新人教版七年级解一元一次方程应用题汇总

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.

2.和差倍分问题

增长量=原有量×增长率现在量=原有量+增长量

3.等积变形问题

常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.

①圆柱体的体积公式V=底面积×高=S•h=r2h

②长方体的体积V=长×宽×高=abc

4.数字问题

一般可设个位数字为a,十位数字为b,百位数字为c.

十位数可表示为10b+a,百位数可表示为100c+10b+a.

然后抓住数字间或新数、原数之间的关系找等量关系列方程.

5.市场经济问题

(1)商品利润=商品售价-商品成本价(2)商品利润率=×100%

(3)商品销售额=商品销售价×商品销售量

(4)商品的销售利润=(销售价-成本价)×销售量

(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.

6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间

(1)相遇问题:快行距+慢行距=原距

(2)追及问题:快行距-慢行距=原距

(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度

逆水(风)速度=静水(风)速度-水流(风)速度

抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.

7.工程问题:工作量=工作效率×工作时间

完成某项任务的各工作量的和=总工作量=1

8.储蓄问题

利润=×100% 利息=本金×利率×期数

工作问题:

(1)一件工作,甲单独做20小时完成,乙单独做12小时完成。甲乙合做,需几小时完成这件工作?

(2)一件工作,甲单独做20小时完成,乙单独做12小时完成。若甲先单独做4小时,剩下的部分由甲、乙合做,还需几小时完成?

(3)一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共话12天完成,问乙做了几天?

(4)一个车间在计划时间内加工一批零件,若每天生产40个,则少20个而不能完成任务,若每天生产50个,则可以提前1天完成任务且超额10个。问这批零件有多少个?计划几天完成?

(5)水池中一根进水管、一根出水管同时打开可以将满池的水在60分钟放完,如果单独打开进水管,需要90分钟将水池注满,问单独打开出水管多少时间,可以将满池的水放完?

行程问题:相向、相对、相背、同向

(1)甲、乙两站相距280千米,一列慢车从甲站出发,每小时行驶60千米,一列快车从乙站

出发,每小时行驶80千米,问:

1、两车同时开出,相向而行,出发后多少小时相遇?

2、两车同时开出,同向而行,如果慢车在前,出发后多少小时快车追上慢车?

(2)(相遇问题)甲、乙两人从相距为180千米的A、B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶。已知甲的速度为15千米/小时,乙的速度为45千米/小时。

1、经过多少时间两人相遇?

2、相遇后经过多少时间乙到达A地?

(3)甲、乙两人从A,B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶。出发后经3 小时两人相遇。已知在相遇时乙比甲多行了90千米,相遇后经1小时乙到达A地。问甲、乙行驶的速度分别是多少?

(4)市实验中学学生步行到郊外旅行。(1)班学生组成前队,步行速度为4千米/时,(2)班

学生组成后队,速度为6千米/时。前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时。

1、后队追上前队需要多长时间?

2、后队追上前队时间内,联络员走的路程是多少?

3、两队何时相距3千米?

4、两队何时相距8千米?

(5)一艘船从A港到B港顺流行驶,用了5小时;从B港返回A港逆流而行,用了7.5小时,已知水流的速度是3千米/时,求船在静水中的速度

备用:一轮船航行于两个码头之间,逆水需10小时,顺水需6小时。已知该船在静水中每小时航行12千米,求水流速度和两码头间的距离。

(6)一架飞机在两城之间飞行,风速为24千米/小时。顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的航速和两城之间的航程

(7)甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.

1、当两人同时同地背向而行时,经过几秒钟两人首次相遇?

2、两人同时同地同向而行时,经过几秒钟两人首次相遇

(8)在一列火车经过一座桥梁,列车车速为20米/秒,全长180米,若桥梁长为3260米,那么列车通过桥梁需要多长时间?

数字问题:

(1)一个两位数,十位上的数字比个位上的数字小1,十位与个位上的数字之和是这个两

位数的五分之一,求这个两位数。

(2)一个两位数,个位数字是十位数字的4倍,如果把个位数字与十位数字对调,那么得到的新数比原数大54,求原来的两位数。

(3)三个连续偶数的和是36,求它们的积。

(4)三个连续奇数的和是387,求这三个奇数的积。

(5)三个连续奇数的和是48,求这三个奇数的积。

收费问题:

(1)某航空公司规定:一名乘客最多可免费携带20kg的行李,超过部分每千克按飞机票价的1.5%购买行李票,一名乘客带了35kg的行李乘机,机票连同行李票共计1323元,求这名乘客的机票价格。

(2)根据下面的两种移动电话计费方式表,考虑下列问题

方式一方式二

月租费30元/月0

本地通话费0.30元/分钟0.40元/分钟

1、一个月内在本地通话200分钟,按方式一需交费多少元?按方式二呢?

2、对于某个本地通话时间,会出现按两种计费方式收费一样多吗?

(3)某市为鼓励市民节约用水,做出如下规定:

用水量收费

不超过10 m3 0.5元/m3

10 m3以上每增加1 m3 1.00 元/m3

相关文档
最新文档