计不确定度时,有效数字按相应运算法则取位;计算不确定度时以不确定度的处理结果为准。
真值和误差1、 误差=测量值-真值 ΔN=N-A2、 误差既有大小、方向与政府。
3、 通常真值和误差都是未知的。
4、 相对约定真值,误差可以求出。
5、 用相对误差比较测量结果的准确度。
6、 ΔN/A ≈ΔN/N7、 系统误差、随机误差、粗大误差8、 随机误差:统计意义下的分布规律。
粗大误差:测量错误9、 系统误差和随机误差在一定条件下相互转化。
不确定度1、P (x )是概率密度函数dx P dx x x P p )x (之间的概率是测量结果落在+当x 取遍所有可能的概率值为1.2、正态分布且消除了系统误差,概率最大的位置是真值A3、曲线“胖”精密度低“瘦”精密度高。
4、标准误差:无限次测量⎰∞∞-=-2)()(dx X P A X x )(σ 有限次测量且真值不知道标准偏差近似给出1)(2)(--=∑K X X S i X5、正态分布的测量结果落入X 左右σ范围内的概率是0.6836、真值落入测定值X i 左右σ区间内的概率为0.6837、不确定度是测量结果带有的一个参数,用以表征合理赋予被测量值的分散性。
大学物理实验数据处理
解:测量最佳估计值
y 1 ( 0 .2 4 9 0 .2 5 0 0 .2 4 7 0 .2 5 1 0 .2 5 3 0 .2 5 0 ) 0 .2 5 0 m m
6
n
(yi y)2
A类标准不确定度 uA
u ( m ) U ( m ) /k 0 .2 4 /3 0 .0 8 0 m g
B类不确定度的计算
2. 在缺乏任何信息的情况下,一般使用均匀分 布, k 3 ,而a则取仪器的最大允许误差
(误差限)△(x) ,所以B类不确定度为
u(x) a (x) k3
例题 知道某游标卡尺的仪器最大允许误差为 Δ=0.05mm,使用矩形分布计算不确定度。
• B类不确定度:用其他方法确定的量
1. 根据经验确定。
2. 如果已知被测量的测量值xi分散区间的半宽为a, 且落在 [xa,x区a间] 的概率为100%,通过对 其分布规律的估计可得出B类不确定度为:
a uB(x) k
k是包含因子,取决于测量值 的分布规律.
B类不确定度的计算
包含因子k的确定
物理实验中没有特别说明时,使用矩形分布(平均
2.5级
△=5×2.5/100=0.125V
• 3. 数字显示仪表在缺乏说明的情况下,取其 最小分度值作为其仪器的示值误差限。
△=0.01mA
• 4.未加说明的仪器, 如果无法得知其误差 限,一般取仪器最小分度的一半作为其仪 器误差限。
△ =0.5mm
直接测量量的合成不确定度
• A类和B类不确定度的合成不确定度uc(x):
2.有效数字的位数与被测量的大小及仪器的精密度有关。 3.第一个非零数字前的零不是有效数字,第一个非零数字 开始的所有数字都是有效数字。如
满分大物实验迈克尔逊数据处理-V1
满分大物实验迈克尔逊数据处理-V1
本文将为大家整理介绍一下满分大物实验——迈克尔逊干涉仪实验中的数据处理。
该实验是物理学中非常重要的实验之一,因为它可以验证相对论的基本概念,并且数据处理过程也相对较为复杂。
以下将对实验步骤和数据处理进行详细说明。
一、实验步骤
1.调整干涉仪:首先,需要调整干涉仪的镜子,让光线以等长的时间通过两条路线,且两条光路的光程差小于光波长的一半。
2.测量光程差:用红光光源照射干涉仪,使用微调节固定平台调节平台距离,测量光程差。
3.取样数据:每测一组数据,需将光源位置改变一个可测量的角度,共取多组数据。
4.测量环形条纹:最后,使用目镜对干涉图形进行观察,记录下环形条纹的条数。
二、数据处理
1.计算光程差:通过所测得的干涉仪两条光线达到的光程差ΔL,可以根据下面的公式来计算出干涉仪镜子间的距离L:
L=ΔL/2
2.计算平均光程差:将多组数据的光程差求平均,可以得到平均光程
差。
3.计算光速:根据光速公式:v=c/f(波长λ=c/f),来计算光的速度。
4.计算狭缝间距:通过所测得的环形条纹数n,可以计算得到狭缝间距d:
d=λ/(2n)
5.计算误差:根据多组数据的光程差和平均光程差的差值,可以计算
得到误差值,进一步验证实验的准确性。
以上就是整个实验过程以及数据处理过程的详细介绍。
通过实验和数
据处理,我们可以更加深入地了解迈克尔逊干涉仪的基本原理和物理
学理论的应用。
大学物理实验数据处理基本方法
实验数据处理基本方法实验必须采集大量数据,数据处理是指从获得数据开始到得出最后结论的整个加工过程,它包括数据记录、整理、计算与分析等,从而寻找出测量对象的内在规律,正确地给出实验结果。
因此,数据处理是实验工作不可缺少的一部分。
数据处理涉及的内容很多,这里只介绍常用的四种方法。
1 列表法对一个物理量进行多次测量,或者测量几个量之间的函数关系,往往借助于列表法把实验数据列成表格。
其优点是,使大量数据表达清晰醒目,条理化,易于检查数据和发现问题,避免差错,同时有助于反映出物理量之间的对应关系。
所以,设计一个简明醒目、合理美观的数据表格,是每一个同学都要掌握的基本技能。
列表没有统一的格式,但所设计的表格要能充分反映上述优点,应注意以下几点: 1.各栏目均应注明所记录的物理量的名称(符号)和单位;2.栏目的顺序应充分注意数据间的联系和计算顺序,力求简明、齐全、有条理; 3.表中的原始测量数据应正确反映有效数字,数据不应随便涂改,确实要修改数据时,应将原来数据画条杠以备随时查验;4.对于函数关系的数据表格,应按自变量由小到大或由大到小的顺序排列,以便于判断和处理。
2 图解法图线能够明显地表示出实验数据间的关系,并且通过它可以找出两个量之间的数学关系,因此图解法是实验数据处理的重要方法之一。
图解法处理数据,首先要画出合乎规范的图线,其要点如下:1.选择图纸 作图纸有直角坐标纸(即毫米方格纸)、对数坐标纸和极坐标纸等,根据作图需要选择。
在物理实验中比较常用的是毫米方格纸,其规格多为cm 2517⨯。
2.曲线改直 由于直线最易描绘,且直线方程的两个参数(斜率和截距)也较易算得。
所以对于两个变量之间的函数关系是非线性的情形,在用图解法时应尽可能通过变量代换将非线性的函数曲线转变为线性函数的直线。
下面为几种常用的变换方法。
(1)c xy =(c 为常数)。
令xz 1=,则cz y =,即y 与z 为线性关系。
(2)y c x =(c 为常数)。
大学物理实验报告数据处理及误差分析
大学物理实验报告数据处理及误差分析
篇一:大学物理实验1误差分析
云南大学软件学院实验报告
课程:大学物理实验学期:2014-2015学年第一学期任课教师:
专业:
学号:
姓名:
成绩:
实验1误差分析
一、实验目的
1.测量数据的误差分析及其处理。
二、实验内容
1.推导出满足测量要求的表达式,即v0?f(?)的表达式;
二、误差与偏差
1.真值与误差
任何一个物理量,在一定的条件下,都具有确定的量值,这是客观存在的,这个客观存在的量值称为该物理量的真值。测量的目的就是要力图得到被测量的真值。我们把测量值与真值之差称为测量的绝对误差。设被测量的真值为χ0,测量值为χ,则绝对误差ε为
ε = χ – χ0(1)
由于误差不可避免,故真值往往是得不到的。所以绝对误差的的概念只有理论上的价值。
2.最佳值与偏差
在实际测量中,为了减小误差,常常对某一物理量x进行多次等精度测量,得到一系列测量值x1,x2,…,xn,则测量结果的算术平均值为
1??2n
n1ni(2)ni?1
算术平均值并非真值,但它比任一次测量值的可靠性都要高。系统误差忽略不计时的算术平均值可作为最佳值,称为近真值。我们把测量值与算术平均值之差称为偏差(或残差):
误差处理
物理实验的任务,不仅仅是定性地观察物理现象,也需要对物理量进行定量测量,并找出各物理量之间的内在联系。
由于测量原理的局限性或近似性、测量方法的不完善、测量仪器的精度限制、测量环境的不理想以及测量者的实验技能等诸多因素的影响,所有测量都只能做到相对准确。随着科学技术的不断发展,人们的实验知识、手段、经验和技巧不断提高,测量误差被控制得越来越小,但是绝对不可能使误差降为零。因此,作为一个测量结果,不仅应该给出被测对象的量值和单位,而且还必须对量值的可靠性做出评价,一个没有误差评定的测量结果是没有价值的。
大物实验数据处理
x Y ax c e f x3 x 4
b 1
总不确定度
d 2
Y YE(Y )
间接测量量的不确定度的计算过程分三步
1、先估计个直接测量量 X i 的不确定度 X i 2、写出不确定度的传递公式; 3、结果
Y Y Y Y 1 E (Y ) (单位)
M 例: V
(Y1 Y2 Y3 ) Y n
M V
Y的计算:
1、和差形式的函数
2
(如Y ax1 bx2 )
2
f f 2 2 Y x1 x2 x1 x2
2、乘积商形式的函数
测量结果x=
x
Δ (单位)
不确定度Δ值可以通过一定的方法估算。
2、测量结果的表达(报告)方法 测量结果的科学表达方法:
X X
(单位)
表达式的物理意义( X , X )
恒为正,不确定度与误差是完全不同的概念。
相对不确定度: E 100%
x
置信度
不确定度包括两方面:
仪器误差(限)举例
a:游标卡尺,仪器示值误差一律取卡尺分度值。
b:螺旋测微计,量程在0—25mm及25—50mm的一 级千分尺的仪器示值误差均为仪 0.004mm。 c:天平的示值误差,本书约定天平标尺分度值的 一半为仪器的示值误差。 d:电表的示值误差, m 量程 准确度等级%。
(0 8)
(6)求总不确定度
A B
2
2
(7)写出最终结果表示: x x
S 2 B n
E 100% x
(单位)
大学物理实验——分光计数据处理
实验数据处理1. 计算三棱镜顶角及不确定度)(A u 顶角A 的计算公式: (1)自准法 )(211802121右右左左θθθθ-+--=A (2)反射法 )(12121右右左左θθθθ-+-=A其中须考虑实际转过的角度。
(3) 顶角A 的不确定度的计算公式 自准法: θθθ∆==⨯=)()()21(4)(22u u A u反射法:11()()22u A u θθ===∆2. 最小偏向角的计算及最小偏向角的不确定度 (1) 最小偏向角min δ的计算公式:)(12121min 右右左左θθθθδ-+-=(2)最小偏向角min δ的不确定度计算公式:θθθδ∆==⨯=21)(21)()41(4)(22min u u u3. 计算折射率n 以及折射率的不确定度)(n u由折射率的计算公式 A A n 21sin )(21sin min +=δ,对较厚三棱镜,可得: n蓝紫= n 绿 =由折射率的不确定度计算公式:)(2)(222)(min 2min222min δδδu A ctgA u A ctg A ctg n n u ++⎪⎭⎫ ⎝⎛+-=)()21sin(2)(21cos )()21(sin 2)21sin(min 22min 222min δδδu A A A u A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= 22min 222min )21()21sin(2)(21cos )()21(sin 2)21sin(θδθδ∆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++∆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=A A A 仪器误差 Δθ = 2′= 5.82×10-4(rad)可得:u (n 蓝紫) = ,u (n 绿) =测得折射率n 蓝紫= ± ,n 绿 = ±数据处理注意事项与角度的不确定度有关的数值的单位应取为弧度。
大学物理实验数据处理
北方民族大学物理实验中心 Fundamental physics experiment 8
不同类型的坐标纸
直角坐标纸
单对数坐标纸
双对数坐标纸
极坐标纸
北方民族大学物理实验中心 Fundamental physics experiment 9
图解法
利用图示法得到的测量量之间的关系曲线,求出有物理意义的参数,这一实验数据的处理方法 称为图解法。在物理实验中遇到最多的图解法的例子是通过图示的直线关系确定直线的参数-----截 距和斜率。
(1)确定直线图形的斜率和截距 (2)曲线的改直
非线性关系数据可进行曲线改直后再处理
北方民族大学物理实验中心 Fundamental physics experiment 16
=20044
Ri
北方民族大学物理实R验i中ti心
tFi2undamental physics experiment 27
a R bt
b
tR tR
2
t
t2
3. 写出待求关系式:
R70.790.287t3
R--;t--℃ 北方民族大学物理实验中心 Fundamental physics experiment 28
1.1500
0.8000
1.1000
0.4000
1.0500
t(℃)
t(℃)
o
20.0 0
40.0 0
60.00
80.00
100.0 0
120.0 0
140.00
定容气体压强~温度曲线
1.0000 20.00
30.0 0
40.0 050.00 6Fra bibliotek.00 70.00
大学物理实验报告数据处理的基本流程
大学物理实验报告数据处理的基本流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!大学物理实验报告数据处理的基本流程在大学物理实验中,数据处理是至关重要的一步,它能够帮助我们从实验中获取有价值的信息并得出科学的结论。
大学物理实验常用的数据处理方法
⼤学物理实验常⽤的数据处理⽅法1.7 常⽤的数据处理⽅法实验数据及其处理⽅法是分析和讨论实验结果的依据。
在物理实验中常⽤的数据处理⽅法有列表法、作图法、逐差法和最⼩⼆乘法(直线拟合)等。
1.7.1 列表法在记录和处理数据时,常常将所得数据列成表。
数据列表后,可以简单明确、形式紧凑地表⽰出有关物理量之间的对应关系;便于随时检查结果是否合理,及时发现问题,减少和避免错误;有助于找出有关物理量之间规律性的联系,进⽽求出经验公式等。
列表的要求是:(1)要写出所列表的名称,列表要简单明了,便于看出有关量之间的关系,便于处理数据。
(2)列表要标明符号所代表物理量的意义(特别是⾃定的符号),并写明单位。
单位及量值的数量级写在该符号的标题栏中,不要重复记在各个数值上。
(3)列表的形式不限,根据具体情况,决定列出哪些项⽬。
有些个别的或与其他项⽬联系不⼤的数据可以不列⼊表内。
列⼊表中的除原始数据外,计算过程中的⼀些中间结果和最后结果也可以列⼊表中。
(4)表中所列数据要正确反映测量结果的有效数字。
列表举例如表1-2所⽰。
表1-2铜丝电阻与温度关系1.7.2 作图法作图法是将两列数据之间的关系⽤图线表⽰出来。
⽤作图法处理实验数据是数据处理的常⽤⽅法之⼀,它能直观地显⽰物理量之间的对应关系,揭⽰物理量之间的联系。
1.作图规则为了使图线能够清楚地反映出物理现象的变化规律,并能⽐较准确地确定有关物理量的量值或求出有关常数,在作图时必须遵守以下规则。
(1)作图必须⽤坐标纸。
当决定了作图的参量以后,根据情况选⽤直⾓坐标纸、极坐标纸或其他坐标纸。
(2)坐标纸的⼤⼩及坐标轴的⽐例,要根据测得值的有效数字和结果的需要来定。
原则上讲,数据中的可靠数字在图中应为可靠的。
我们常以坐标纸中⼩格对应可靠数字最后⼀位的⼀个单位,有时对应⽐例也适当放⼤些,但对应⽐例的选择要有利于标实验点和读数。
最⼩坐标值不必都从零开始,以便做出的图线⼤体上能充满全图,使布局美观、合理。
物理实验数据处理的基本方法
物理实验数据处理的基本方法1.数据收集:在物理实验中,首先需要收集实验数据。
可以使用各种仪器和设备进行测量、记录和采集实验数据。
确保数据的准确性和可靠性。
2.数据整理:在数据收集后,需要对数据进行整理和整合。
这可以包括删除无效数据、排除异常值、对数据进行分类等。
确保数据的整洁和一致性。
3.数据可视化:将数据可视化是一个有力的方法,可以帮助研究人员更好地理解数据和发现隐藏在数据中的模式和趋势。
常用的数据可视化方法包括绘制直方图、散点图、线图等。
4.数据分析:对数据进行分析是了解数据背后规律的重要手段。
常用的数据分析方法包括统计分析、查找关联性、回归分析、频谱分析等。
这些方法可以帮助确定数据之间的相互关系,提取重要的特征和信息。
5.误差分析:误差是物理实验中不可避免的部分,对实验数据的误差进行分析是确保实验结果可靠性的重要环节。
常用的误差分析方法包括确定绝对误差、相对误差、平均误差、标准差等。
通过误差分析,可以评估实验的准确性和精确性。
6.结果解释:在完成数据处理和分析后,需要对结果进行解释和讨论。
这包括总结数据的主要趋势和规律,解释与已有理论和模型的一致性,讨论实验结果的物理意义等。
7.结论和讨论:在数据分析和结果解释的基础上,得出结论和讨论物理实验的目标和研究问题。
这可以包括总结实验结果的重要发现和贡献,提出对未来研究的建议和思考。
总之,物理实验数据处理是一个复杂的过程,需要科学的方法和技巧。
通过合理地应用数据收集、整理、可视化、分析和解释的方法,可以更好地理解实验数据和揭示实验中的物理规律。
大学物理实验——声速数据处理
大学物理实验——声速数据处理实验介绍:声速是指在空气、水、固体中传播的声波的速度。
其中,在大气条件下,声速为每秒约344米,而在水中的速度则约为每秒1496米。
声速的测量是一个非常重要的实验,广泛应用于声学、地质勘探、海洋探测等领域。
本次实验旨在通过测量不同温度下声波在空气中的传播速度,来计算声速的大小。
实验装置:1.实验仪器:声速仪、温度计、计时器2.实验样品:空气实验步骤:1.将实验仪器打开,将仪器中的温度计放入室温下(约25℃)的水中,记录此时的温度。
2.将声速仪的发声头对准接收头,调整仪器到最大音量,并使用计时器记录声波从发声头到接收头的时间t。
3.在室温下,重复以上步骤3次,记录3次t的平均值。
5.重复步骤2和3,记录声波在沸水中的传播时间t。
6.根据以上数据,计算出声波在不同温度下的传播速度。
实验数据及处理:1.室温下测量数据:温度T = 25℃t1 = 0.016st平均值 = (t1+t2+t3)/3 = 0.016s2.沸水中测量数据:根据公式:声速v = 2L/t,其中L为声波传播的距离,本实验中L = 0.1m(发声头到接收头间距离)。
1.室温下声速v1=2×0.1/0.016=12.5m/s实验误差分析:1.温度不够准确:我们的测量是基于室温和烧水的温度测量。
但是,室温可能不够准确,特别是当环境温度发生变化时。
另外,在测量烧水的温度时,我们也可能会遇到误差。
2.距离测量不准:我们的声波传播距离是使用尺子测量的,而密切注意发声头和接收头的距离是很重要的。
如果这个距离不准,我们就会得出不准确的声速数据。
3.仪器本身有误差:任何物理测量仪器都会带有一定的误差。
在本实验中,声速仪可能也存在误差。
大学物理中的实验数据处理与分析方法
大学物理中的实验数据处理与分析方法在大学物理课程中,实验数据处理与分析是非常关键的部分,能帮助学生深入理解物理原理和提高实验操作和数据分析能力。
本文将介绍一些常见的实验数据处理与分析方法,以帮助大家更好地应对物理实验。
一、误差分析与处理在物理实验中,由于种种因素的干扰,我们得到的实验数据往往会存在误差。
为了准确地反映实验现象,我们需要对这些误差进行分析和处理。
1. 系统误差:系统误差是由于实验仪器或装置的固有缺陷导致的误差,它存在于所有实验数据中,并且通常是固定的。
我们可以通过对仪器进行校准或者进行适当的修正来减小系统误差。
2. 随机误差:随机误差是由于实验条件的不确定性或人为操作的随机性导致的误差,它在重复实验中会发生变化。
为了减小随机误差,我们可以多次重复实验并取平均值,以提高数据的可靠性。
3. 最小可区分误差:最小可区分误差是指实验数据中能够明显区分的最小单位误差。
在数据处理过程中,我们需要注意到最小可区分误差,以避免在数据分析过程中忽略这些细微的差别。
二、数据处理方法在获得实验数据后,我们需要对其进行处理,以得到更有意义和可靠的结果。
1. 平均值:将多次实验获得的数据进行求和,并除以实验次数,即可得到平均值。
通过求平均值,可以减小随机误差对结果的影响。
2. 不确定度:不确定度是用于表示测量结果的范围。
通常,我们可以通过标准差、相对误差等方式来计算不确定度。
3. 误差传递:在进行多个量的计算时,不同量之间的误差会相互影响。
我们可以利用误差传递法则来计算复合量的误差。
该法则包括加减法、乘除法和函数的误差传递规则。
三、数据分析方法在获得实验数据后,我们还需要对其进行分析,以得到对实验现象的深入理解。
1. 图表分析:将实验数据绘制成图表,可以直观地展示数据规律和趋势。
在进行图表分析时,需要注意选择适当的坐标轴、标记数据点和合理选择曲线拟合等。
2. 直线拟合:对于线性关系的实验数据,我们可以利用最小二乘法进行直线拟合,以获得直线的斜率和截距。
大学物理实验数据处理基础知识
得出电阻的线性方程和拟合参数,分析实 验误差来源。
实例三:测量折射率实验数据处理
实验目的
通过测量入射角和折射角,计算介质的折射率。
数据处理方法
使用斯涅尔公式计算折射率,并使用最小二乘法进行线性 拟合。
数据处理过程
记录下入射角和折射角的数据,使用斯涅尔公式计算出每 个介质的折射率,再使用最小二乘法进行线性拟合,得出 折射率的线性方程。
MATLAB在数据处理中的应用
总结词
算法开发、数值计算、矩阵运算
详细描述
MATLAB是一款用于算法开发、数值计算和矩阵运算的编程语言和开发环境。它支持多种数据导入导 出格式,可以进行高效的数据处理和分析。在大学物理实验中,MATLAB可以用于编写数据处理程序 、进行复杂的数值计算和数据分析,提高数据处理效率和精度。
得出重力加速度的平均值和 标准差,分析实验误差来源。
实例二:测量电阻实验数据处理
实验目的
通过测量电流和电压,计算电阻的值。
数据处理方法
使用欧姆定律计算电阻,并使用最小二乘 法进行线性拟合。
数据处理过程
数据处理结果
记录下电流和电压的数据,使用欧姆定律 计算出每个电阻的阻值,再使用最小二乘 法进行线性拟合,得出电阻的线性方程。
数据处理结果
得出折射率的线性方程和拟合参数,分析实验误差来源。
THANKS FOR WATCHING
感谢您的观看
回归方程的斜率表示自变量对因变量 的影响程度,截距表示当自变量为0 时因变量的值。
曲线拟合
通过已知的数据点,选择合适的数学 函数来描述数据点之间的非线性关系 。
常用的曲线拟合方法有最小二乘法和 多项式拟合等。
误差传递
根据误差传播定律,一个物理量测量 误差会随着其他物理量的测估各 个测量环节对最终结果的影响程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用excel处理大学物理实验数据:
大学物理试验特点:好做,数据难处理,尤其是不确定度以及方差之类的东西。
用计算器算太困难。
下面本人介绍一种简单实际的计算机处理方法。
(excel高手就不必看了)
1、新建excel表格,根据自己的表格建立excel表格,此处不详细介绍了,不会可以上网找,
或者去借本书自己看。
2、将原始数据填入表格。
3、用公式和函数处理数据。
公式部分:根据你的原始数据输入公式求出要求的值,如下图:
图中“=B1*9.8”即为公式,B1是数字2的坐标,然后回车就OK了,接下来就到了excel 的独特魅力的地方了,批量处理数据
当结果出来以后,把鼠标放在19.6那一格的右下角处,当出现“+”符号时,点住鼠标左键向右拖,拖到第五个格时所有的数据都有了。
OK,会了吗?
介绍一下符号乘:“*”除:“/ ”平方:“^2”即“5^2”就是求5的平方,同样3次方就把“^”后面的2改成3,开平方就改成0.5,
顺序先后就加括号就行了,比如:
处理复杂的批量运算很爽的!!
函数功能,更能体现excel的优势了,
这里介绍几个常用的函数把,
sum函数:求和,可以求一列的和或一行的和
average函数:求平均值。
stdev函数:求一列或一行的标准差。
(最有优势的地方,那计算器没有十分钟求不出一组,而excel 30秒可以求无限组)
sin函数:求正弦
asin函数:反正弦
exp:e的幂
其余三角函数模式都一样,不一一列举,还有ln,lg之类,都有,需要什么就直接用
用法如下:
如求第一列质量的和,在某个空白处输入“=sum(B1:F1)”然后回车就ok了,
同样不鼠标放在右下角点住拖动就可以求出第二行和第三行的和了,
其余函数方法相同,ok,可以处理数据了。
画图:如果你爱用坐标纸的话就不用看了。
1、选中要做图的数据。
2、点击“插入——图表”,然后选“散点图”,
然后“下一步”“下一步”出现下图,可以输入你的x,y轴分别代表什么了,然后最上面那五个量分别设置,要想线密一些就点网格线,将主次网格线都选中就行了,然后“下一步”“完成”,图的描点就完成了。
然后右键单击五个点中的任何一个,点击“添加趋势线”,然后选择,物理试验一般是线性,好了,最后的图就搞定了。
熟练以后基本上一个试验的数据15分钟左右就能处理掉了,主要的是简洁,不用整着计算机在那一顿按了。