一元一次不等式、因式分解练习题
(人教版)厦门市必修第一册第二单元《一元一次函数,方程和不等式》检测(答案解析)
一、选择题1.已知(1,0),(1,0)A B -,点M 是曲线x =上异于B 的任意一点,令,MAB MBA αβ∠=∠=,则下列式子中最大的是( )A .|tan tan |αβ⋅B .|tan tan |αβ+C .|tan tan |αβ-D .tan tan αβ2.若正数a ,b 满足21a b +=,则下列说法正确的是( ) A .ab 有最大值12B .224a b +有最小值12C .ab 有最小值18 D .224a b +有最大值143.若正数a ,b 满足1a >,1b >,且3a b +=,则1411a b +--的最小值为( ) A .4B .6C .9D .164.已知2x >,那么函数42y x x =+-的最小值是( ) A .5B .6C .4D .85.已知1x >,0y >,且1211x y+=-,则2x y +的最小值为( )A .9B .10C .11D .7+6.若直线220ax by +-=(),a b R +∈平分圆222460xy x y +---=,则21a b+的最小值是( ).A .1B .5C .D .3+7.已知正实数,a b 满足1a b +=,则11b a b ⎛⎫+ ⎪⎝⎭的最小值是( )A .112B .5C .2+D .3+8.若不等式2210ax ax ++>对任意的x ∈R 恒成立,则实数a 的取值范围是( ) A .[)0,1B .[)0,+∞C .(](),01,-∞+∞ D .()0,19.不等式28610x x -+<的解集为( ) A .11(,)42B .11(,)(,)42-∞+∞ C .11(,)34--D .11(,)(,)34-∞--+∞ 10.若正数x ,y 满足x+3y=5xy ,则3x+4y 的最小值是( )A .B .5C .D .611.已知1x >,则41x x +-的最小值为 A .3B .4C .5D .612.已知01a <<,1b >,则下列不等式中成立的是( ) A .4aba b a b+<+ B .2abab a b<+ C .22222a b ab +< D .2222a b a b +<+二、填空题13.有一块直角三角形空地ABC ,2A π∠=,250AB =米,160AC =米,现欲建一矩形停车场ADEF ,点D 、E 、F 分别在边AB 、BC 、CA 上,则停车场面积的最大值为________平方米.14.已知a ,b 为正实数,且39ab a b ++=,则3a b +的最小值为_________.15.函数12(01)1y x x x=+<<-的最小值为________. 16.已知函数22()(32)(2)1f x m m x m x =-++-+的定义域为R ,则实数m 的取值范围是________.17.已知a 、b 、c 为正实数,则代数式938432a b cb c c a a b+++++的最小值是_________. 18.设函数4()f x x x=-对任意[2,)x ∈+∞,()()0f ax af x +<恒成立,则实数a 的取值范围是____________. 19.若关于x 的方程的两根都大于2,则m 的取值范围是________20.已知正实数,x y 满足3x+y+=xy ,则x y +的最小值为__________.三、解答题21.已知命题1:(2,),242x p x m x ∀∈+∞+-,命题:q 方程221213x y m +=+表示焦点在x轴上的椭圆.(1)若p 为真,求实数m 的取值范围;(2)若p q ∧是假命题,p q ∨是真命题,求实数m 的取值范围. 22.设0,0,0a b c >>>,证明:(1)114a b a b+≥+;(2)111111222a b c a b b c a c++≥+++++.23.已知不等式2320ax x -+>的解集为{1,x x <或}x b >, (1)求实数,a b 的值;(2)解关于x 的不等式2()0cx ac b x ab ++>-()c R ∈.24.已知不等式2(1)(2)60a x b x ---+≥的解集为{}31x x -≤≤ (1)求,a b 的值.(2)求不等式2(2)40amx bm x -++<的解集25.已知函数212()log (1)f x x =+,26()g x x ax =-+. (1)若()g x 为偶函数,求a 的值并写出()g x 的增区间;(2)若关于x 的不等式()0<g x 的解集为{}23x x <<,当1x >时,求()1g x x -的最小值;(3)对任意的1[1,)x ∈+∞,2[2,4]x ∈-,不等式12()()f x g x ≤恒成立,求实数a 的取值范围.26.如图,GH 是东西方向的公路北侧的边缘线,某公司准备在GH 上的一点B 的正北方向的A 处建一仓库,设km AB y =,并在公路同侧建造边长为km x 的正方形无顶中转站CDEF (其中边EF 在GH 上),现从仓库A 向GH 和中转站分别修两条道路AB ,AC ,已知1AB AC =+,且60ABC ∠=︒.(1)求y 关于x 的函数;(2)如果中转站四周围墙造价为1万元/km ,两条道路造价为3万元/km ,问:该公司建中转站围墙和两条道路总造价M 最低为多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】化简曲线为221(1)x y x -=≥,易知该曲线为双曲线,分别计算选项的取值范围,即可得答案; 【详解】设直线MA ,MB 的斜率分别为12,k k ,11(,)M x y ,则12tan ,tan k k αβ==-, 对A ,1111|tan tan |||111y yx x αβ⋅=⋅=+-; 对B ,C ,tan 0,tan 0αβ><,∴|tan tan |αβ->|tan tan |αβ+,1|tan tan ||tan |2tan αβαα-=+≥, 对D ,1k 小于双曲线渐近线的斜率,∴2tan tan 1tan ααβ=<, ∴|tan tan |αβ-最大,故选:C. 【点睛】通过将斜率转化为直线倾斜角的正切值,再结合基本不等式是求解的关键.2.B解析:B 【分析】利用基本不等式分析22,4ab a b +的最值,注意取等条件的分析,由此得到结果. 【详解】因为21a b +=,所以12a b =+≥18ab ≤,取等号时11,24a b ==, 所以ab 有最大值18,所以A ,C 错误; 又因为()22211241414824a b ab b a ab =+-=-≥-⨯=+,取等号时11,24a b ==, 所以224a b +有最小值12,所以B 正确,D 错误, 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.C解析:C 【分析】由等式3a b +=可以得到111a b -+-=,由1411a b +--乘以111a b -+-=所求得式子和基本不等式进行求解即可. 【详解】由3a b +=,可得111a b -+-=,10,10a b ->->, 所以()141414(1)511111111a b a a b b a b a b --⎛⎫+=+=++ ⎪------⎝⎭-+-59≥+= 当且仅当12(1)b a -=-,即54,33b a ==时等号成立. 故选:C 【点睛】关键点点睛:本题注意观察待求式的分母,1,1a b --,结合已知条件,可变形为关于分母的式子111a b -+-=,这样就转化为“1”的常规技巧的应用.4.B解析:B 【分析】根据基本不等式可求得最小值. 【详解】∵2x >,∴442+24+2622y x x x x =+=+-≥==--,当且仅当422x x =--,即4x =时等号成立.∴y 的最小值是6. 故选:B . 【点睛】本题考查用基本不等式求最值,利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5.B解析:B 【分析】利用“乘1法”将问题转化为求[]12(1)211x y x y ⎛⎫-+++ ⎪-⎝⎭的最小值,然后展开利用基本不等式求解. 【详解】1x >,10x ->,又0y >,且1211x y+=-, 2(1)21x y x y ∴+=-++[]12(1)211x y x y ⎛⎫=-+++ ⎪-⎝⎭22(1)61y x x y-=++- 262x +-10=, 当且仅当22(1)1y x x y-=-,解得4x =,3y =时等号成立, 故2x y +的最小值为10. 故选:B . 【点睛】本题考查利用基本不等式求最和的最值,考查“1”的巧妙运用,难度一般,灵活转化是关键.6.D解析:D 【分析】根据条件可知直线过圆心,求解出,a b 的关系式,利用常数代换法以及基本不等式求解出21a b +的最小值. 【详解】因为直线220ax by +-=(),a b R+∈平分圆222460xy x y +---=,所以直线220ax by +-=过圆心,又因为圆的方程()()221211x y -+-=,所以圆心为()1,2,所以222a b +=,即1a b +=,所以()21212333b a a b a b a b a b ⎛⎫+=+⋅+=++≥+=+ ⎪⎝⎭ 取等号时222a b =即a =,此时21a b ==,故选:D. 【点睛】本题考查圆的对称性与基本不等式的综合应用,其中涉及到利用常数代换法求解最小值,对学生的理解与计算能力要求较高,难度一般.利用基本不等式求解最值时注意说明取等号的条件.7.C解析:C 【分析】将原式变形为()2211b a b b a b ab++⎛⎫+= ⎪⎝⎭,再利用基本不等式计算可得; 【详解】解:()222111b a b b b a b ab ab+++⎛⎫+== ⎪⎝⎭)()222222222a abab b a ab ababab++++==≥=,当且仅当a =时取等号,即2a =1b =时等号成立,故选:C . 【点睛】本题考查基本不等式的应用,属于中档题.8.A解析:A 【分析】设函数()221f x ax ax =++,把不等式2210ax ax ++>在x ∈R 上恒成立,转化为()0f x >对于x R ∀∈恒成立,结合函数的性质,即可求解.【详解】解:设函数()221f x ax ax =++,则不等式2210ax ax ++>在x ∈R 上恒成立,即()0f x >对于x R ∀∈恒成立, 当0a =时,()10f x =>,显然成立; 当0a ≠时,要使()0f x >在x ∈R 上恒成立,需函数()221f x ax ax =++开口向上,且与x 轴没有交点,即20(2)410a a a >⎧⎨∆=-⨯⨯<⎩,解得01a <<, 综上知,实数a 的取值范围为[0,1).故选:A. 【点睛】本题主要考查了不等式的恒成立问题,以及二次函数的图象与性质的应用,其中解答中把不等式的恒成立问题转化为利用二次函数的性质求解是解答的关键,着重考查转化思想,以及推理与计算能力.9.A解析:A 【分析】运用因式分解法,化为一元一次不等式组,解不等式,求并集即可得到所求解集. 【详解】解:28610x x -+<即为(21)(41)0x x --<, 即有210410x x ->⎧⎨-<⎩或210410x x -<⎧⎨->⎩,可得x ∈∅或1142x <<, 即解集为1(4,1)2,故选A . 【点睛】本题考查一元二次不等式的解法,考查运算能力,属于基础题.10.B解析:B 【解析】试题分析:已知两边同时除以,得到,那么等号成立的条件是,即,所以的最小值是5,故选B .考点:基本不等式11.C解析:C 【分析】由1x >,得10x ->,则441111x x x x +=-++--,利用基本不等式,即可求解.【详解】由题意,因为1x >,则10x ->,所以44111511x x x x +=-++≥=--, 当且仅当411x x -=-时,即3x =时取等号,所以41x x +-的最小值为5,故选C . 【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.12.D解析:D 【分析】本题先根据完全平方公式与基本不等式得到()22224a b a ab b ab +=++>,所以排除选项A2211aba b a b>=++,所以排除选项B ;接着根据基本>=,所以排除选项C ;最后根据基本不等式得到选项D 正确. 【详解】解:对于选项A :因为01a <<,1b >,所以()22224a b a ab b ab +=++>,故选项A 错误;对于选项B 2211aba b a b>=++,故选项B 错误;对于选项C>=C 错误;对于选项D :()22222222a b a ab b a b +>++=+, 所以a b +<,故选项D 正确. 故选:D . 【点评】本题考查基本不等式的应用、学生的运算能力和转换能力,是基础题.二、填空题13.【分析】设米米根据可得出利用基本不等式可求得的最大值即为所求【详解】设米米则即整理可得由基本不等式可得当且仅当时即当时等号成立因此停车场面积的最大值为平方米故答案为:【点睛】易错点睛:利用基本不等式 解析:10000【分析】设AD x =米,AF y =米,根据tan DE CF ACABC BD EF AB∠===可得出16254000x y +=,利用基本不等式可求得xy 的最大值,即为所求.【详解】设AD x =米,AF y =米,则250BD AB AD x =-=-,160CF AC AF y =-=-,tan DE CF AC ABC BD EF AB ∠===,即160160250250y y x x -==-,整理可得16254000x y +=, 由基本不等式可得400016252162540x y x y xy =+≥⨯=,10000xy ∴≤, 当且仅当162516254000x y x y =⎧⎨+=⎩时,即当12580x y =⎧⎨=⎩时,等号成立.因此,停车场面积的最大值为10000平方米. 故答案为:10000. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.6【分析】利用基本不等式得出的不等式解之可得的最小值【详解】∵∴∴当且仅当即时等号成立故答案为:6【点睛】方法点睛:本题考查用基本不等式求最小值解题方法是用基本不等式得出关于的不等式然后通过解不等式解析:6 【分析】利用基本不等式得出3a b +的不等式,解之可得3a b +的最小值. 【详解】∵0,0a b >>,∴211933(3)(3)(3)312ab a b a b a b a b a b =++=⋅++≤+++. (318)(36)0a b a b +++-≥,∴36a b +≥,当且仅当3a b =,即3,1a b ==时等号成立, 故答案为:6. 【点睛】方法点睛:本题考查用基本不等式求最小值,解题方法是用基本不等式得出关于3a b +的不等式,然后通过解不等式得出结论.不是直接由基本不等式得最小值,解题时也要注意基本不等式成立的条件.即最小值能否取到.15.【分析】函数变形为利用基本不等式1求最小值【详解】当且仅当即时等号成立所以函数的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正就是各项必须为正数;(解析:3+【分析】 函数变形为12(1)1y x x x x ⎛⎫=++- ⎪-⎝⎭,利用基本不等式“1”求最小值. 【详解】01x <<,011x ∴<-<,121212(1)333111x x y x x x x x x x x -⎛⎫∴=+=++-=++≥+=+ ⎪---⎝⎭,当且仅当121x xx x-=-,即1x =时,等号成立.所以函数12(01)1y x x x=+<<-的最小值为3+.故答案为:3+【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.16.【分析】因为函数的定义域为即不等式恒成立需按二次项系数:为零与不为零分类讨论当系数不为零时只需让系数大于零且根的判别式小于零解此不等式组即可求出的取值范围【详解】∵函数的定义域为∴对于任意恒有①若则解析:2(,)[2,)3-∞⋃+∞【分析】因为函数的定义域为R ,即不等式22(32)(2)10m m x m x -++-+>恒成立,需按二次项系数:232m m -+为零与不为零,分类讨论,当系数不为零时,只需让系数大于零且根的判别式小于零,解此不等式组,即可求出m 的取值范围. 【详解】∵ 函数()f x 的定义域为R ,∴ 对于任意x ∈R ,恒有22(32)(2)10m m x m x -++-+>, ① 若2320m m -+=, 则2m =或1, 当1m =时,不等式即为101x x -+>⇒<, 不符合题意, 当2m =时,不等式即为10>,符合题意, ∴ 2m =符合题意;② 若2320m m -+≠,由题意得()22232024(32)0m m m m m ⎧-+>⎪⎨∆=---+<⎪⎩, 解得:2m >或23m <;综上可得,m 的取值范围是2m ≥或23m <.故答案为:2(,)[2,)3-∞⋃+∞. 【点睛】关键点睛:本题主要考查二次不等式的恒成立问题.讨论二次项系数为零与不为零,当系数不为零时,只需让系数大于零且根的判别式小于零是解决本题的关键.17.【分析】先由题意令得到代入所求式子化简整理根据基本不等式即可求出结果【详解】因为abc 为正实数不妨令则所以当且仅当即即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三 解析:4748【分析】先由题意,令38432b c x c a y a b z +=⎧⎪+=⎨⎪+=⎩,得到111386131216411161612a x y z b x y z c x y z ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩,代入所求式子,化简整理,根据基本不等式,即可求出结果. 【详解】因为a 、b 、c 为正实数,不妨令38432b c x c a y a b z +=⎧⎪+=⎨⎪+=⎩,则111386131216411161612a x y z b x y z c x y z ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩, 所以11113139393862164216438432x y z x y z x y za b c b c c a a b x y z-++-++-++=+++++ 1339338621642164y z x z x y x x y y z z =-+++-+++-6139488262164y x z x y z x y x z z y ⎛⎫⎛⎫⎛⎫=-++++++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭61474848≥-+=, 当且仅当823629164yx x y z xx zy z z y ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,即::1:2:3x y z =,即::10:21:1a b c =时,等号成立. 故答案为:4748. 【点睛】 易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.18.【分析】由题意可得在恒成立运用参数分离和讨论结合恒成立思想和不等式的解法即可得到所求范围【详解】函数对任意恒成立即有即有在恒成立当时由于不满足题意;当时由于可得解得或即有成立则的取值范围是故答案为: 解析:(,1)-∞-【分析】由题意可得212ax a a<+在[2,)+∞恒成立,运用参数分离和讨论0a >,0a <,结合恒成立思想和不等式的解法,即可得到所求范围. 【详解】 函数4()f x x x=-,对任意[2x ∈,)+∞,()()0f ax af x +<恒成立, 即有440a ax ax ax x-+-<, 即有212ax a a ⎛⎫<+ ⎪⎝⎭在[2,)+∞恒成立,当0a >时,22121x a ⎛⎫<+ ⎪⎝⎭,由于2[4x ∈,)+∞,不满足题意;当0a <时,22121x a ⎛⎫>+ ⎪⎝⎭,由于2[4x ∈,)+∞,可得21214a ⎛⎫+< ⎪⎝⎭,解得1a >或1a <-,即有1a <-成立. 则a 的取值范围是(,1)-∞-. 故答案为:(,1)-∞-. 【点睛】本题考查不等式恒成立问题的解法,注意运用参数分离和单调性,考查分类讨论思想方法,以及运算能力,属于中档题.19.;【详解】令由条件可得:解得:解析:(5,4]--; 【详解】令2()(2)5f x x m x m =+-+-,由条件可得:22(2)042(2)5022222(2)4(5)040f m m b m a m m b ac >+-+->⎧⎧⎪⎪-⎪⎪->⇒->⎨⎨⎪⎪---≥-≥⎪⎪⎩⎩ 解得:(5,4]--20.6【分析】由题得解不等式即得x+y 的最小值【详解】由题得所以所以所以x+y≥6或x+y≤-2(舍去)所以x+y 的最小值为6当且仅当x=y=3时取等故答案为6【点睛】本题主要考查基本不等式求最值意在考解析:6【分析】由题得2)34x y x+y+=xy +≤(,解不等式即得x+y 的最小值.【详解】由题得2)34x y x+y+=xy +≤(, 所以2)4(x y x y +-+≥()-120, 所以6)(2)0x y x y +-++≥(, 所以x+y≥6或x+y≤-2(舍去), 所以x+y 的最小值为6. 当且仅当x=y=3时取等. 故答案为6 【点睛】本题主要考查基本不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.三、解答题21.(1)(,2]-∞;(2)(,1](2,)-∞+∞.【分析】(1)求出1242xx +-在(2,)+∞上的最小值后可得m 的范围; (2)求出命题q 为真时m 的范围,由p q ∧是假命题,p q ∨是真命题,知,p q 一真一假,由此可求得m 的范围. 【详解】 (1)若p 为真,则1242xm x +-, 而1121121224224224x x x x x -+=++=---, 当且仅当12242x x -=-,即3x =时等号成立; 故2m ,即实数m 的取值范围为(,2]-∞;(2)若q 为真,则213m +>,故1m ; 若p 真q 假,则21m m ⎧⎨⎩,,则1m , 若p 假q 真,则21m m >⎧⎨>⎩,,则2m >,综上所述,实数m 的取值范围为(,1](2,)-∞+∞.【点睛】方法点睛:本题考查由命题的真假求参数,考查复合命题的真假判断.掌握复合命题的真值表是解题关键.复合命题的真值表:22.无23.无24.无25.无26.无。
一元一次不等式求解练习题
一元一次不等式求解练习题题目::1. 求解不等式:3x + 4 > 102. 解方程:2x - 5 ≤ 73. 解不等式:3 - x < 94. 解方程组:x + 2 ≤ -1, x - 3 > 4解答::1. 第一题:求解不等式 3x + 4 > 10。
首先,我们需要将不等式中的x系数与常数项分开。
将常数项移到不等式的右侧:3x > 10 - 4化简得到:3x > 6然后,将不等式两边同时除以系数3:x > 2所以,不等式3x + 4 > 10的解集为x > 2。
2. 第二题:解方程 2x - 5 ≤ 7。
首先,我们需要将方程中的x系数与常数项分开。
将常数项移到方程的右侧:2x ≤ 7 + 5化简得到:2x ≤ 12然后,将方程两边同时除以系数2:x ≤ 6所以,方程2x - 5 ≤ 7的解集为x ≤ 6。
3. 第三题:解不等式 3 - x < 9。
首先,我们需要将不等式中的x系数与常数项分开。
将常数项移到不等式的右侧:-x < 9 - 3化简得到:-x < 6注意到不等号方向与x系数的符号相反,所以需要将不等式两边的符号取反:x > -6所以,不等式3 - x < 9的解集为x > -6。
4. 第四题:解方程组x + 2 ≤ -1, x - 3 > 4。
首先,我们分别求解两个方程。
第一个方程x + 2 ≤ -1:首先将常数项移到方程的右侧:x ≤ -3所以,第一个方程的解集为x ≤ -3。
第二个方程 x - 3 > 4:首先将常数项移到方程的右侧:x > 7所以,第二个方程的解集为x > 7。
由于要求解方程组,所以我们需要找到两个方程解集的交集:x ≤ -3 且 x > 7由于这两个不等式条件是互斥的,所以方程组x + 2 ≤ -1, x - 3 > 4 没有解集。
以上就是题目中的四道一元一次不等式求解练习题的解答。
中考数学《方程与不等式》专题知识训练50题-含答案
中考数学《方程与不等式》专题知识训练50题含答案(有理数、实数、代数、因式分解、二次根式)一、单选题1.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了甲、乙两类玩具,其中甲类玩具的进价比乙类玩具的进价每个多5元,经调查:用1000元购进甲类玩具的数量与用750元购进乙类玩具的数量相同.设甲类玩具的进价为x元/个,根据题意可列方程为()A.10007505=-x xB.10007505=-x xC.10007505=+x xD.1000750+5=x x2.不等式组215840xx-≤⎧⎨-<⎩的解集在数轴上表示为()A.B.C.D.3.下列各式,是一元一次不等式的有()①4>1①232x-<4①12x<①4327x y-<-①16x+=A.4个B.3个C.2个D.1个4.小亮解方程组2212x yx y+=⎧⎨-=⎩▲,的解为5xy=⎧⎨=⎩☆,由于不小心滴上了两滴墨水,刚好遮住了两个数▲和①,则这两个数分别为()A.4和- 6B.- 6和4C.- 2和8D.8和– 2 5.方程2x2+6x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法判断6.若关于x的一元二次方程220x x a+-=有两个相等的实数根,则a的取值为()A.1a=B.1a=-C.4a=D.4a=-7.3020xx+>⎧⎨-≥⎩不等式组的解集在数轴上表示为()A .B .C .D .8.甲、乙两人生产某种机器零件,甲每小时比乙多生产5个,甲生产120个所用的时间与乙生产90个所用的时间相等.设甲每小时生产x 个零件,根据题意,列出的方程是( ) A .120905x x =+ B .120905x x=- C .120905x x=+ D .120905x x =- 9.电影《长津湖》讲述了一段波澜壮阔的历史,自上映以来,全国票房连创佳绩.据不完全统计,某市第一天票房收入约2亿元,第三天票房收入约达到4亿元,设票房收入每天平均增长率为x ,下面所列方程正确的是( ) A .22(1)4x += B .()2124x +=C .22(1)4x -=D .()22212(1)4x x ++++=10.方程2320x x +-=的根的情况是 ( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .不能确定有没有实数根11.根据等式的性质,若等式m n =可以变形得到m a n b +=-,则a 、b 应满足的条件是( ) A .互为相反数B .互为倒数C .相等D .0a =,0b ≠12.若223894614M x xy y x y =+++-﹣(x ,y 是实数),则M 的值一定是( )A .0B .负数C .正数D .整数13.一元二次方程x 2﹣ax ﹣2=0,根的情况是( ) A .有两个不相等的实根 B .有两个相等的实数根 C .无法判断D .无实数根14.下列等式变形正确的是( ) A .如果0.58x -=,那么4x =- B .如果x y =,那么22x y -=- C .如果mx my =,那么x y =D .如果x y =,那么x y =15.若关于x 的一元二次方程2(3)410k x x -++=有两个不相等的实数根,则k 的取值范围是( ) A .7k <B .7k <,且3k ≠C .7k ≤,且3k ≠D .7k >16.已知过点(2,﹣3)的直线y=ax+b (a≠0)不经过第一象限,设s=a+2b ,则s 的取值范围是( )A .﹣5≤s≤﹣B .﹣6<s≤﹣C .﹣6≤s≤﹣D .﹣7<s≤﹣17.如图,在平面直角坐标系中,点A 的坐标为(4,3)M 1B ①x 轴于点B .点C 是线段OB 上的点,连接AC ,点P 在线段AC 上且AP =PC ,函数y =kx(x >0)的图象经过点P .当点C 在线段OB 上运动时上k 的取值范围是( )A .0<k ≤3B .3≤k ≤6C .0≤k ≤6D .6≤k ≤1218.已知两个多项式222A x x =++,222B x x =-+,以下结论中正确的个数有( )①若12A B +=,则2x =±;①若2A B ax bx ++-的值与x 的值无关,则2a b +=-; ①若|8||4|12A B A B --+-+=,则12x -≤≤;①若关于y 的方程2(1)2m y A B x -=+-的解为整数,则符合条件的非负整数m 有3个. A .1个B .2个C .3个D .4个19.下列解方程的过程中正确的是( ) A .将2﹣371745x x -+=去分母,得2﹣5(5x ﹣7)=﹣4(x+17)B .由0.150.710.30.02x x--=,得10157032x x --=100 C .40﹣5(3x ﹣7)=2(8x+2)去括号,得40﹣15x ﹣7=16x+4D .﹣25 x=5,得x=﹣252二、填空题20.“x 的4倍与2的和是非负数”用不等式表示为__________________. 21.二元一次方程310x y +=的正整数解共有_________个. 22.已知2x|m|﹣2+3=9是关于x 的一元二次方程,则m=_____.23.已知关于x 的一元二次方程3x 2+4x +m =0有实数根,则m 的取值范围是_______. 24.观察下列一组方程:①20x x -=;①2320x x -+=;①2560x x -+=;①27120x x -+=;…它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”,若2560x kx ++=也是“连根一元二次方程”,则k 的值为____________.25.对于实数a 、b ,定义运算“①”如下:a ①b =a 2﹣ab ,例如:5①3=52﹣5×3=10.若(x +2)①(x ﹣3)=25,则x 的值为 ___.26.已知不等式组232(1)1x x x x -<-⎧⎨->-⎩,x 是非负整数,则x 的值是________.27.已知关于x 的一元二次方程250x x m ++=的一个根是2,则m =___________. 28.已知方程2x ﹣a =8的解是x =2,则a =_____.29.高斯符号[]x 首次出现是在数学家高斯(C .F. Gauss )的数学著作《算术研究》一书中,对于任意有理数x ,通常用[]x 表示不超过x 的最大整数,如[]2.92=.给出如下结论:①[]33-=-;①[]2.92-=-;①[]0.90=;①[][]3.1 3.97+=.以上结论中,你认为正确的是_________(填序号). 30.分式方程1233xx x-=---解得______. 31.已知关于x 的方程2x a +=23x a++1的解与方程4x ﹣5=3(x ﹣1)的解相同,则a 的值_____.32.如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积之比为1:13,则直角三角形较短的直角边a 与较长的直角边b 的比值为__.33.一套运动装标价200元,按标价的八折销售,则这套运动装的实际售价为________元.34.某商品标价28元,按九折出售,仍可获利20%,则该商品的进价为________元. 35.汛期来临之前,某地要对辖区内的4600米河堤进行加固.施工单位在加固800米后,采用新的加固模式,这样每天加固长度是原来的2倍,结果共用10天便完成了全部任务.请求出施工单位原来每天加固河堤多少米?设原来每天加固河堤x 米,根据题意可得方程_________________.36.某种品牌的笔记本电脑原价为5000元,如果连续两次降价的百分率都为10%,那么两次降价后的价格为_____元.37.有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.38.已知方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,则ab =_____.39.已知关于x 的方程242x mx +=-的解是正数,则m 的取值范围为______.三、解答题 40.解方程:14211x x x++=-- 41.解下列一元二次方程: (1)22(1)18x -=; (2)22330x x ; (3)2230x x --=; (4)22340x x +-=. 42.解不等式:2123x x -≤-,把解集在数轴上表示出来. 43.(1)解方程组2=57320x y x y -⎧⎨-=⎩;(2)解不等式组21241x xx x >-⎧⎨+<-⎩.44.解方程组:45.某学校准备为“中国传统文化知识竞赛”购买奖品,已知在某商场购买3个甲种奖品和2个乙种奖品需要65元,购买4个甲种奖品和3个乙种奖品需要90元. (1)求甲、乙两种奖品的单价各是多少元;(2)该校计划购买甲、乙两种奖品共60个,且购买奖品的总费用不超过600元.恰逢该商场搞促销,所有商品一律八折销售,求该校在该商场最多能购买多少个甲种奖品. 46.某学习网站针对疫情停课不停学推出了套餐优惠服务:已知购买2个学习账号和1个错题伴印设备需要2700元,购买3个学习账号和2个错题伴印设备需要4800元.(1)求1个学习账号和1个错题伴印设备的单价各是多少元?(2)若某学习小组准备购买账号和错题伴印设备共45个,且要求伴印设备不低于账号数量的23,请问如何购买才能使得总费用最低,最低费用为多少? 47.计算题(1)解不等式组31122(3)5x x x x -⎧+⎪⎨⎪--≥⎩(2)分式化简:2321(2)22a a a a a -++-÷++ 48.已知,关于的方程组3{25x y a x y a-=++= 的解满足.(1)求的取值范围.(2)化简.49.山地自行车越来越受中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车今年每辆销售价比去年降低400元,则今年销售5辆车与去年销售4辆车的销售金额相同.(1)求该车行今年和去年A型车每辆销售价各多少元?(2)该车行今年计划进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.若今年A型车进货价每辆1100元,B型车进货价每辆1600元、销售价每辆2200元.设进A型车a辆,这批车卖完后获得利润W元?应如何进货才能使这批车获得利润最多?参考答案:1.A【分析】设甲类玩具的进价为x元/个,根据用1000元购进甲类玩具的数量与用750元购进乙类玩具的数量相同这个等量关系列出方程即可.【详解】解:设甲类玩具的进价为x元/个,则乙类玩具的进价为(x−5)元/个,由题意得,10007505=-x x,故选A.【点睛】本题考查的是列分式方程解应用题,找到等量关系是解决问题的关键.2.B【分析】分别求出每一个不等式的解集,根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可得答案.【详解】解:215840xx-≤⎧⎨-<⎩①②,解不等式2x−1≤5,得:x≤3,解不等式8−4x<0,得:x>2,故不等式组的解集为:2<x≤3,故选:B.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟悉在数轴上表示不等式解集的原则“大于向右,小于向左,包括端点用实心,不包括端点用空心”是解题的关键.3.D【分析】根据一元一次不等式的定义,未知数的次数是1,对各选项分析判断后利用排除法求解.【详解】解:①没有未知数,不是一元一次不等式;①是一元一次不等式;①未知数在分母上,不是一元一次不等式;①含有两个未知数,不是一元一次不等式;①是一元一次方程,不是一元一次不等式.故选D.【点睛】本题主要是对一元一次不等式定义的考查.4.D【分析】根据方程的解的定义,把x=5代入2x−y=12,求得y的值,进而求出▲的值,即可得到答案.【详解】解:①方程组2212x yx y+=⎧⎨-=⎩▲的解为5xy=⎧⎨=⎩☆,①把x=5代入2x−y=12,得:2×5−y=12,解得:y=-2,把x=5,y=-2代入2x+y=▲,得:2×5+(−2)=▲,即:▲=8,①这两个数分别为:8和﹣2.故选D.【点睛】本题主要考查二元一次方程组的解的定义,掌握二元一次方程组的解满足各个方程,是解题的关键.5.C【详解】解:①在方程2x2+6x+5=0中,①=62﹣4×2×5=﹣4<0,①方程2x2+6x+5=0没有实数根,故选C.6.B【分析】根据方程有两个相等的实数根,可推出根的判别式240b ac-=,代入相应的系数即可解得a的取值.【详解】220x x a+-=有两个相等的实数根∴()22410a-⨯⨯-=解得:1a=-故选:B.【点睛】本题主要考查一元二次方程根的判别式,能根据方程有两个相等的实数根推出根的判别式等于零是解题的关键.7.C【分析】解出不等式组,根据解集即可选出正确的数轴.【详解】30 20 xx+>⎧⎨-≥⎩①②解:由①得:x >-3, 由①得:x ≤2故原不等式组得解集为:-3<x ≤2 故选:C【点睛】本题主要考查了一元一次不等式组以及用数轴表示解集,熟练地掌握不等式的性质,正确地解出不等式组,能够正确地在数轴上表示不等式组的解集是解题的关键.注意:“≥、≤”在数轴上表示为实心圆点,“>、<”在数轴上表示为空心圆圈. 8.D【分析】设甲每小时生产x 个零件,根据题意列出分式方程式即可. 【详解】解:设甲每小时生产x 个零件,根据甲生产120个所用的时间与乙生产90个所用的时间相等, 可列方程120905x x =-, 故选D .【点睛】本题考查了分式方程的实际应用,正确列出方程式是本题关键. 9.A【分析】第一天为2亿元,根据增长率为x 得出第二天为2(1+x )亿元,第三天为2(1+x )2亿元,根据“第三天票房收入约达到4亿元”,即可得出关于x 的一元二次方程. 【详解】设平均每天票房的增长率为x , 根据题意得:22(1)4x +=. 故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 10.A【分析】利用一元二次方程根的判别式进行判断. 【详解】解:方程2320x x +-=中,a=1,b=3,c=-2 ①22=4341(2)170b ac -=-⨯⨯-=> ①方程有两个不相等的实数根. 故选:A .【点睛】本题考查一元二次方程根的判别式,掌握2=40b ac ->方程有两个不相等的实数根,2=4=0b ac -方程有两个相等的实数根,2=4<0b ac -方程无实数根是解题关键. 11.A【分析】根据等式的基本性质得到a b =-,再根据相反数的定义解决此题.【详解】①m n =,①0-=m n ,且m a n b +=-,①a b =-,即0a b +=,①a 与b 互为相反数,故选:A【点睛】本题主要考查等式的基本性质、相反数,熟练掌握等式的基本性质、相反数的定义是解决本题的关键.12.C【分析】先将整式M 进行变形为(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1,然后根据二次方的非负性,即可得出答案.【详解】解:M =3x 2﹣8xy +9y 2﹣4x +6y +14=(x 2﹣4x +4)+(y 2+6y +9)+2(x 2﹣4xy +4y 2)+1=(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1①()220x -≥,()230y +≥,()220x y -≥,①(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1>0,故C 正确.故选:C .【点睛】本题主要考查了配方法的应用和非负数的性质,将整式M 变为(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1,是解题的关键.13.A【详解】:①=(-a )2-4×1×(-2)=a 2+8>0,①方程有两个不相等的实数根.故选A .14.B【分析】分别利用等式的基本性质判断得出即可.【详解】解:A、如果-0.5x=8,那么x=-16,错误;B、如果x=y,那么x-2=y-2,正确;C、如果mx=my,当m=0时,x不一定等于y,错误;D、如果|x|=|y|,那么x=y或x=-y,错误;故选:B.【点睛】此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加减同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式是解题关键.15.B【分析】利用一元二次方程的定义和判别式的意义得到k-3≠0且Δ=42-4(k-3)×1>0,然后解不等式组即可.【详解】解:根据题意得k-3≠0且Δ=42-4(k-3)×1>0,解得k<7且k≠3.故选:B.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.16.B【详解】试题分析:由直线y=ax+b(a≠0)不经过第一象限可得a<0,b≤0,又因直线y=ax+b(a≠0)经过点(2,﹣3),可得2a+b=—3,所以,b=—2a—3,因此 s=a+2b=a+2(—2a—3)=—3a—6,由a<0可得s>—6, s=a+2b=+2b=,由b≤0可得s≤—,所以s的取值范围是﹣6<s≤﹣.故答案选B.考点:一次函数图象与系数的关系.17.B【分析】设C(c,0)(0≤c≤4),过P作PD①x轴于点D,由①PCD①①ACB,用c表示P点坐标,再求得k关于c的解析式,最后由不等式的性质求得k的取值范围.【详解】解:①点A的坐标为(4,3),AB①x轴于点B,①OB=4,AB=3,设C(c,0)(0≤c≤4),过P作PD①x轴于点D,则BC=4-c,PD AB,OC=c,①①PCD①①ACB,①PD CD CPAB CB CA==①AP PC=,①1 342 PD CDc==-①PD=32,122CD c=-①OD=OC+CD=2+12c,①P(2+12c,32),把P(2+12c,32)代入函数kyx=(x>0)中,得k=3+34c,①0≤c≤4,①3≤k≤6,故选:B.【点睛】本题主要考查了反比例函数的图象与性质,相似三角形的性质与判定,不等式的性质,解题关键是求出k关于c的解析式.18.C【分析】代入多项式列方程求解即可判断①;先代入多项式化简,再利用结果与x的值无关得到a、b的值,即可判断①;代入多项式列绝对值方程求解即可判断①;代入多项式,得到41ym=-,根据题意得到符合条件的非负整数m值,即可判断①.【详解】解:222A x x=++,222B x x=-+,①12A B+=,()22222212x x x x∴+++-+=,240x ∴-=,2x ∴=±,①正确;①()()()22222222224A B ax bx x x x x ax bx a x bx ++-=+++-++-=+-+,2A B ax bx ++-的值与x 的值无关,()224a x bx ∴+-+的值与x 的值无关,20a ∴+=,0b -=,2a ∴=-,0b =,2a b ∴+=-,①正确; ① ()2282222848A B x x x x x --=++--+-=-,()2242222444A B x x x x x -+=++--++=+,当1x <-时,()8444128x x x -+-=-,当12x -≤≤时,844412x x -++=,当2x >时,484484x x x -++=-,若|8||4|12A B A B --+-+=,即484412x x -++=,∴当12x -≤≤时,满足条件,①正确;①2(1)2m y A B x -=+-,()14m y ∴-=,41y m ∴=-, ∴若关于y 的方程2(1)2m y A B x -=+-的解为整数,则符合条件的非负整数m 有0、2、3、5,共4个,①错误,故结论中正确的是①①①,故选C .【点睛】本题考查了整式的加减运算,解一元一次方程,解绝对值方程,非负整数的概念,熟练掌握解方程的步骤与方法是解题关键,注意0是非负整数.19.D【详解】试题解析:A. 方程两边同乘以20得,40-5(3x -7)=4(x +17),所以本选项错误;B. 从左边看,方程应用的是分式的性质;从右边看,方程应用的是等式的性质2;故所得方程与原方程不是同解方程, 所以本选项错误;C. 去括号时漏乘常数项,且去括号未变号;所以本选项错误;D.计算正确.故选D.20.4x+2≥0【详解】由题意得,4x+2≥0.故答案为4x+2≥0.21.3【分析】由于二元一次方程x+3y=10中x的系数是1,可先用含y的代数式表示x,然后根据此方程的解是正整数,那么把最小的正整数y=1代入,算出对应的x的值,再把y=2代入,再算出对应的x的值,依此可以求出结果.【详解】解:①x+3y=10,①x=10-3y,①x、y都是正整数,①y=1时,x=7;y=2时,x=4;y=3时,x=1.①二元一次方程x+3y=10的正整数解共有3对.故答案为:3.【点睛】此题考查了解二元一次方程,解题的关键是将一个未知数看做已知数求出另一个未知数.22.±4【分析】根据一元二次方程的定义解答即可.【详解】①2x|m|﹣2+3=9是关于x的一元二次方程,①|m|﹣2=2,解得m=±4.故答案为±4.【点睛】本题考查了一元二次方程的定义,熟知一元二次方程的定义是解决问题的关键.23.43m ≤ 【分析】一元二次方程有实数根,则2=40b ac ∆-≥,建立关于m 的不等式,求出m 的取值范围.【详解】解:①关于x 的一元二次方程3x 2+4x +m =0有实数根,22=44430b ac m ∆-=-⨯≥ ①43m ≤, 故答案为:43m ≤. 【点睛】本题主要考查了一元二次方程根的判别式,解题的关键是明确当一元二次方程有实数根时,2=40b ac ∆-≥.24.15-【分析】设方程的两根分别是1x 和11x +,根据一元二次方程根与系数关系可得()11156x x +=,可得方程的两根,继而根据一元二次方程根与系数关系即可得出k 的值;【详解】设方程的两根分别是1x 和11x +,根据一元二次方程根与系数关系可得:()11156x x +=,解得:17x =,118x +=,①11115x x k ++==-,①15k =-,故答案为:15-【点睛】本题考查解一元二次方程,解题的关键是熟练解一元二次方程的方法以及一元二次方程根与系数关系.25.3【分析】根据新定义运算列出方程,故可求解.【详解】①a ①b =a 2﹣ab ,(x +2)①(x ﹣3)=25,①(x +2)2-(x +2)(x ﹣3)=25,x 2+4x +4-(x 2-x -6)=25x 2+4x +4- x 2+x +6=255x =15x=3故答案为:3.【点睛】此题主要考查新定义运算与解方程,解题的关键是熟知整式的乘法运算与方程的求解.26.2【分析】求出不等式组的解集,确定出非负整数解即可.【详解】解:不等式组整理得:521xx⎧<⎪⎨⎪>⎩,解得:512x<<,由x为非负整数,得到2x=,则x的值为2.故答案为:2.【点睛】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.27.14-【分析】先将x=2代入250x x m++=,然后求解关于m的方程即可.【详解】把2x=代入250x x m++=,得:22100m++=,①14m=-.故答案为:-14.【点睛】本题主要考查了方程的解以及解一元一次方程的解,理解方程的解成为解答本题的关键.28.-4【分析】把x=2代入方程计算即可求出a的值.【详解】解:把x=2代入方程得:4﹣a=8,解得:a=﹣4.故答案为:﹣4.【点睛】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【分析】通过阅读知道[x]有两层意义,一是其值小于x ,二是其值为整数,根据这两点可以得到解答.【详解】解:由题意得:[-3]3≤-,且为整数,所以[-3]= -3,①正确;[-2.9] 2.9≤-,且为整数,所以[-2.9]= -3,①错误;[0.9]0.9≤ ,且为整数,所以[0.9]= 0,①正确;[3.1] 3.1≤ ,且为整数,所以[3.1]= 3;[3.9] 3.9≤ ,且为整数,所以[3.9]= 3,所以[3.1]+[3.9]=6,①错误.故答案为:①①.【点睛】本题考查阅读理解应用能力,在对材料内容进行归纳提取的基础上应用其方法解答是解题关键.30.5x =【分析】根据分式方程的求解步骤进行求解即可;【详解】解:方程两边同时乘以()3x -,得:()123x x =--,去括号、移项得:5x -=-,系数化为1得:5x =,经检验,当5x =时,30x -≠,故5x =是原方程的根,故答案为:5x =.【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 31.8【分析】先求出第二个方程的解,把x =2代入第一个方程,求出方程的解即可.【详解】解方程4x ﹣5=3(x ﹣1)得:x =2,把x =2代入方程2x a +=23x a ++1中,可得:22a +=43a ++1, 解得:a =8.故答案为8【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的方程是解此题的关键.【详解】解:①小正方形与大正方形的面积之比为1:13,①设大正方形的面积是13,①c2=13,①a2+b2=c2=13,①直角三角形的面积是1314-=3,又①直角三角形的面积是12ab=3,①ab=6,①(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25,①a+b=5.则a、b是方程x2﹣5x+6=0的两个根,故b=3,a=2,①23ab=.故答案是:2:3.考点:勾股定理证明的应用33.160【详解】一套运动装标价200元,按标价的八折(即原价的80%)销售,则这套运动装的实际售价为200×80%=160元,故答案为:160.34.21【分析】根据题意得到方程28×0.9=(1+20%)x,求解即可.【详解】解:设该商品的进价为x元,依题意得,28×0.9=(1+20%)x解得:x=21故答案是21.【点睛】本题考查了一次方程的实际应用,属于简单题,找到等量关系,建立一元一次方程是解题关键.35.8004600800102x x-+=【详解】本题的等量关系是:加固800米用的时间+加固(4600-800)米用的时间=10. 所以可列方程为:8004600800102x x-+= 36.4050【分析】根据题意可知第一次降价为5000(1-10%)=4500,第二次降价为4500(1-10%)=4050.【详解】解:依题意得:5000(1-10%)2=4050.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉降价率的计算方法是解题关键.37.24【分析】设这个两位数的十位数字为x ,则个位数字为x +2,然后用含x 的代数式表示出这个两位数,根据这个两位数大于20且小于30即可列出关于x 的不等式组,解不等式组求出x 的范围后结合x 为正整数即可确定x 的值,进一步即可求得答案.【详解】解:设这个两位数的十位数字为x ,则个位数字为x +2,那么这个两位数为10x +x +2,根据题意得:20<10x +x +2<30,解得:18281111x <<. ①x 为正整数,①x =2,①10x +x +2=24,则这个两位数是24.故答案为:24.【点睛】本题考查了一元一次不等式组的应用,属于常考题型,正确理解题意、列出不等式组是解题关键.38.-1 【分析】根据方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,所以把2x y +=和27x y --=组成方程组求出 x 、y 的值,再把 x 、y 的值代入其他两个方程 4ax y +=和8x by +=即可求出a 、 b 的值,即可得答案.【详解】解:①方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,①方程组227x y x y +⎧⎨--⎩=①=②的解也是它们的解, ①× 2+①,得:2x +x = 4-7,解得:x =-1,把x = -1代入①,得:-1+y =2,解得:y =3,把x =-1, y =3代入4ax y +=得:-a +3= 4解得:a = -1,把x =-1, y =3代入8x by +=得:-1+3b =8,解得:b =3,①ab =(-1)3=-1,故答案为:-1.【点睛】本题主要考查了二元一次方程组的解及二元一次方程组的解法,做题的关键是熟练的解二元一次方程组.39.8m >-且4m ≠-【分析】先解分式方程用含有m 的代数式表示x ,再根据x >0,且x -2≠0,求出答案即可. 【详解】242x m x +=- 82m x +=因为方程的解是正数,且x -2≠0, 所以802m +>,且8202m +-≠,解得m >-8,且m ≠-4.故答案为:m >-8,且m ≠-4.【点睛】本题主要考查了分式方程的解,注意:解分式方程时要保证分母不能是0. 40.x =-1【分析】去分母解整式方程,再代入最简公分母检验即可.【详解】解:去分母,得x +1-4=2(x -1)去括号,得x -3=2x -2解得x =-1,检验:当x =-1时x -10≠,①原分式方程的解为x =-1.【点睛】此题考查了解分式方程,正确掌握解分式方程的解法是解题的关键.41.(1)14x =,22x =-;(2)方程没有实数解;(3)13x =,21x =-;(4)134x -+=,2x = 【分析】(1)先变形为2(1)9x -=,然后利用直接开平方法解方程;(2)利用判别式的意义判断方程没有实数解;(3)利用因式分解法解方程;(4)利用求根公式法解方程.【详解】解:(1)22(1)18x -=可化为:2(1)9x -=,①13x -=±,①14x =,22x =-;(2)①2(3)423150,所以方程没有实数解;(3)2230x x --=可化为:(3)(1)0x x -+=,①30x -=或10x +=,①13x =,21x =-;(4)①2342(4)41, ①24341222b b ac x a①1x =2x = 【点睛】本题考查了解一元二次方程,熟悉相关解法是解题的关键.42.x≤2【分析】先将不等式左右两边同时扩大6倍,去掉分母;然后在按照解一元一次不等式的步骤进行求解【详解】左右两边同时扩大6倍得:3x≤6-2(x -2)去括号得:3x≤6-2x+4移项得:5x≤10解得:x≤2数轴上表示如下:【点睛】本题考查了解不等式,需要注意,不等式两边同乘除负数时,不等号要变号43.(1)55xy=⎧⎨=⎩;(2)x>1.【分析】(1)利用加减消元法解二元一次方程组即可;(2)先求出每一个不等式的解集,再求出不等式组的解集即可.【详解】解:(1)25 7320x yx y-=⎧⎨-=⎩①②,由①得:y=2x﹣5①,把①代入①得:7x﹣3(2x﹣5)=20,解得:x=5,把x=5代入①得:y=5,方程组的解为55xy=⎧⎨=⎩;(2)21241x xx x>-⎧⎨+<-⎩①②,解不等式①,得:x13 >,解不等式①,得:x>1,不等式组的解集为:x>1.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式组,解题的关键在于能够熟练掌握相关知识进行求解.44.【详解】试题分析:用加减法解方程组,①×2+①求出x=2,代入①可求出y=3,.试题解析:解方程组:解:①×2得:③①+③得:把代入①得: 原方程组的解为考点:解二元一次方程组.45.(1)甲种奖品的单价为15元,乙种奖品的单价为10元(2)学校在商场最多能购买30个甲种奖品【分析】(1)设甲种奖品的单价为x 元,乙种奖品的单价为y 元,根据“购买3个甲种奖品和2个乙种奖品共需65元;购买4个甲种奖品和3个乙种奖品共需90元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设学校在商场可购买m 个甲种奖品,则可购买(60−m )个乙种奖品,根据总价=单价×数量,结合此次购买奖品的费用不超过600元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.(1)解:(1)设甲种奖品的单价为x 元,乙种奖品的单价为y 元,依题意得:32654390x y x y ⎧⎨⎩+=+=,解得:1510x y =⎧⎨=⎩, 答:甲种奖品的单价为15元,乙种奖品的单价为10元;(2)解:设学校在商场可购买m 个甲种奖品,则可购买(60−m )个乙种奖品,依题意得:15×0.8m +10×0.8(60−m )≤600,解得:m ≤30,答:学校在商场最多能购买30个甲种奖品.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.46.(1)1个学习账号和1个错题半印设备的单价各是600元和1500元;(2)购买学习账号27个,伴印设备18个总费用最低,最低费用为43200元【分析】(1)本题有两个相等关系:购买2个学习账号的费用+1个错题伴印设备的费用=2700元,购买3个学习账号的费用+2个错题伴印设备的费用=4800元,据此设未知数列方程组解答即可;(2)设购买学习账号m 个,总费用为W 元,先根据题意列出W 与m 的一次函数关系式,然后由伴印设备不低于账号数量的23可得关于m 的不等式,解不等式即可求出m 的取值范围,再根据一次函数的性质解答即可.【详解】解:(1)设1个学习账号和1个错题伴印设备的单价各是x 元和y 元,依据题意得: 22700324800x y x y +=⎧⎨+=⎩,解得:6001500x y =⎧⎨=⎩, 答:1个学习账号和1个错题伴印设备的单价各是600元和1500元.(2)设购买学习账号m 个,则购买伴印设备()45m -个,总费用为W 元,依据题意得:()60015004590067500W m m m =+-=-+, 由2453m m -≥,解得:27m ≤, 9000-<,∴W 随m 的增大而减小,①当m 取最大值27时,函数值W 最小,最小值为675002430043200-=,答:购买学习账号27个,伴印设备18个总费用最低,最低费用为43200元.【点睛】本题考查了二元一次方程组、一元一次不等式和一次函数的应用,属于常考题型,正确理解题意、熟练掌握上述基本知识是解题的关键.47.(1)2≤x <3;(2)11a a +-. 【分析】(1)分别解得各不等式的解集,再求出两个不等式的公共解集即可.(2)根据分式的混合运算法则进行化简即可.【详解】(1)31122(3)5x x x x -⎧+>⎪⎨⎪--≥⎩由3112x x -+> 得:x <3 由2(3)5x x --≥ 得:x≥2①不等式组的解集为:2≤x <3(2)原式=23(2)(2)2·22(1)a a a a a a -++⎡⎤+⎢⎥++-⎣⎦ =22122(1)a a a a -++- =a+1a-1【点睛】本题考查解不等式,分式的混合运算,熟练掌握不等式的解法及分式的运算法则是解题关键.48.(1)a >2 (2)2【详解】试题分析:(1)解不等式得出用a 表示的x 与y ,然后根据x >y >0得到不等式组,求得不等式组的解集可求得a 的范围;(2)根据绝对值的意义直接由(1)的结论可求得结果.试题解析:解:(1)3{25x y a x y a -=++=①②由①+①得3x=6a+3解得x=2a+1,把x=2a+1代入①可得y=a-2由x >y >0可得2a+1>a-2>0解不等式可得a >-3且a >2所以a 的取值范围为a >2(2)由a >2可知=a-(a-2)=a-a+2=2.考点:二元一次方程组,不等式组,绝对值49.该车行今年A 型车每辆销售价1600元,去年每辆销售价2000元;(2)当进A 型车20辆,B 型车40辆时,这批车获利最大.【详解】试题分析:(1)设今年A 型车每辆售价x 元,则去年售价每辆为y 元,根据题意建立方程组求出其解即可;(2)设今年新进A 型车a 辆,则B 型车(60-a )辆,获利W 元,由条件表示出W 与a 之间的关系式,由a 的取值范围就可以求出W 的最大值.。
解不等式的各种方法与练习
解不等式的各种方法与练习不等式是高中数学中的一个重要知识点,也是初中学习的基础。
掌握不等式的各种解法和方法,有助于我们更好地理解和应用数学知识。
本文将介绍解不等式的各种方法,并提供一些习题供大家练习,希望对大家的数学学习有所帮助。
一、一元一次不等式一元一次不等式形如ax+b>0(<0)的形式,它的解法和一元一次方程相似。
将不等式中的式子看作“未知数”,通过逆运算来解出未知数的取值范围。
例如,求解不等式2x+3>5:- 首先,将不等式中的常数项移到左边,得到2x>2;- 接下来,将2除以2,得到x>1。
所以,不等式2x+3>5的解集为{x|x>1}。
二、一元二次不等式一元二次不等式形如ax²+bx+c>0(<0)的形式,它是一元二次方程的推广,它的解法需要结合二次函数图像的特点来进行分析。
一元二次不等式的解法可以通过以下步骤进行:- 将不等式移项,化为零的形式;- 根据二次函数图像的几何特征,找出导致不等式成立的零点和开口向上或向下的特征;- 根据零点和开口方向确定不等式的解集。
例如,求解不等式x²+2x-3>0:- 首先,将不等式移项,得到x²+2x-3=0;- 接下来,求出函数y=x²+2x-3的零点。
通过因式分解、配方法或求根公式可得,解为x=1和x=-3;- 最后,根据函数的开口向上,将解集写成{x|-3<x<-1或x>1}。
三、绝对值不等式绝对值不等式的基本形式是|ax+b|>c,其中a、b、c均为实数。
它的解法需要分正负讨论,并结合绝对值的不等式性质来进行分析。
例如,求解不等式|2x-3|>5:- 当2x-3>0时,有2x-3>5,解得x>4;- 当2x-3<0时,有-(2x-3)>5,解得x<-1。
所以,不等式|2x-3|>5的解集为{x|x<-1或x>4}。
八年级数学下册第一次月考试卷
八年级数学下册第一次月考试卷一、选择题(每题4分,共40分)1.下列不等式中,是一元一次不等式的是()。
A. x + 3 > 0B. x^2 - 4 > 0C. xy > 1D. |x| - 1 < 0(虽然含绝对值,但可转化为两个一元一次不等式组求解)答案:A、D(若考虑D可转化为两个一元一次不等式则选A、D,若严格按照一元一次不等式定义则只选A)2.若 a > b,则下列不等式一定成立的是()。
A. a + c < b + cB. a - c > b - dC. ac > bc(c为正数时成立,c为负数或0时不成立)D. a/c > b/c(c为正数时成立,c为负数时不成立)答案:此题无正确答案(或根据题目要求,若必须选一个最接近的,可以讨论,但通常这种题目应确保有唯一正确答案)3.下列图形中,是轴对称图形但不是中心对称图形的是()。
A. 等边三角形B. 平行四边形C. 正方形D. 圆答案:A4.若关于 x 的一元一次不等式组 { x - a > 0, 3 - 2x > -1 } 的解集为 x < 2,则 a 的取值范围是()。
A. a ≤ 2B. a < 2C. a = 2D. a > 2答案:B5.下列计算正确的是()。
A. 3a + 2b = 5abB. 5a2 = 3C. 7a + a = 7a^2D. -2(a - b) = -2a + 2b答案:D6.若 |x - 3| + |x + 2| 的最小值为 a,则 a =()。
A. 1B. 3C. 5D. 6答案:C(考虑数轴上点x到-2和3的距离之和最小)7.下列多项式能用完全平方公式分解的是()。
A. x^2 - 4B. x^2 + 4x - 4C. x^2 + 4x + 16D. x^2 - 4x + 4答案:D8.在平面直角坐标系中,点A(2,3)关于x轴的对称点坐标为()。
一(二)元一次方程(组) 不等式,分式,一元二次方程
一(二)元一次方程(组) 不等式,分式,一元二次方程 学校:___________姓名:___________班级:___________考号:___________1.解方程:(1)8-5x =x +2 (2)y -12y -=2-25y +2.1-7.0=0.32-7.1x x 3.x (4-)2-[12-4(x 5-1)]=04.(1)112(1)(2)25x x --=+ (2)4325236x x x x ++--+=-5.解下列方程组.(1)(用代入法)25,3 6.x y x y +=⎧⎨-=⎩ (2)(用加减法)5,233.484s t s t ⎧-=⎪⎪⎨⎪+=⎪⎩6.解方程组176397,6317143.x y x y +=⎧⎨+=⎩①②7.已知方程组23,28x y x ky -=⎧⎨+=⎩的解满足x +y =6,求k 的值.8.小亮在解方程组27,4ax y cx dy +=⎧⎨-=⎩时,因把a 看错而得到5,1,x y =⎧⎨=⎩而方程组正确的解是3,1,x y =⎧⎨=-⎩求a -c -d 的值.9.解方程组:26,1,218.x y z x y x y z ++=⎧⎪-=⎨⎪-+=⎩①②③10.求不等式组315,260x x -<⎧⎨+>⎩的解集.11.解不等式324x x --≥()2113x +-,将解集在数轴上表示出来,且写出它的正整数解。
12.已知x =2,求代数式(11-x —11+x )÷12-x x 的值13.解分式方程:24111x x x+=+-14.计算: (1)÷; (2)(1+)÷15.计算(1)、用公式法解方程:5x+2=3x 2 (2)解方程:3x(x-1)=2-2x16.解方程:(1)x 2-2x=1 (2)3x (x-2)=2(2-x )17.用配方法解方程2x 2-4x-3=018.解方程:()()22x 1x 3x 27-=+-19.选用适当的方法解方程:(1)9x 2-25=0 (2)5x 2-4x-1=0(3)0)3(2)3(2=-+-x x x20.解方程:(1)0292=-x (2)22330x x ++=参考答案1.x=1 y=117【解析】试题分析:(1)进行移项合并同类项,将未知数系数化为1求出解;(2)首先进行去分母,然后根据第(1)题的方法进行计算.试题解析:(1)-5x -x=2-8 -6x=-6 解得:x=1(2)10y -5(y -1)=20-2(y+2) 10y -5y+5=20-2y -410y -5y+2y=20-4-5 7y=11 解得:y=117 考点:解一元一次方程.2【答案】解:整理,得:1720x 10x =137--, 去分母,得:7(17-20x)=3×10x-21,去括号,得:119-140x=30x-21,移项,得:30x+140x=119+21,合并同类项,得:170x=140,系数化为1,得:x=1417. 【解析】试题分析:先将小数系数化为整数系数,然后按照解方程的步骤求解即可.考点:一元一次方程的解法点评:此题考查的是一元一次方程的解法,解决此类方程要先根据分数的基本性质化小数系数为整数系数后再按解方程的步骤进行计算.3【答案】解:去括号,得:4x-8-16+20x=0,移项,得:4x+20x=8+16,合并同类项,得:24x=24,系数化为1,得:x=1【解析】试题分析:先利用去括号法则去括号,然后移项合并同类项,最后系数化为1求解即可. 考点:一元一次方程的解法点评:此题考查的带括号的一元一次方程的解法,解决此题关键是正确运用去括号法则先去括号,然后再移项,合并同类项,系数化为1解方程.4.(1)3x =;(2)8.5x =.【解析】试题分析:(1)去分母得:205(1)2(2)x x --=+,去括号得:205524x x -+=+,移项得:205425x x +-=+,合并同类项得:721x =,化系数为1得:3x =;(2)去分母得:3(4)6302(3)(2)x x x x +-+=+--,去括号得:312630262x x x x +-+=+-+,合并同类项得:3428x x -+=+,移项得:4283x x -=+,合并同类项得:434x =,化系数为1得:8.5x =.考点:解一元一次方程.5.(1)31xy=⎧⎨=-⎩(2)66st=⎧⎨=-⎩【解析】(1)25,36,x yx y+=⎧⎨-=⎩①②由②得x=6+3y③,把③代入①得2(6+3y)+y=5,解得y=-1.将y=-1代入③得x=3.所以原方程组的解为3,1. xy=⎧⎨=-⎩(2)将原方程组变形为3230, 26, s ts t-=⎧⎨+=⎩①②由①+②×2得7s=42,解得s=6.把s=6代入②,得t=-6.所以原方程组的解为6,6. st=⎧⎨=-⎩6.21 xy=⎧⎨=⎩【解析】①+②,得80(x+y)=240,所以x+y=3③.(②-①)÷46,得x-y=1④.(③+④)÷2,得x=2.(③-④)÷2,得y=1.所以原方程组的解为2,1. xy=⎧⎨=⎩7.-2【解析】方程组23, 28, x yx ky-=⎧⎨+=⎩①②①×2得:2x-4y=6③,②-③得:ky+4y=2,解得24yk=+.把24yk=+代入①得3164kxk+=+,因为x+y=6,所以3162644kk k++=++,解得3k=-6,即k=-2.8.1【解析】把3,1xy=⎧⎨=-⎩代入ax+2y=7,得a=3.把5,1x y =⎧⎨=⎩和3,1x y =⎧⎨=-⎩分别代入cx -dy =4,得54,34,c d c d -=⎧⎨+=⎩解这个方程组得1,1,c d =⎧⎨=⎩ 所以a -c -d =3-1-1=1.9.1097x y z =⎧⎪=⎨⎪=⎩【解析】由②得x =y +1④,把④代入①得2y +z =25⑤.把④代入③得y +z =16⑥.⑤、⑥组成方程组225,16,y z y z +=⎧⎨+=⎩解这个方程组得9,7,y z =⎧⎨=⎩ 把y =9代入④得x =10.所以10,9,7.x y z =⎧⎪=⎨⎪=⎩10.-3<x <2【解析】本题先求出每个不等式的解集,在数轴上表示出各个不等式的解集,取其公共部分即是不等式组的解集.解:由不等式3x -1<5,得x <2.由不等式2x +6>0,得x >-3.解集x <2和x >-3在同一数轴上的表示如图所示.∴原不等式组的解集为-3<x <2.11.2≤x 正整数解为1=x ,2=x 【解析】 试题分析:324x x --≥()2113x +-去分母得12x-(9x-6)≥8(1+x )-12.解得x ≤2.正整数解为1=x ,或2=x考点:解不等式点评:本题难度中等,主要考查学生对解不等式知识点的掌握,易错:给不等式去分母时注意每一项都要同时乘以最小公分母。
解不等式练习题及答案初二
解不等式练习题及答案初二不等式是数学中一个重要的概念,它描述了数之间的大小关系。
解不等式是解决数学问题中常见的一种方法。
在初二数学学习中,我们会遇到各种不等式的题目。
本篇文章将为大家提供一些初二阶段常见的解不等式练习题及答案。
希望通过这些建议和习题,能够帮助大家更好地理解和掌握不等式的解题方法。
一、一元一次不等式1.解不等式:3x + 5 < 17解:首先将不等式中的常数项移到一边,得到:3x + 5 - 5 < 17 - 5化简后得:3x < 12然后将不等式两边除以系数3,得到:x < 42.解不等式:2x + 3 > 7解:首先将不等式中的常数项移到一边,得到:2x + 3 - 3 > 7 - 3化简后得:2x > 4然后将不等式两边除以系数2,得到:x > 23.解不等式:4x - 1 ≤ 7解:首先将不等式中的常数项移到一边,得到:4x - 1 + 1 ≤ 7 + 1化简后得:4x ≤ 8然后将不等式两边除以系数4,得到:x ≤ 2二、一元二次不等式4.解不等式:x^2 - 5x > 0解:首先将不等式移到一边,得到:x^2 - 5x > 0然后将不等式因式分解,得到:x(x - 5) > 0得到不等式的解集:x < 0 或 x > 55.解不等式:2x^2 + 7x + 3 ≤ 0解:首先将不等式移到一边,得到:2x^2 + 7x + 3 ≤ 0然后求解二次方程2x^2 + 7x + 3 = 0 的解,得:x = -3 或 x = -1/2得到不等式的解集:-3 ≤ x ≤ -1/2三、综合不等式6.解不等式:3x + 2 > 8 或 2x - 5 ≤ 7解:对于不等式3x + 2 > 8,同样进行通项计算,得到:3x > 6,x > 2对于不等式2x - 5 ≤ 7,同样进行通项计算,得到:2x ≤ 12,x ≤ 6得到综合不等式的解集:x ≤ 6 并且 x > 2,即2 < x ≤ 67.解不等式:(x - 1)(x + 2) > 0 或 x - 3 < 0解:对于不等式(x - 1)(x + 2) > 0,我们可以通过图像法或符号法进行解答。
新初中数学方程与不等式之不等式与不等式组技巧及练习题附解析(2)
新初中数学方程与不等式之不等式与不等式组技巧及练习题附解析(2)一、选择题1.不等式组0321x a x -<⎧⎨-≤-⎩的整数解共有3个,则a 的取值范围是( ) A .45a <<B .45a <≤C .45a ≤<D .45a ≤≤【答案】B【解析】【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到a 的范围.【详解】 0321x a x -<⎧⎨-≤-⎩①②, 由①解得:x <a ,由②解得:x≥2,故不等式组的解集为2≤x <a ,由不等式组的整数解有3个,得到整数解为2,3,4,则a 的范围为4<a≤5.故选:B .【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.2.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的不等式组32212203y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有四个整数解,则所有符合条件的整数a 的和为( ). A .17B .18C .22D .25【答案】C【解析】【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】解:3221223y yy a--⎧+>⎪⎪⎨-⎪⎪⎩„,不等式组整理得:1 yy a>-⎧⎨⎩„,由不等式组至少有四个整数解,得到-1<y≤a,解得:a≥3,即整数a=3,4,5,6,…,2-322ax x=--,去分母得:2(x-2)-3=-a,解得:x=72a -,∵72a-≥0,且72a-≠2,∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a为4,5,6,7,之和为22.故选:C.【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.3.关于 x 的不等式组21231xx a-⎧<⎪⎨⎪-+>⎩恰好只有 4 个整数解,则 a 的取值范围为()A.-2≤a<-1 B.-2<a≤-1 C.-3≤a<-2 D.-3<a≤-2【答案】A【解析】【分析】首先确定不等式组的解集,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解:21231xx a-⎧<⎪⎨⎪-+>⎩①②解不等式组①,得x<72,解不等式组②,得x>a+1,则不等式组的解集是a+1<x<72,因为不等式组只有4个整数解,则这4个解是0,1,2,3.所以可以得到-1⩽ a+1<0,解得−2≤a <−1.故选A .【点睛】本题主要考查了一元一次不等组的整数解.正确解出不等式组的解集,确定a+1的范围,是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.已知方程组31331x y m x y m +=+⎧⎨+=-⎩的解满足0x y +>,则m 取值范围是( ) A .m >1B .m <-1C .m >-1D .m <1 【答案】C【解析】【分析】 直接把两个方程相加,得到12m x y ++=,然后结合0x y +>,即可求出m 的取值范围. 【详解】解:31331x y m x y m+=+⎧⎨+=-⎩, 直接把两个方程相加,得:4422x y m +=+, ∴12m x y ++=, ∵0x y +>, ∴102m +>, ∴1m >-;故选:C.【点睛】 本题考查了加减消元法解方程组,解题的关键是掌握解方程组的方法,正确得到12m x y ++=,然后进行解题.5.不等式组360420x x +≥⎧⎨->⎩的所有整数解的和为( ) A .1B .1-C .2D .2-【答案】D【解析】【分析】求出不等式组的解集,再把所有整数解相加即可.【详解】360420x x +≥⎧⎨->⎩360x +≥解得2x ≥-420x ->解得2x >∴不等式组的解集为22x -≤<∴不等式组的所有整数解为2,1,0,1--∴不等式组的所有整数解之和为21012--++=-故答案为:D .【点睛】本题考查了解不等式组的问题,掌握解不等式组的方法是解题的关键.6.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( ) A .B .C .D .【答案】D【解析】【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.【详解】 2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1;解不等式②得,x ≤1;∴不等式组的解集是﹣1<x ≤1.不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.7.若关于x 的不等式0521x m x -<⎧⎨-≤⎩,整数解共有2个,则m 的取值范围是( ) A .3m 4<<B .3m 4<≤C .3m 4≤≤D .3m 4≤< 【答案】B【解析】【分析】首先解不等式组,利用m 表示出不等式组的解集,然后根据不等式组有2个整数解,即可确定整数解,进而求得m 的范围.【详解】解:0521x m x -<⎧⎨-≤⎩L L ①②, 解①得x m <,解②得2x ≥.则不等式组的解集是2x m ≤<.Q 不等式组有2个整数解,∴整数解是2,3.则34m <≤.故选B .【点睛】本题考查了不等式组的整数解,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.若x y >,则下列各式正确的是( )A .0x y -<B .11x y -<-C .34x y +>+D .xm ym >【答案】B【解析】【分析】根据不等式的基本性质解答即可.【详解】由x >y 可得:x-y >0,1-x <1-y ,x+3>y+3,故选:B .【点睛】此题考查不等式的性质,熟练运用不等式的性质是解题的关键.9.已知三个实数a ,b ,c 满足a ﹣2b +c <0,a +2b +c =0,则( )A .b >0,b 2﹣ac ≤0B .b <0,b 2﹣ac ≤0C .b >0,b 2﹣ac ≥0D .b <0,b 2﹣ac ≥0【答案】C【解析】【分析】 根据a ﹣2b +c <0,a +2b +c =0,可以得到b 与a 、c 的关系,从而可以判断b 的正负和b 2﹣ac 的正负情况.【详解】∵a ﹣2b +c <0,a +2b +c =0,∴a +c =﹣2b ,∴a ﹣2b +c =(a +c )﹣2b =﹣4b <0,∴b >0,∴b 2﹣ac =222222a c a ac c ac +++⎛⎫-= ⎪⎝⎭=2222042a ac c a c -+-⎛⎫= ⎪⎝⎭…, 即b >0,b 2﹣ac ≥0,故选:C .【点睛】此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b 和b 2-ac 的正负情况.10.若m -n >0,则下列各式中一定正确的是( )A .m >nB .mn >0C .0m n <D .-m >-n【答案】A【解析】∵m -n >0,∴m >n (不等式的基本性质1).故选A.11.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( )A .3<x <5B .-5<x <3C .-3<x <5D .-5<x <-3【答案】A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P (2x-6,x-5)在第四象限, ∴260{50x x ->-<, 解得:3<x <5.故选:A .【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.12.关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .3a <B .23a <≤C .23a ≤<D .23a <<【答案】C【解析】【分析】 此题可先根据一元一次不等式组解出x 的取值范围,再根据不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,求出实数a 的取值范围.【详解】解:由不等式113x -≤,可得:x ≤4, 由不等式a ﹣x <2,可得:x >a ﹣2, 由以上可得不等式组的解集为:a ﹣2<x ≤4,因为不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,所以可得:0≤a ﹣2<1,解得:2≤a <3,故选C .【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.根据原不等式组恰有4个整数解列出关于a 的不等式是解答本题的关键.13.如果关于x 的分式方程有负数解,且关于y 的不等式组无解,则符合条件的所有整数a 的和为( )A .﹣2B .0C .1D .3【答案】B【解析】【分析】解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组,可整理得∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵得x=而关于x的分式方程有负数解∴a﹣4<0∴a<4于是﹣3≤a<4,且a为整数∴a=﹣3、﹣2、﹣1、0、1、2、3则符合条件的所有整数a的和为0.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.14.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3【答案】A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组324x ax a<+⎧⎨>-⎩无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.15.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.16.一元一次不等式组2(3)40113x x x +-⎧⎪+⎨>-⎪⎩…的最大整数解是( ) A .1-B .0C .1D .2【答案】C【解析】【分析】解出两个不等式的解,再求出两个不等式的解集,即可求出最大整数解;【详解】 ()2340113x x x ⎧+-⎪⎨+>-⎪⎩①②… 由①得到:2x+6-4≥0,∴x ≥-1,由②得到:x+1>3x-3,∴x <2,∴-1≤x <2,∴最大整数解是1,故选C .【点睛】本题考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的方法,属于中考常考题型.17.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2【答案】C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a −3a+2)⩽0,解得:a ⩽2,∵x=1不是这个不等式的解,∴(1−5)(a −3a+2)>0,解得:a>1,∴1<a ⩽2,故选C.18.已知点P (1﹣a ,2a+6)在第四象限,则a 的取值范围是( )A .a <﹣3B .﹣3<a <1C .a >﹣3D .a >1【答案】A【解析】【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【详解】解:∵点P (1﹣a ,2a+6)在第四象限, ∴10260a a ->⎧⎨+<⎩解得a <﹣3.故选A .【点睛】本题考查了点的坐标,一元一次不等式组的解法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.不等式组10235x x +≤⎧⎨+<⎩的解集在数轴上表示为( ) A . B .C .D . 【答案】C【解析】【分析】先分别解不等式,得到不等式组的解集,再在数轴上表示解集.【详解】因为,不等式组10235x x +≤⎧⎨+<⎩的解集是:x≤-1,所以,不等式组的解集在数轴上表示为故选C【点睛】本题考核知识点:解不等式组.解题关键点:解不等式.20.关于x 的不等式412x -≥-的正整数解有( ) A .0个 B .1个 C .3个D .4个 【答案】C【解析】【分析】先解不等式求出解集,根据解集即可确定答案.【详解】解不等式412x -≥-得3x ≤,∴该不等式的正整数解有:1、2、3,故选:C.【点睛】此题考查不等式的正整数解,正确解不等式是解题的关键.。
2023年初中数学中考考点归纳双向细目表
2023年初中数学中考考点一、代数1. 一元一次方程与一元一次不等式 1.1 解一元一次方程1.2 解一元一次不等式2. 整式2.1 整式的加减2.2 整式的乘除3. 因式分解3.1 提公因式法3.2 积因式分解4. 分式4.1 分式的加减4.2 分式的乘除二、几何1. 相似三角形1.1 判定相似三角形 1.2 相似三角形的性质2. 平行线与三角形2.1 平行线的性质2.2 三角形内角和3. 圆3.1 圆的性质3.2 圆内接四边形4. 三角形4.1 三角形的外角性质 4.2 三角形的面积计算三、函数与图像1. 一次函数1.1 一次函数的性质 1.2 一次函数图像2. 二次函数2.1 二次函数的性质2.2 二次函数图像3. 绝对值函数3.1 绝对值函数的性质 3.2 绝对值函数图像四、统计与概率1. 统计1.1 统计量的计算1.2 统计图的绘制2. 概率2.1 基本概率事件2.2 条件概率的计算五、解析几何1. 直线与圆1.1 直线与圆的位置关系 1.2 直线与圆的性质2. 空间图形2.1 空间图形的投影2.2 空间图形的体积计算六、实际问题1. 实际问题的解决方法1.1 将实际问题转化为数学问题1.2 利用数学方法解决实际问题2. 实际问题的综合运用2.1 结合多种数学知识解决实际问题 2.2 实际问题综合运用的技巧七、综合练习1. 综合练习题1.1 完形填空题1.2 阅读理解题2. 综合练习题解析2.1 完形填空题解析2.2 阅读理解题解析以上便是2023年初中数学中考的考点归纳双向细目表,同学们在备考中可根据此表进行有针对性的复习和练习,以取得更好的考试成绩。
2023年初中数学中考考点归纳双向细目表随着2023年初中数学中考的逐渐临近,同学们将面临着对数学知识的系统复习和全面梳理。
为了帮助同学们更好地备战数学中考,以下将就上文所述的考点进行更加详细的探讨和扩充。
一、代数代数是数学中的重要分支,它涵盖了一元一次方程与一元一次不等式、整式、因式分解和分式等内容。
人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试题(答案解析)
一、选择题1.设实数x 满足0x >,函数4231y x x =+++的最小值为( ) A .431-B .432+C .421+D .62.对于任意实数x ,不等式210ax ax -+>恒成立,则实数a 的取值范围是( )A .(]0,4B .[)0,4C .(][),04,-∞+∞ D .()(),04,-∞+∞3.若不等式()()2||20x a b x x ---≤对任意实数x 恒成立,则a b +=( )A .-1B .0C .1D .24.对于实数a 、b 、m ,下列说法:①若22am bm >,则a b >;②若a b >,则a ab b ;③若0b a >>,0m >,则a m ab m b+>+;④若0a b >>且ln ln a b =,则2a b +的最小值是22,正确的个数为( ) A .1B .2C .3D .45.已知2m >,0n >,3m n +=,则112m n+-的最小值为( ) A .3B .4C .5D .66.若实数,x y 满足0xy >,则的最大值为( ) A .22B .22+C .422+D .422- 7.若直线10ax by --=,(a ,0b >)过点()2,1-,则11a b+的最小值为( ) A .322-B .8C .42D .322+8.不等式28610x x -+<的解集为( ) A .11(,)42B .11(,)(,)42-∞+∞ C .11(,)34--D .11(,)(,)34-∞--+∞ 9.若任意取[]1,1x ∈-,关于x 的不等式()2220x mx m ++-≤成立,则实数m 的取值范围为( )A .1515⎡--+⎢⎣⎦B .1515⎡--+⎢⎣⎦C .1515,22⎡⎢⎣⎦D .151522⎡---+⎢⎣⎦10.若a 、b 、c >0且a (a +b +c )+bc =4-3,则2a +b +c 的最小值为( )A . 3-1B . 3+1C .23+2D .23-211.已知m ,0n >,4121m n+=+,则m n +的最小值为( ) A .72B .7C .8D .412.已知关于x 的不等式()()224210a x a x -+--≥的解集为空集,则实数a 的取值范围是( )A .62,5⎡⎤-⎢⎥⎣⎦B .62,5⎡⎫-⎪⎢⎣⎭C .6,25⎛⎤- ⎥⎝⎦D .(][),22,-∞+∞二、填空题13.已知正实数a ,b 满足21ab a b ++=,则188a b a b+++的取值范围为_________. 14.已知0x >,0y >,22x y +=,则223524x y x yxy+++的最小值为______.15.当1x >时,11x x +-的最小值为___________. 16.已知0,0a b >>,1a b +=,则14y a b=+的最小值是__________.17.若关于x 的不等式2410x x m -+->的区间[]1,4内有解,则实数m 的取值范围为______.18.设A .B 分别为双曲线22221x y a b-=(a >0,b >0)的左.右顶点,P 是双曲线上不同于A .B的一点,直线AP .BP 的斜率分别为m .n ,则当31b a mn+取最小值时,双曲线的离心率为__________. 19.若关于x 的方程的两根都大于2,则m 的取值范围是________ 20.设函数1e exx y a =+-的值域为A ,若[)0,A ⊂+∞,则实数a 的取值范围是________.三、解答题21.已知关于x 的不等式2120x mx +-<的解集为(6,)n -. (1)求实数m ,n 的值;(2)正实数a ,b 满足22na mb +=. ①求11a b+的最小值;②若2160a b t +-≥恒成立,求实数t 的取值范围.22.已知0,0x y >>,且280x y xy +-=,求 (1)xy 的最小值; (2)x y +的最小值.23.已知0,0x y >>,且2223x y +=. (1)求xy 的最大值;(2)求24.设函数()()()2230f x ax b x a =+-+≠.(1)若(1)4f =,且,a b 均为正实数,求14a b+的最小值,并确定此时实数,a b 的值; (2)若b R ∀∈满足()222(1)32b f x a x a ab >--+-+在x ∈R 上恒成立,求实数a 的取值范围.25.已知二次函数()f x 满足()01f =,()()125f x f x x +-=+. (1)求()f x 的解析式;(2)若[]3,1x ∈-,若()25f x m m ≤-恒成立,求实数m 的取值范围.26.已知a ,b 为正实数,且11a b+=. (1)求a 2+b 2的最小值;(2)若23()4()a b ab -≥,求ab 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】将函数变形为()43111y x x =++-+,再根据基本不等式求解即可得答案.解:由题意0x >,所以10x +>, 所以()4423231311y x x x x =++=++-+++()4311111x x =++-≥=+,当且仅当()4311x x +=+,即103x =->时等号成立,所以函数4231y x x =+++的最小值为1. 故选:A . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方2.B解析:B 【分析】讨论0a =和0a ≠情况,再根据一元二次不等式与二次函数的关系,解不等式得解. 【详解】 关于x 的不等式210ax ax -+>恒成立,当0a =时,10>恒成立,满足题意当0a ≠时,即函数()21f x ax ax =-+恒在x 轴上方即可, 所以0a >⎧⎨∆<⎩,即2040a a a >⎧⎨-<⎩,解得04a <<,所以实数a 的取值范围是[0,4). 故选:B 【点睛】本题考查了一元二次不等式恒成立求参数的取值范围,考查了一元二次不等式的解法,属于基础题.3.D解析:D 【分析】可采用分类讨论法,分别讨论22x x -与x a b --的正负,确定,a b 之间的关系即可求解.当220x x -≥时,即[]02x ,∈时,||0x a b --≤恒成立,所以b a x b a -+≤≤+恒成立,所以2a b +≥且a b ≤; 当220x x -≤时,即(][),02,x ∈-∞+∞时,||0x a b --≥恒成立所以x a b ≥+或x a b ≤-恒成立,所以2a b +≤且a b ≥,综上,2a b += 故选:D 【点睛】本题考查一元二次不等式的解法,由含参数绝对值不等式求参数关系,分类讨论的数学思想,属于中档题4.C解析:C 【解析】分析:由不等式性质对其判定 详解:对于①,若22am bm >,20m >,则a b >,故正确对于②,若a b >,则a a b b >,正确 对于③,若0b a >>,0m >,则a m ab m b+>+,故正确 对于④,若0a b >>且lna lnb =,则1ab =,1b a=122a b a a∴+=+≥当12a a =时等号成立,即12a =< 这与ab >矛盾,故错误 综上所述,正确的个数为3 故选C点睛:由不等式性质对其判定,若能举出反例即可判断其错误,注意数值的符号,对于④中利用基本不等式求出最小值需要满足一正二定三相等,本题在取等号时是取不到的,故错误.5.B解析:B 【分析】由2m >,0n >,3m n +=,所以21m n -+=,结合“1”的代换,结合基本不等式,即可求解. 【详解】因为2m >,0n >,3m n +=,所以21m n -+=,则()1111222224222n m m n m n m n m n-⎛⎫+=+-+=++≥+= ⎪---⎝⎭, 当且仅当22n m m n-=-且3m n +=,即51,22m n ==时取等号,故选:B. 【点睛】本题主要考查了利用基本不等式求最值问题,其中解答合理构造基本不等式的条件“一正、二定、三相等”,结合“1”的代换技巧是解答的关键,着重考查推理与运算能力.6.D解析:D 【解析】试题分析:由实数,x y 满足0xy >,,设{2m x y n x y=+=+,解得2{x m ny n m=-=-,则2222224()424222x y m n n m n m n m x y x y m n m n m n--+=+=-+≤-⋅=-++,当且仅当2n mm n=,及2n m =时等号成立,所以的最大值为422-,故选D.考点:基本不等式的应用.7.D解析:D 【分析】先得到21a b +=,再整理11a b +为23b aab ++求最小值,最后判断等号成立即可. 【详解】解:∵直线10ax by --=,过点()2,1-, ∴ 21a b +=, ∵0a >,0b > ∴20a b>,0ba >∴1111222323322b a b a a b a b a b a b a b+=++=++≥⋅+=+()() 当且仅当2b aa b=时,等号成立. 故选:D.【点睛】本题考查基本不等式“1”的妙用求最值,是基础题.8.A解析:A 【分析】运用因式分解法,化为一元一次不等式组,解不等式,求并集即可得到所求解集. 【详解】解:28610x x -+<即为(21)(41)0x x --<, 即有210410x x ->⎧⎨-<⎩或210410x x -<⎧⎨->⎩,可得x ∈∅或1142x <<, 即解集为1(4,1)2,故选A . 【点睛】本题考查一元二次不等式的解法,考查运算能力,属于基础题.9.A解析:A 【分析】由已知结合二次函数的性质及特殊点所对应的函数值的正负即可求解 【详解】解:令()22()2,[1,1]f x x mx m x =++-∈-,由题意得22(1)120(1)120f m m f m m ⎧-=-+-≤⎪⎨=++-≤⎪⎩,解得1122m -+≤≤, 故选:A 【点睛】此题考查了二次不等式在闭区间上恒成立问题的求解,二次函数性质的应用,属于中档题10.D解析:D 【解析】由a (a +b +c )+bc =4-得(a +c )·(a +b )=4- ∵a 、b 、c >0.∴(a +c )·(a +b )≤22b c 2a ++⎛⎫ ⎪⎝⎭(当且仅当a +c =b +a ,即b =c 时取“=”),∴2a +b +c=1)=-2. 故选D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误11.A解析:A 【分析】利用“乘1法”与基本不等式的性质即可得出. 【详解】 ∵m ,0n >,4121m n+=+, ∴()()4111411911554122122n m m n m n m n m n +⎛⎫⎛⎫++=+++⨯=++≥+= ⎪ ⎪++⎝⎭⎝⎭, 当且仅当411n m m n +=+且4121m n+=+,即2m =,32n =时取等号, 故m n +的最小值72.故选:A. 【点睛】本题主要考查了均值不等式求最值,“1”的变形使用,属于中档题. 12.C解析:C 【分析】由题意得出关于x 的不等式()()224210a x a x -+--<的解集为R ,由此得出240a -=或2400a ⎧-<⎨∆<⎩,在240a -=成立时求出实数a 的值代入不等式进行验证,由此解不等式可得出实数a 的取值范围. 【详解】由题意知,关于x 的不等式()()224210a x a x -+--<的解集为R .(1)当240a -=,即2a =±.当2a =时,不等式()()224210a x a x -+--<化为10-<,合乎题意;当2a =-时,不等式()()224210a x a x -+--<化为410x --<,即14x >-,其解集不为R ,不合乎题意;(2)当240a -≠,即2a ≠±时.关于x 的不等式()()224210a x a x -+--<的解集为R .2400a ⎧-<∴⎨∆<⎩,解得265a -<<.综上可得,实数a 的取值范围是6,25⎛⎤- ⎥⎝⎦.故选C . 【点睛】本题考查二次不等式在R 上恒成立问题,求解时根据二次函数图象转化为二次项系数和判别式的符号列不等式组进行求解,考查化归与转化思想,属于中等题.二、填空题13.【分析】先根据正实数ab 满足找到ab 的关系及ab 的范围然后把通换元法转化为函数求值域【详解】由得∴且∵∴∴∴则令则在上递减(因为)∴令则∴=在上单增∴故答案为:(69)【点睛】利用基本不等式求最值时 解析:()6,9【分析】先根据正实数a ,b 满足21ab a b ++=找到a ,b 的关系及a ,b 的范围,然后把188a b a b+++通换元法转化为函数求值域. 【详解】由21ab a b ++=得21ab a b ++=,∴121ab a -=+,且(1)(2)3a b ++=. ∵0,0a b >>,∴120a ->,∴12a <∴102a <<.则3321311a b a a a a +=+-=++-++, 令31,1,2u a u ⎛⎫=+∈ ⎪⎝⎭则33a b u u+=+-在31,2⎛⎫⎪⎝⎭上递减,(因为32<),∴112a b ⎛⎫+∈ ⎪⎝⎭,. 令=+t a b ,则112t ⎛⎫∈ ⎪⎝⎭,, ∴188a b a b +++=18t t +在112⎛⎫⎪⎝⎭,上单增, ∴()1886,9a b a b++∈+.故答案为:(6,9). 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:“一正二定三相等” (1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.如果等号成立的条件满足不了,说明函数在对应区间单调,可以利用单调性求最值或值域.14.16【分析】由条件可知则原式变形为展开后利用基本不等式求最小值【详解】原式;当且仅当即时取等所以的最小值为16故答案为:16【点睛】关键点点睛:本题的关键是结合1的妙用利用基本不等式求最值解析:16 【分析】 由条件可知()1212x y +=,则原式变形为()1243522x y x y y x y x ⎛⎫=++++ ⎪⎝⎭,展开后,利用基本不等式求最小值. 【详解】 原式()124493524162x y x yx y y x y x y x⎛⎫=++++=++≥ ⎪⎝⎭; 当且仅当23x y =即67x =,47y =时取等. 所以223524x y x yxy+++的最小值为16.故答案为:16 【点睛】关键点点睛:本题的关键是结合 “1”的妙用,利用基本不等式求最值.15.【分析】化简得到结合基本不等式即可求解【详解】由可得则当且仅当时即等号成立所以的最小值为故答案为:【点睛】利用基本不等式求最值时要注意其满足的三个条件:一正二定三相等:(1)一正:就是各项必须为正数 解析:3【分析】 化简得到111111x x x x +=-++--,结合基本不等式,即可求解. 【详解】由1x >,可得10x ->,则11111311x x x x +=-++≥=--, 当且仅当111x x -=-时,即2x =等号成立, 所以11x x +-的最小值为3. 故答案为:3.【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”: (1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.16.9【分析】把看成的形式把1换成整理后积为定值然后用基本不等式求最小值【详解】∵等号成立的条件为所以的最小值为9即答案为9【点睛】本题考查了基本不等式在求最值中的应用解决本题的关键是1的代换解析:9【分析】 把14a b +看成141a b+⨯() 的形式,把“1”换成a b +,整理后积为定值,然后用基本不等式求最小值.【详解】∵14144 1?459b a y a b a b a b a b =+=+⨯+=+++≥+=()() 等号成立的条件为4b a a b =. 所以14a b+的最小值为9. 即答案为9.【点睛】本题考查了基本不等式在求最值中的应用,解决本题的关键是“1”的代换.17.【分析】不等式在区间内有解等价于然后求出的值域即可【详解】不等式在区间内有解等价于因为函数在上单调递减在单调递增所以的值域为所以故答案为:【点睛】本题考查的是不等式存在性问题考查了学生对基本方法的掌 解析:(],1-∞【分析】不等式2410x x m -+->在区间[]1,4内有解等价于()2max 4+1x x m ≤-,然后求出()24+1f x x x =-的值域即可.【详解】不等式2410x x m -+->在区间[]1,4内有解等价于()2max 4+1x x m ≤-,因为函数()24+1f x x x =-在()1,2上单调递减,在()2,4单调递增,()()()12,23,41f f f =-=-=,所以()f x 的值域为[]31-,,所以1m ≤, 故答案为:(],1-∞.【点睛】本题考查的是不等式存在性问题,考查了学生对基本方法的掌握情况,属于中档题. 18.【分析】先根据点的关系确定mn 再根据基本不等式确定最小值最后根据最小值取法确定双曲线的离心率【详解】设则因此当且仅当时取等号所以离心率是故答案为:【点睛】本题考查双曲线离心率和基本不等式求最值的简单【分析】先根据点的关系确定mn ,再根据基本不等式确定最小值,最后根据最小值取法确定双曲线的离心率.【详解】设11(,)P x y ,则 22111222111y y y b mn x a x a x a a=⋅==+--,因此3b a+3b a a b =+≥= 当且仅当3a b 时取等号,所以离心率是c e a ===.【点睛】本题考查双曲线离心率和基本不等式求最值的简单综合问题,属于基础题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a=求解;2.公式法:c e a === 3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.19.;【详解】令由条件可得:解得:解析:(5,4]--;【详解】令2()(2)5f x x m x m =+-+-, 由条件可得:22(2)042(2)5022222(2)4(5)040f m m b m a m m b ac >+-+->⎧⎧⎪⎪-⎪⎪->⇒->⎨⎨⎪⎪---≥-≥⎪⎪⎩⎩解得:(5,4]--20.【解析】因为a 所以则解析:(,2]-∞【解析】 因为1e 2e x xy a =+-≥-a ,所以[)[)2,0,,A a =-+∞⊂+∞则20,2a a -≥≤. 三、解答题21.无22.无23.无24.无25.无26.无。
数学因式分解_不等式练习题_(2)
不等式 能力篇填空:1. 已知a<0,则关于x 的不等式ax<5的解为________;5x<a 的解为______。
2. 2x-1<3x+1≤x+1的最大和最小的整数解的和为__________。
3.若x-y<x,x+y<y,则x+y,x-y,xy,x/y 这四个式子中,你能确定___个式子的符号。
4.mx-m<3x+2的解为_______________; 的解为__________5.若4≤a ≤14,2a ≤b<3a,则a+b 的范围是______ 7.比较大小:(1) m<n,则ma 2与mb 2的大小关系为___________ (2) c>d,则ac 与ad 的大小关系为____________(3) 3a 2-3b 2+6与2a 2-4b 2+1的大小关系为____________。
8.小强有一哥哥,未成年,还有一弟弟。
小强说:“我的年龄的两倍,加上我弟弟年龄的5倍等于97”,则小强____岁,弟弟_____岁。
9.已知-4是不等式ax>-5的解集中的一个值,则a 的范围为______; 10.若关于x 的不等式3x-a ≤0只有六个正整数解,则a 应满足______。
11.若不等式组 有解,则m 应满足______;若不等式组 无解 ,则m 应满足______;12.利用积的符号的性质解下列不等式: (1)(x+1)(x-1)<0,则解集为______(2)(x+3)(x-2)>0,则解集为______14.已知a,b 为常数,若ax+b>0的解集为x<3,则bx+a<0的解集为______。
15. 图为二次函数y=x 2-2x-3的图象,由图回答:(1) x 2-2x-3=0的解为_______________(2) x 2-2x-3〈0的解集为___________________ 16.(ax-2y-3)2+(5x-10)4=0的解x,y 同号,则a 应满足______________ 17.1,2,3三个数字组成数(不用任何运算符号和括号),其中最大的是______;最小的是_____;在0到10之间的数有(尽可能多的写)______________。
一元一次方程的解法及应用拓展
一元一次方程的解法及应用拓展一、一元一次方程的概念1.1 定义:含有一个未知数,未知数的最高次数为1,且两边都为整式的等式称为一元一次方程。
1.2 形式:ax + b = 0(a, b为常数,a≠0)二、一元一次方程的解法2.1 公式法:将方程ax + b = 0两边同时除以a,得到x = -b/a。
2.2 移项法:将方程中的常数项移到等式的一边,未知数项移到等式的另一边。
2.3 因式分解法:将方程进行因式分解,使其成为两个一次因式的乘积等于0的形式,然后根据零因子定律求解。
三、一元一次方程的应用3.1 实际问题:将实际问题转化为一元一次方程,求解未知数。
3.2 线性方程组:由多个一元一次方程组成的方程组,可用代入法、消元法等方法求解。
3.3 函数图像:一元一次方程的图像为直线,可通过解析式分析直线与坐标轴的交点、斜率等性质。
四、一元一次方程的拓展4.1 比例方程:含有一元一次方程的等比例关系,可通过交叉相乘、解一元一次方程求解。
4.2 分式方程:含有一元一次方程的分式,可通过去分母、解一元一次方程求解。
4.3 绝对值方程:含有一元一次方程的绝对值,可分为两种情况讨论,求解未知数。
五、一元一次方程的练习题5.1 选择题:判断下列方程是否为一元一次方程,并选择正确的解法。
5.2 填空题:根据题目给出的条件,填空求解一元一次方程。
5.3 解答题:解答实际问题,将问题转化为一元一次方程,求解未知数。
六、一元一次方程的考试重点6.1 掌握一元一次方程的定义、形式及解法。
6.2 能够将实际问题转化为一元一次方程,求解未知数。
6.3 熟练运用一元一次方程解决线性方程组、函数图像等问题。
6.4 理解一元一次方程的拓展知识,如比例方程、分式方程、绝对值方程等。
七、一元一次方程的学习建议7.1 多做练习题:通过大量的练习题,熟练掌握一元一次方程的解法及应用。
7.2 深入理解实际问题:学会将实际问题转化为一元一次方程,提高解决问题的能力。
一元一次不等式练习题 (4)
一元一次不等式练习题题目一求解不等式:3x + 5 > 2x - 1解答过程将不等式中的变量移到一边,数字移到另一边,得到:3x - 2x > -1 - 5 化简得:x > -6所以,解集为 x > -6题目二求解不等式:2x - 7 < 3x + 2解答过程将不等式中的变量移到一边,数字移到另一边,得到:2x - 3x < 2 + 7 化简得:-x < 9因为不等号左边乘以-1,所以不等号方向要改变,得到:x > -9所以,解集为 x > -9求解不等式:4x + 9 <= 2x + 1解答过程将不等式中的变量移到一边,数字移到另一边,得到:4x - 2x <= 1 - 9 化简得:2x <= -8将不等式两边除以2,得到:x <= -4所以,解集为 x <= -4题目四求解不等式:5x + 3 > 8x - 6解答过程将不等式中的变量移到一边,数字移到另一边,得到:5x - 8x > -6 - 3 化简得:-3x > -9因为不等号左边乘以-1,所以不等号方向要改变,得到:x < 3所以,解集为 x < 3求解不等式:6 - 4x >= 2x + 9解答过程将不等式中的变量移到一边,数字移到另一边,得到:-4x - 2x >= 9 - 6 化简得:-6x >= 3将不等式两边除以-6,需要将不等号方向改变,得到:x <= -1/2所以,解集为 x <= -1/2题目六求解不等式:2(3x - 4) > x - 2解答过程先进行分配律,得到:6x - 8 > x - 2将不等式中的变量移到一边,数字移到另一边,得到:6x - x > -2 + 8 化简得:5x > 6将不等式两边除以5,得到:x > 6/5所以,解集为 x > 6/5总结通过上述练习题的解答过程,我们可以看到求解一元一次不等式的方法是相似的。
最新七年级数学试卷一元一次不等式易错压轴解答题试题(含答案)
最新七年级数学试卷一元一次不等式易错压轴解答题试题(含答案)一、一元一次不等式易错压轴解答题1.定义一种新运算“a*b”:当a≥b时,a*b=a+2b;当a<b时,a*b=a-2b.例如:3*(-4)=3+(-8)=-5,(-6)*12=-6-24=-30(1)填空:(-4)*3=________.(2)若(3x-4)*(x+6)=(3x-4)+2(x+6),则x的取值范围为________;(3)已知(3x-7)*(3-2x)<-6,求x的取值范围;(4)小明在计算(2x2-4x+8)*(x2+2x-2)时随意取了一个x的值进行计算,得出结果是-4,小丽告诉小明计算错了,问小丽是如何判断的.2.我市某中学计划购进若千个排球和足球如果购买20个排球和15个足球,一共需要花费2050元;如果购买10个排球和20个足球,--共需要花费1900元(1)求每个排球和每个足球的价格分别是多少元?(2)如果学校要购买排球和足球共50个,并且预算总费用不超过3210元,那么该学校至多能购买多少个足球?3.我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%,90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株.(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株.(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用为22080元.4.自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:;等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:若,,则;若,,则;若,,则;若,,则 .(1)反之:若,则或;若,则________或________.(2)根据上述规律,求不等式的解集.(3)直接写出分式不等式的解集________.5.先阅读理解下面的例题,再按要求解答:例题:解不等式(x+5)(x-5)>0解:由有理数的乘法法则“两数相乘,同号得正”,得①或②解不等式组①得x>5,解不等式组②得x<-5,所以不等式的解集为x>5或x<-5。
高一基本不等式题型及解题方法
高一基本不等式题型及解题方法一、基本不等式的概念基本不等式是指最简单的不等式,通常是一次不等式,或者是通过简单的运算得到的不等式。
基本不等式在高中数学中占据着重要的地位,是学习不等式的基础。
掌握基本不等式的解题方法对于提高学生的数学能力非常重要。
二、基本不等式的分类基本不等式可以分为一元一次不等式、一元二次不等式和一元高次不等式。
1.一元一次不等式一元一次不等式是指只有一个未知数,且次数为一的不等式,通常的形式为ax+b>0或ax+b<0。
2.一元二次不等式一元二次不等式是指只有一个未知数,且次数为二的不等式,通常的形式为ax²+bx+c>0或ax²+bx+c<0。
3.一元高次不等式一元高次不等式是指只有一个未知数,且次数大于二的不等式,通常的形式为P(x)>0或P(x)<0,其中P(x)是一个多项式函数。
三、基本不等式的解题方法解基本不等式的方法有代数法、图像法和试数法。
1.代数法代数法是指通过代数运算来解不等式的方法。
对于一元一次不等式,可以通过移项和合并同类项的方式得到不等式的解。
对于一元二次不等式,可以通过求解二次方程的方法得到不等式的解。
对于一元高次不等式,可以通过因式分解、配方法进行不等式的解。
2.图像法图像法是指通过画出函数的图像来解不等式的方法。
对于一元一次不等式,可以画出一次函数的图像,然后确定不等式的解。
对于一元二次不等式,可以画出二次函数的图像,然后确定不等式的解。
对于一元高次不等式,可以通过画出多项式函数的图像,然后确定不等式的解。
3.试数法试数法是指通过试验一些特殊的数来解不等式的方法。
对于一元一次不等式,可以试验一些简单的数来确定不等式的解。
对于一元二次不等式,可以试验一些特殊的数来确定不等式的解。
对于一元高次不等式,可以通过试验一些特殊的数来确定不等式的解。
四、基本不等式的解题步骤解基本不等式的步骤一般分为以下几步:1.化简不等式将不等式进行合并同类项、移项等操作,使得不等式尽可能简单。
初中数学一元一次不等式(组)单元综合基础过关训练题3(附答案)
初中数学一元一次不等式(组)单元综合基础过关训练题3(附答案)1.若 m >n ,则下列不等式中一定成立的是( )A .m +a <n +aB .ma <naC .a -m <a -nD .ma 2>na 22.若m n <,则下列各式正确的是( )A .55m n ->-B .2233m n >C .44m n ->-D .2525m n ->- 3.定义a bc d =ad ﹣bc ,例如:1234-=1×4﹣(﹣3)×2=10,若121x xx x -++≥7,则非负整数x 的值有( )A .5个B .4个C .3个D .0个 4.不等式的解集在数轴上表示正确的是( ) A .B .C .D .5.不等式组2220x x >⎧⎨-⎩的解在数轴上表示为( ) A .B .C .D .6.不等式组123x x -<⎧⎨-<⎩的解集是( ) A .x >﹣1B .x <5C .﹣1<x <5D .x <﹣1或x <5 7.不等式组2342x x x >⎧⎨+>⎩的整数解是( ) A .0 B .1- C .2- D .18.小明和爸爸、妈妈三人玩跷跷板.三人的体重一共为150千克,爸爸坐在跷跷板的一端,体重只有妈妈一半的小明和妈妈一同坐在跷跷板的另一端.这时爸爸那端仍然着地,那么小明的体重应小于( )A .49千克B .50千克C .24千克D .25千克9.不等式组213(1)14x x +>⎧⎨--≥⎩的最小整数解为( )A .x 0=B .x 1=-C .x 1=D .x 2=10.已知关于的不等式组的解集中任意一个的值均不在...的范围内,则的取值范围是( )A . 或B .C .D . 或 11.在下列所表示的不等式的解集中,不包括–5的是( )A .x ≤–4B .x ≥–5C .x ≤–6D .x ≥–7 12.若不等式组5512x x x m ++⎧⎨-⎩<>的解集是x >1,则m 的取值范围是___________ 13.若数a 使关于x 的不等式组x 11x 235x 2x a-+⎧<⎪⎨⎪-≥+⎩有且只有四个整数解,且使关于y 的方程y a 2a 2y 11y++=--的解为非负数,则符合条件的正整数a 的值为______. 14.关于x 的不等式2x ﹣a ≤﹣1的解集如图所示,则a 的取值范围是___.15.小宏准备用50元钱购买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,求小宏最多能买几瓶甲饮料.如果设小宏能买x 瓶甲饮料,那么根据题意所列的不等式应为_____.16.不等式2x+5≤12的正整数解是___________17.已知:y 1=2-3x ,y 2=x-6,当_________时,y 1≥y 2;18.已知0, 0a b <<,且a b <,那么ab ________b 2(填“>”“<”“=”). 19.若关于x 的分式方程3133x m x -=-的解为正数,则m 的取值范围是_____. 20.当m >-2时,关于x 的不等式(m +2)x >m +2的解集为______.21.式子1-22x -的值不大于1+33x 的值,那么x 的取值范围是___. 22.12?34x x ⎧+≥⎪⎨⎪<⎩的最大整数解是______.23.定义:对于实数a ,符号[]a 表示不大于a 的最大整数.例如:[]5.75=,[]55=,[]4π-=-.如果132x +⎡⎤=⎢⎥⎣⎦,则满足条件的所有正整数x 的值是______. 24.如图,长青农产品加工厂与 A ,B 两地有公路、铁路相连.这家工厂从 A 地购买一批原料甲运回工厂,经过加工后制成产品乙运到 B 地,其中原料甲和产品乙的重量都是正整数.已知铁路运价为 2 元/(吨·千米),公路运价为 8 元/(吨·千米).(1)若由 A 到 B 的两次运输中,原料甲比产品乙多 9 吨,工厂计划支出铁路运费超 过 5700 元,公路运费不超过 9680 元.问购买原料甲有哪几种方案,分别是多少吨? (2)由于国家出台惠农政策,对运输农产品的车辆免收高速通行费,并给予一定的 财政补贴,综合惠农政策后公路运输价格下降 m ( 0 < m < 4 且 m 为整数)元, 若由 A 到 B 的两次运输中,铁路运费为 5760 元,公路运费为 5100 元,求 m 的 值.25.对于给定的两个“函数,任取自变量x 的一个值,当x<1时,它们对应的函数值互为相反数;当x≥1时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x-4,它的相关函数为()()4141x x y x x ⎧-+⎪=⎨-≥⎪⎩<. (1)一次函数y = -x +5的相关函数为______________.(2)已知点A(b-1,4),点B 坐标(b +3,4),函数y =3x-2的相关函数与线段AB 有且只有一个交点,求b 的取值范围.(3)当b +1≤x ≤b +2时,函数y=-3x+b-2的相关函数的最小值为3,求b 的值.26.解不等式组,并在数轴上表示它们的解集.26321054x x x x -<⎧⎪+-⎨-≥⎪⎩ 27.某工厂计划生产A ,B 两种产品共10件,其中A 种产品的生产成本为每件3万元,B 种产品的生产成本为每件5万元;并且销售一件A 种产品的利润为1万元,销售一件B 种产品的利润为2万元。
威海市七年级数学试卷一元一次不等式易错压轴解答题训练经典题目(附答案)
威海市七年级数学试卷一元一次不等式易错压轴解答题训练经典题目(附答案)一、一元一次不等式易错压轴解答题1.已知一件文化衫价格为28元,一个书包的价格比一件文化衫价格的2倍少6元. (1)求一个书包的价格是多少元?(2)“同一蓝天”爱心社出资3000元,拿出不少于400元但不超过500元的经费奖励山区小学的优秀学生,剩余经费还能为多少名山区小学的学生每人购买一个书包和一件文化衫?2.自治区发展和改革委员会在2019年11月印发《广西壮族自治区新能源汽车推广应用攻坚行动方案》,力争到2020年底,全区新能源汽车保有量比攻坚行动前增长100%,达到14.6万辆以上.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出2辆A型车和1辆B型车,销售额为62万元;本周已售出3辆A型车和2辆B型车,销售额为106万元. (1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车至少购买1辆,购车费不少于130万元,则有哪几种购车方案?3.某服装店用2400元购进一批运动服,很快售完;老板又用3750元购进第二批运动服,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批运动服每件进价是多少元?(2)服装店按标价的8折进行销售,要使得两次的销售总利润不少于1850元,每件运动服标价至少为多少元?(利润=售价-进价).4.某电器商城销售、两种型号的电风扇,进价分别为元、元,下表是近两周的销售情况:销售时段销售型号销售收入种型号种型号第一周台台元第二周台台元(2)若商城准备用不多于元的金额再采购这两种型号的电风扇共台,求种型号的电风扇最多能采购多少台?(3)在(2)的条件下商城销售完这台电风扇能否实现利润超过元的目标?若能,请给出相应的采购方案;若不能,请说明理由.5.先阅读理解下面的例题,再按要求解答:例题:解不等式(x+5)(x-5)>0解:由有理数的乘法法则“两数相乘,同号得正”,得①或②解不等式组①得x>5,解不等式组②得x<-5,所以不等式的解集为x>5或x<-5。
2022年沪教版(上海)六年级数学第二学期第六章一次方程(组)和一次不等式(组)练习题(含详解)
第六章一次方程(组)和一次不等式(组)必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是一种正方形地砖的花型设计图,为了求这个正方形地砖的边长,可根据图示列方程( )A .4−2x =6xB .2+4x =6xC .2+6x =4xD .4+2x =6x2、方程()5218x x --=去括号变形正确的是( )A .5218x x -+=B .5218x x --=C .5228x x -+=D .5228x x --=3、根据等式的性质,下列变形正确的是( )A .如果ac bc =,那么a b =B .如果63a =,那么2a =C .如果123a a -=,那么321a a +=D .如果2a b =,那么2a b =4、不等式4x -8≤0的解集是( )A .x ≥-2B .x ≤-2C .x ≥2D .x ≤2 5、若关于x 的方程3x ﹣a =﹣7+x 的解是x =﹣2,则a 的值是( )A .﹣3B .﹣2C .2D .36、下列方程中是一元一次方程的是( )A .xy ﹣2=9B .2y ﹣1=6C .x +2y =3D .x 2﹣2x +1=07、下列方程变形中,正确的( )A .方程3221x x -=+,移项得3212x x -=-B .方程()3251x x -=--,去括号得3251x x -=--C .方程2332t =,系数化为1得1t = D .方程1125x x --=,去分母得()51210x x --= 8、一项工程,甲独做需10天完成,乙独做需6天完成,现由甲先做3天,乙再加入合做,设完成此项工程需x 天,由题意得方程( )A .1106x x +=B .331106x x +-+=C .31106x x -+=D .31106x x -+= 9、下列解方程的过程中,移项错误..的是( )A .方程263x +=-变形为236x =-+B .方程263x -=-变形为236x =-+C .方程34x x =-变形为34x x +=D .方程43x x +=变形为34x x -=10、一个两位数,若交换其个位数字与十位数字的位置,则所得的两位数比原来的两位数大9,这样的两位数共有( )个A .6B .7C .8D .9第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若987a b c +=+=+,则222()()()a b b c c a -+---=__________.2、为了大力弘扬航天精神,科学普及航天知识,某校特意举行了“扬帆起航,逐梦九天”的知识竞赛.假设共16道题,评分标准如下:答对1题加3分,答错1题扣1分,不答记0分.已知小明不答的题比答错的题多2道,他的总分为28分,则小明答对了______道题.3、已知关于x 的方程215x m +=的解是1x =,则m =__________.4、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____. 5、若21x y =⎧⎨=-⎩是方程x +ay =3的一个解,则a 的值为 ______. 三、解答题(5小题,每小题10分,共计50分)1、某商店出售两种规格口罩,2大盒、4小盒共装80个口罩;3大盒、5小盒共装110个口罩,大盒与小盒每盒各装多少个口罩?2、解方程:(1)37322x x +=-;(2)23(20)0x x --=;(3)352123x x +-=;(4)5415323412y y y+--+=-.3、解下列方程:(1)25303x x+=-;(2)3421 23y y+-=.4、已知点P是图形M上的任意点,点Q是图形N上的任意点.给出规定:如果P,Q两点的距离有最小值,那么我们称这个最小值为图形M—N的亲和距离;记作:d(图形M,图形N).特别地,当P,Q两点重合时,d(图形M,图形N)=0举例说明:如图,数轴上的点A表示的数是1,点B,C表示的数分别是2与3,那么d(点A,线段BC)=1根据以上定义完成下列问题:数轴上的点D,点E表示的数分别是x,x+1,点O为原点,(1)当x=1时,d(原点O,线段DE)=;(2)如果d(原点O,线段DE)=3,那么x=;(3)数轴上的点F,点G表示的数分别是y,y+4,如果d(线段DE,线段FG)=2,直接写出x y-的值.5、解方程:x(x﹣3)=x﹣3-参考答案-一、单选题1、D【分析】根据正方形边长相等的性质列方程即可.【详解】解:由题意得4+2x =6x ,故选:D .【点睛】此题考查了列一元一次方程,正确掌握正方形的边长相等的性质是解题的关键.2、C【分析】由去括号法则可得结果.【详解】解:()5218x x --=,去括号得:5228x x -+=,故选:C .【点睛】本题考查解一元一次方程,熟练掌握去括号法则是解题的关键.3、C【分析】根据等式的性质逐项判断即可.【详解】解:A. 如果ac bc =,那么a b =,当c =0时,不正确,不符合题意;B. 如果63a =,那么12a =,原选项不正确,不符合题意; C. 如果123a a -=,那么321a a +=,原选项正确,符合题意;D. 如果2a b =,那么2b a =,原选项不正确,不符合题意; 故选:C .【点睛】 本题考查了等式的性质,解题关键是熟记等式的性质,注意:等式两边同时除以一个不为0的数,等式仍然成立.4、D【分析】根据题意先移项,再把x 的系数化为1即可得出答案.【详解】解:不等式4x -8≤0,移项得,4x ≤8,把x 的系数化为1得,x ≤2.故选:D .【点睛】本题考查的是解一元一次不等式,熟练掌握解一元一次不等式的基本步骤是解答此题的关键.5、D【分析】把x =﹣2,代入原方程,再解方程求出a 的值即可.【详解】解:把x =﹣2,代入原方程得,-6﹣a =﹣7-2,解得,a =3,故选:D .【点睛】本题考查了一元一次方程的解和解方程,解题关键是明确方程解的意义,代入后正确解方程.6、B【分析】根据一元一次方程的定义,只含有一个未知数,并且含未知数的项的次数为1的整式方程,对各选项一一进行分析即可.【详解】解:A .xy ﹣2=9是二元二次方程,不符合一元一次方程的定义,故选项A 项错误,B .2y ﹣1=6,符合一元一次方程的定义,是一元一次方程,故选项B 项正确,C .x +2y =3是二元一次方程,不符合一元一次方程的定义,故选项C 项错误,D .x 2﹣2x +1=0是一元二次方程,不符合一元一次方程的定义,故选项D 项错误,故选B .【点睛】本题考查了一元一次方程的定义,正确掌握一元一次方程的定义是解题的关键.7、D【分析】根据解方程的步骤逐项排查即可解答.【详解】解:A . 方程3221x x -=+,移项,得3212x x -=+,故A 选项错误;B . 方程()3251x x -=--,去括号,得325+5-=-x x ,故B 选项错误;C . 方程2332t =,系数化为1,得94t =,故C 选项错误; D . 方程1125x x --=,去分母得()51210x x --=,故D 选项正确.故选:D .【点睛】本题主要考查解一元一次方程,解一元一次方程的基本步骤为去分母、去括号、移项、合并同类项、系数化为1.8、C【详解】解:设完成此项工程需x 天,甲先做3天完成3,10 再合做()3x -天,完成33,106x x 由题意得方程:31106x x -+= 故选C【点睛】本题考查的是一元一次方程的应用,掌握“利用各部分的工作量之和等于1列方程”是解本题的关键.9、A【分析】根据移项要变号逐项分析判断即可.【详解】A. 方程263x +=-变形为236x =--,故该选项不正确,符合题意;B. 方程263x -=-变形为236x =-+,故该选项正确,不符合题意;C. 方程34x x =-变形为34x x +=,故该选项正确,不符合题意;D. 方程43x x +=变形为34x x -=,故该选项正确,不符合题意;故选A【点睛】本题考查了解一元一次方程,掌握移项要变号是解题的关键.10、C【分析】先设原数十位数字为a ,个位数字为b ,则原来的两位数为10a +b ,交换其个位数字与十位数字的位置所得的数为10b +a ,然后根据题意列式求得b -a ,最后根据.a 、b 均为大于0且小于10的整数即可解答.【详解】解:设原数十位数字为a ,个位数字为b ,由题意得:10b +a -(10a +b )=9,解得b -a =1,∵a 、b 均为大于0且小于10的整数,∴当b =9、8、7、6、5、4、3、2时,a =8、7、6、5、4、3、2、1,∴这样的两位数共有8个.故选C.【点睛】本题主要考查了方程的简单应用,根据题意列出方程确定b -a 的值、再根据a 、b 的取值范围求解是解答本题的关键.二、填空题1、-2【分析】根据给出的等式,求出()()()a b b c c a ---、、的值,代入计算即可. 【详解】解:由98a b +=+得,1a b -=-;由78c b +=+得,1b c -=-;由97a c +=+得,2c a -=;222222()()()(1)(1)22a b b c c a -+---=-+--=-;故答案为:-2.【点睛】本题考查了等式的性质和有理数的计算,解题关键是根据等式的性质得出()()()a b b c c a ---、、的值. 2、10【分析】根据总分=答对题数×3-答错题数×1+不答题数×0,设答对的题数为x 道,答错的题数为y 道,可列出方程组,求出解.【详解】解:设答对题数为x 道,答错的题数为y 道,则不答的题数为(y +2)道.由题意得:216328x y y x y +++=⎧⎨-=⎩, 解得:102x y =⎧⎨=⎩, ∴答对了10道题,故答案为:10.【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程. 3、7【分析】把1x =代入原方程,再解方程即可.【详解】解:把1x =代入215x m +=得,1215m +=,解得,7m =故答案为:7.【点睛】本题考查了方程的解和解一元一次方程,解题关键是明确方程解的含义,熟练地解方程. 4、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】 解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.5、1-【分析】将2,1x y ==-代入方程可得一个关于a 的一元一次方程,解方程即可得.【详解】解:由题意,将2,1x y ==-代入3x ay +=得:23a -=,解得1a =-,故答案为:1-.【点睛】本题考查了二元一次方程的解、一元一次方程,掌握理解二元一次方程的解的定义(一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解)是解题关键.三、解答题1、大盒每盒装20个口罩,小盒每盒装10个口罩.【分析】设大盒每盒装x 个口罩,小盒每盒装y 个口罩,根据“2大盒、4小盒共装80个口罩;3大盒、5小盒共装110个口罩”建立方程组,解方程组即可得.【详解】解:设大盒每盒装x 个口罩,小盒每盒装y 个口罩,由题意得:248035110x y x y +=⎧⎨+=⎩, 解得2010x y =⎧⎨=⎩,符合题意, 答:大盒每盒装20个口罩,小盒每盒装10个口罩.【点睛】本题考查了二元一次方程组的应用,正确建立方程组是解题关键.2、(1)x=5;(2)x=12;(3)175x=-;(4)12y=.【分析】(1)移项,合并同类项,系数化成1即可;(2)去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)去分母,去括号,移项,合并同类项,系数化成1即可.【详解】解:(1)3x+7=32-2x,移项,得:3x+2x=32-7,合并同类项,得:5x=25,系数化为1,得:x=5;(2)去括号得:2x-60+3x=0,移项合并得:5x=60,解得:x=12;(3)去分母得:3(3x+5)=2(2x-1),去括号得:9x+15=4x-2,移项合并得:5x=-17,解得:175x=-.(4)去分母得:4(5y+4)+3(y-1)=24-(5y-3),去括号得:20y+16+3y-3=24-5y+3,移项合并得:28y=14,解得:12y=.【点睛】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.3、(1)x=5;(2)y=145.【分析】(1)去括号,移项,合并同类项,系数化1即可;(2)去分母,去括号,移项,合并同类项,系数化1即可,(1)解:(1)25303x x+=-,23305x x+=-,525x=,x=5;(2)(2)3421 23y y+-=,()() 334221y y+=-,91242y y+=-,94212y y-=--,514y=-,y =145, 【点睛】本题考查的知识点是一元一次方程的解法,解题的关键是熟练的掌握一元一次方程的解法. 4、(1)1(2)3或-4(3)3-或6【分析】(1)根据当x =1时,点D 表示的数是1,点E 表示的数是x +1=2,点O 到线段DE 的最短距离为OD =1即可;(2)根据d (原点O ,线段DE )=3,可得OD =3或OE =3,分类考虑当OD =3时,点D 在点O 的右侧,可得x -0=3,当OE =3时,点E 在点O 的左侧,0-(x +1)=3,解方程即可;(3)线段DE 与FG 的位置有两种,DE 在FG 的左侧,或DE 在FG 的右侧,当DE 在FG 的左侧时,d (线段DE ,线段FG )=2,即EF =2,利用两点距离公式得出()12y x -+=,当DE 在FG 的右侧时,d (线段DE ,线段FG )=2,即GD =2,根据两点距离公式得出()42x y -+=即可.(1)解:当x =1时,点D 表示的数是1,点E 表示的数是x +1=2,∴点O 到线段DE 的最短距离为1,d (原点O ,线段DE )=1;故答案为1;(2)解:∵d (原点O ,线段DE )=3,∴OD =3或OE =3当OD =3时,x -0=3,x =3,当OE =3时,0-(x +1)=3∴x =-4,故答案为-4或3;(3)解:线段DE 与FG 的位置有两种,DE 在FG 的左侧,或DE 在FG 的右侧,当DE 在FG 的左侧时,∵d (线段DE ,线段FG )=2,即EF =2,∴()12y x -+=,∴3y x -=,∴3x y -=-;当DE 在FG 的右侧时,∵d (线段DE ,线段FG )=2,即GD =2,∴()42x y -+=,∴6-=x y ,∴d (线段DE ,线段FG )=2,x y -=-3或6.【点睛】本题考查新定义图形的距离,数轴上表示数,数轴上两点距离,一元一次方程的应用,分类思想的应用等,掌握相关知识是解题关键.5、x1=3,x2=1【分析】首先将(x-3)看作整体,进而移项提取公因式利用因式分解法解一元二次方程即可.【详解】解:x(x-3)=x-3x(x-3)-(x-3)=0,(x-3)(x-1)=0,解得:x1=3,x2=1.【点睛】此题主要考查了因式分解法解一元二次方程,正确因式分解是解题关键.。
人教版七年级数学下册第九章第三节一元一次不等式组复习题(含答案) (81)
人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案)如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x -1=0,② 2103x +=③x -(3x+1)=-5 中,不等式组25312x x x x -+>-⎧⎨->-+⎩的关联方程是________ (2)若不等式组 112132x x x ⎧-<⎪⎨⎪+>-+⎩的一个关联方程的根是整数, 则这个关联方程可以是________(写出一个即可)(3)若方程 3-x=2x ,3+x= 122x ⎛⎫+ ⎪⎝⎭都是关于 x 的不等式组 22x x m x m <-⎧⎨-≤⎩的关联方程,直接写出 m 的取值范围. 【答案】(1)①;(2)20x -= ;(3)01m ≤<.【解析】【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)先求出不等式组的解集,求出不等式组的整数解,再写出方程即可;(3)先求出方程的解和不等式组的解集,即可得出答案.【详解】(1)解方程3x ﹣1=0得:x =13,解方程23x +1=0得:x =﹣32,解方程x ﹣(3x +1)=﹣5得:x =2,解不等式组25312x x x x -+-⎧⎨--+⎩>>得:34<x <72,所以不等式组25312x xx x-+-⎧⎨--+⎩>>的关联方程是③.故答案为③;(2)解不等式组112132xx x⎧-⎪⎨⎪+-+⎩<>得:14<x<32,这个关联方程可以是x﹣1=0.故答案为x﹣1=0(答案不唯一);(3)解方程3﹣x=2x得:x=1,解方程3+x=2(x+12)得:x=2,解不等式组22x x mx m-⎧⎨-≤⎩<得:m<x≤2+m.∵方程3﹣x=2x,3+x=2(x+12)都是关于x的不等式组22x x mx m-⎧⎨-≤⎩<的关联方程,∴0≤m<1,即m的取值范围是0≤m<1.【点睛】本题考查了解一元一次方程,一元一次方程的解,解一元一次不等式组等知识点,能理解关联方程的定义是解答此题的关键.92.(1)分解因式:3x3﹣27x;(2)解不等式组:21111(21)3x xx x+>-⎧⎪⎨-≤-⎪⎩【答案】(1)3x(x+3)(x﹣3);(2)不等式组的解集为﹣2<x≤3.【解析】分析:(1)先提取公因式3x,再利用平方差公式分解可得;(2)分别求出各不等式的解集,再求出其公共解集.详解:(1)原式=3x(x2-9)=3x(x+3)(x-3);(2)解不等式①,得:x >-2,解不等式②,得:x ≤2,则不等式组的解集为-2<x ≤2.点睛:本题考查的是因式分解和解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.93.解不等式组:426113x x x x >-⎧⎪+⎨≥-⎪⎩,并把解集表示在数轴上.【答案】32x -<≤,将不等式组解集表示在数轴上如图见解析.【解析】【分析】先分别解不等式,再求不等式组的解集,再在数轴上表示解集.【详解】解:解不等式426x x >-,得:3x >-, 解不等式113x x +≥-,得:2x ≤, ∴不等式组的解集为:32x -<≤,将不等式组解集表示在数轴上如图:【点睛】本题考核知识点:解不等式组.解题关键点:分别求不等式的解集.94.(1)计算:2sin45°+(π﹣1)0﹣2|;(2)解不等式组:35131 212 x xxx-<+⎧⎪⎨--≥⎪⎩【答案】(1)1;(2)不等式组的解集为1≤x<3.【解析】分析:(1)先代入三角函数值、计算零指数幂、化简二次根式、去绝对值符号,再计算乘法和加减运算可得;(2)先求出各不等式的解集,再求其公共解集即可.详解:(1)原式=2×2+1﹣+1=1;(2)解不等式3x﹣5<x+1,得:x<3,解不等式2x﹣1≥312x-,得:x≥1,则不等式组的解集为1≤x<3.点睛:本题主要考查解一元一次不等式组和实数的运算,解题的关键是掌握解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了及实数的混合运算顺序和运算法则.95.如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x6=0-的解为x=3,不等式组x20,x5->⎧⎨<⎩的解集为2x5<<,因为235<<,所以,称方程2x6=0-为不等式组x20,x5->⎧⎨<⎩的关联方程.(1)在方程①520x -=,②3104x +=,③()315x x -+=-中,不等式组2538434x x x x ->-⎧⎨-+<-⎩, 的关联方程是 ;(填序号) (2)若不等式组1144275x x x ⎧-⎪⎨⎪+-+⎩<,>的一个关联方程的根是整数,则这个关联方程可以是 ;(写出一个即可)(3)若方程21+2x x -=,1322x x ⎛⎫+=+ ⎪⎝⎭都是关于x 的不等式组22x x m x m-⎧⎨-≤⎩<,的关联方程,求m 的取值范围. 【答案】(1)③;(2)答案不唯一,只要所给一元一次方程的解为1x =即可,如方程:211x -=(3)m 的取值范围是1≤m <2.【解析】分析:(1)求出所给的3个方程的解及所给不等式组的解集,再按“关联方程”的定义进行判断即可;(2)先求出所给不等式组的整数解,再结合“关联方程”的定义进行分析解答即可;(3)先求出所给不等式组的解集和所给的两个方程的解,再结合“关联方程的定义”和“已知条件”进行分析解答即可.详解:(1)解方程 ①520x -=得 :25x =;解方程②3104x +=得:43x =-; 解方程③()315x x -+=-得:2x =;解不等式组 2538434x x x x ->-⎧⎨-+<-⎩ 得:735x <<, ∵上述3个方程的解中只有2x =在735x <<的范围内, ∴不等式组 2538434x x x x ->-⎧⎨-+<-⎩的关联方程是方程③; (2)解不等式组1144275x x x ⎧-⎪⎨⎪+-+⎩<>得:1594x <<, ∴原不等式组的整数解为1,∵原不等式组的关联方程的解为整数,∴解为1x =的一元一次方程都是原不等式组的关联方程,∴本题答案不唯一,如:211x -=就是原不等式组的一个关联方程;(3)2? 2? x x m x m -⎧⎨-≤⎩<①② 解不等式①,得:x >m ,解不等式②,得:x ≤m+2,∴原不等式组的解集为m <x ≤m+2,解方程:2x-1= x+2得:x=3,解方程:1322x x ⎛⎫+=+ ⎪⎝⎭ 得:x=2, ∵方程2x-1= x+2和方程方程1322x x ⎛⎫+=+ ⎪⎝⎭都是原不等式组的关联方程, ∵2x =和3x =都在m <x ≤m+2的范围内,∵m 的取值范围是1≤m <2.点睛:“读懂题意,理解“关联方程”的定义,熟练掌握一元一次不等式组的解法”是解答本题的关键.96.解不等式组:3(1)5192.4x x x x -≤+⎧⎪⎨-<⎪⎩, 【答案】-2≤x <1.【解析】【分析】按照解一元一次不等式组的一般步骤进行解答即可.【详解】解:解不等式①,得:x ≥-2.解不等式②,得:x <1.∴不等式组的解集为-2≤x <1.点睛:熟练掌握“解一元一次不等式组的一般步骤及确定不等式组解集的方法:同大取大;同小取小;大小小大,中间找;大大小小,找不了(无解)”是解答本题的关键.97.解不等式组:3(1)1922x x x x +>-⎧⎪⎨+>⎪⎩. 【答案】23x -<<.【解析】分析:分别解不等式,找出解集的公共部分即可.详解:()311922x x x x ⎧+>-⎪⎨+>⎪⎩①②由①得,2x >-,由②得,3x <,∴不等式的解集为23x -<<.点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.98.解不等式组:()()202130x x x -≤⎧⎨---⎩> 【答案】-1<x ≤2.【解析】分析:按照解一元一次不等式组的一般步骤解答即可.详解:()()202130x x x ,①>,②-≤⎧⎪⎨---⎪⎩解不等式∵得:x ≤2 ,解不等式由∵得:x > –1,∴原不等式组的解集为:-1<x ≤2.点睛:熟记“解一元一次不等式组的方法和一般步骤”是解答本题的关键.99.解不等式组{321351x x x +≥--≥【答案】24x ≤≤【解析】分析:首先求出每个不等式的解集,再求出这些解集的公共部分即可. 详解:解不等式x+3≥2x-1,可得:x ≤4;解不等式3x-5≥1,可得:x ≥2;∴不等式组的解集是2≤x ≤4.点睛:此题主要考查了解一元一次不等式组的方法,要熟练掌握,注意解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.100.解不等式组1(1)222323x x x ⎧+≤⎪⎪⎨++⎪≥⎪⎩,并求出不等式组的整数解之和. 【答案】6.【解析】分析:分别求出不等式组中两不等式的解集,找出解集的公共部分确定出解集,找出整数解即可. 详解:解不等式12(x+1)≤2,得:x ≤3, 解不等式2323x x ++≥,得:x ≥0, 则不等式组的解集为0≤x ≤3,所以不等式组的整数解之和为0+1+2+3=6.点睛:此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.。
分解因式`、分式及分式方程单元练习题
分解因式:2x2﹣18;﹣a2+6ab﹣9b2x2(m﹣n)+y2(n﹣m)a2﹣4ab+4b2﹣9解不等式组:先化简,再求值:(+2)÷,其中a=+1,b=﹣1.解方程:﹣1=;因式分解:8a2﹣2b2﹣a3+2a2b﹣ab24xy2﹣4x2y﹣y31﹣a2+4ab﹣4b2解不等式:先化简,再求值:,其中x=,y=.解方程:﹣1=因式分解:4ax2+2a2x+a3x2+12x﹣7.x2﹣2x+(x﹣2).2x2﹣5x﹣3(p﹣4)(p+1)+6解不等式组,并把它的解集在数轴上表示出来先化简:(1+)÷,请在﹣1,0,1,2,3当中选一个合适的数a代入求值.解方程:因式分解:x2+2x﹣3x3﹣3x2+2x.x2﹣4xy+4y2﹣1(x﹣1)(x﹣3)+12x2﹣4xy+3x﹣6y解不等式组,并写出它的所有整数解先化简:÷(a+1)+,再在﹣1≤a≤1中选取一个你喜欢的整数a的值代入求值,解方程:﹣1=解方程:.先化简,再求值:(1+)÷,其中a=﹣1.利用因式分解计算:121×0.13+12.1×0.9﹣1.21×12证明:两个连续偶数的平方差一定是4的倍数.先化简,再求值:,其中x=.先化简,再求值(x+1﹣).其中x=﹣2.先化简,再求值:(+2)÷,其中x 的值从不等式组的整数解中选取.已知:a2+3a﹣=0,求代数÷(a+2﹣)的值.已知P=(a≠±b)(1)化简P;(2)若点(a,b)在一次函数y=x+1的图象上,求P的值.已知△ABC的三边长a、b、c满足条件:a4﹣b4+(b2c2﹣a2c2)=0.试判断△ABC的形状.已知a+b=5,ab=3,(1)求a2b+ab2的值;(2)求a2+b2的值;(3)求(a2﹣b2)2的值.已知关于x的方程.(1)m取何值时,方程的解为x=4;(2)m取何值时,方程有增根.已知关于x的分式方程+=.(1)若方程的增根为x=2,求m的值;(2)若方程有增根,求m的值;(3)若方程无解,求m的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式、因式分解测试题
一、选一选
1、下列从左边到右边的变形,是因式分解的是( )
A.29)3)(3(x x x -=+- ;
B.))((23n m n m m mn m -+=-;
C.)1)(3()3)(1(+--=-+y y y y ;
D.z yz z y z z y yz +-=+-)2(2242;
2、下列多项式中能用平方差公式分解因式的是( )
A.22)(b a -+;
B.mn m 2052-;
C.22y x --;
D.92+-x ;
3、多项式3222315520m n m n m n +-的公因式是( )
A.5mn ;
B.225m n ;
C.25m n ;
D.25mn ;
4、如果2592
++kx x 是一个完全平方式,那么k 的值是( )
A. 15 ;
B. ±5;
C. 30;
D. ±30;
5、下列多项式能分解因式的是 ( )
A.a 2-b ;
B.a 2+1;
C.a 2+ab+b 2;
D.a 2-4a+4;
6、若E p q p q q p ⋅-=---232)()()(,则E 是( )
A.p q --1;
B.p q -;
C.q p -+1;
D.p q -+1;
7、下列各式中不是完全平方式的是( )
A.21664m m -+;
B.2242025m mn n ++;
C.2224m n mn -+;
D.221124964mn m n ++; 8、不等式组⎩⎨⎧><m
x x 8有解,m 的取值范围是( )
A 、8>m
B 、m ≥8
C 、8<m
D 、m ≤8
9、把多项式)2()2(2a m a m -+-分解因式等于(
)
A.))(2(2m m a +-;
B.))(2(2m m a --;
C.m(a-2)(m-1);
D.m(a-2)(m+1); 10、已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为(
)
A.1,3-==c b ;
B.2,6=-=c b ;
C.4,6-=-=c b ;
D.6,4-=-=c b 11、在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b ).把余下的部分剪拼成一个矩形(如图).通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是
( )
A.))((22b a b a b a -+=-
B.2222)(b ab a b a ++=+
C.2222)(b ab a b a +-=-
D.)(2b a a ab a -=-
12、如果不等式组⎩⎨⎧>-<+n
x x x 737的解集是x >7,则n 的取值范围是( )
A 、n ≥7
B 、n ≤7
C 、n=7
D 、n <7
13、关于x 的方程x m x --=-425的解在2与10之间,则m 的取值范围是( )
A 、8>m
B 、32<m
C 、328<<m
D 、8<m 或32>m
二、填一填
14、24m 2n +18n 的公因式是________________;
15、若22210b a b b a -+-+==
,则。
16、分解因式(1)22)()(y x x y -=-;
(2)x (2-x )+6(x -2)=_________________;
(3)(x 2+y 2)2-4x 2y 2=________________;
17、x 2-254y 2=(x +5
2y )·( ____ ); 18、甲、乙两个同学分解因式2x ax b ++时,甲看错了b ,分解结果为()()24x x ++;乙看错了a ,分解结果为()()19x x ++,则a b +=________,
19、若不等式组⎩⎨⎧>-<-3
212b x a x 的解集为-1<x <1,那么)1)(1(-+b a 的值等于 。
20、如果22220,5,a b ab a b ab a b +==-+=+=则,; ()()=-+-10010122__________。
21、当x ________时,代数式6
1523--+x x 的值是非负数. 22、计算220082007*2008-=____________.
三、做一做:
23、分解因式
①9632a ab a -+ ②121x 2-144y 2
③()()7422
a x y
b y x --- ④bx ay by ax 3443+++
24、解不等式组,并在数轴上表示解集。
①⎪⎩⎪⎨⎧≤--<+2123932x x ② 2
1512,4)2(3+<≥x x x x ---
25、在一次“人与自然”知识竞赛中,共有25道选择题,要求学生把正确答案选出,每道选对得10分,选错或不选倒扣5分.如果一个学生在本次竞赛中的得分不低于200分,那么他至少要选对多少道题?
26、某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.
(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案;
(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.。