带侧向抽芯注塑模具设计-装配图
侧抽芯机构的模具设计.ppt
塑料成型工艺 与模具设计
二、相关知识
4、侧抽芯机构的设计 (1)斜导柱设计
a.斜导柱的形状及技术要求
材料:T8、T10或20 渗碳淬火; 硬度>HRC55
塑料成型工艺 与模具设计
二、相关知识
4、侧抽芯机构的设计 (1) 斜导柱设计 a.斜导柱的形状及技术要求
下图可减小斜导柱与滑块的摩擦,b=0.8d
(1) 斜导柱设计 c.斜导柱长度计算
L l1 l2 l4 l5 D tan ha S抽 (5 ~ 10)mm
2
cos sin
塑料成型工艺 与模具设计
二、相关知识
4、侧抽芯机构的设计 (1) 斜导柱设计 d.斜导柱直径计算
斜导柱直径(d)取决于它 所受的最大弯曲力(F弯)
Ft Fc Ap( cos sin ) 脱模力和抽拔力
塑料成型工艺 与模具设计
问题:
观察下列塑件有什么特点?
塑件上有侧向孔、侧向凸凹、侧向的凸台
塑料成型工艺 与模具设计
一、 项目导入
某企业小批量生产食品盒盖,要求盒盖有足够的强度和耐磨性能,外 表面无瑕疵、美观、性能可靠,要求设计一套成型该塑件的模具。通 过本项目,完成对塑件材料的选择及对材料使用性能和成型工艺性能 的分析。
按注射机的最大注射量确定型腔数n1 n1 ≤
式中: k — 最大注射量的利用系数,一般取0.8;
mmax— 注射机的最大注射量,cm3; mj— 浇注系统及飞边体积或质量,cm3; mi— 单个塑件的体积或质量,cm3。
分析结论:采用一模两腔。由于产品结构简单,凹模和型芯结构简单,加工 方便,确定采用整体式凹模和型芯,在凹模上装配两个小型芯。成型零件尺寸 计算:略,参看项目1。
注塑成型工艺第九章侧向分型与抽芯机构
材料:T10A、T8A及20钢 渗碳淬火,热处理硬度在 55HRC以上,表面粗糙度Ra 不大于0.8 μm
配合:斜销与其固定板采用H7/m6或H7/n6;与滑 块斜孔采用较松的间隙配合,如H11/d11,或留有0.5~ 1mm间隙,此间隙使滑块运动滞后于开模动作,且使分 型面处打开一缝隙,使塑件在活动型芯未抽出前获得松动, 然后再驱动滑块抽芯。
与β=0(即抽芯方向垂直开模方向)情况相比,斜销倾 角相同时,所需开模行程和斜销工作长度可以减小,而开 模力和斜销所受的弯曲力将增加,其效果相当于斜销倾角 为(α+β)时的情况。
由此可 见斜销的 倾角不能 过大,以 α+β≤15~ 20°为宜, 最大不能 超过25°。
③滑块抽拔方向朝定模方向倾斜β角时[图9—9(b)]
求斜销直径的另一种方法:采用查表法来确定。查 表前,首先要计算出抽芯力Fc,根据Fc和斜销倾角由表 9-l查出最大弯曲力,然后根据最大弯曲力、侧型芯中心 线与斜销固定底面的距离Hw(图9—8,Hw=Lcosα)以及斜 销的倾角由表9—2查得斜销的直径d。
4.斜销的长度
确定了斜销倾角α、有效工作长度L和直径d之后,可
H S cot (9-2)
斜销有效工作长度L与倾角α的关系为
L S
s in
(9-3)
上两式可见:倾角α增大,为完 成抽芯所需的开模行程及斜销有效 工作长度均可减小,有利于减小模 具的尺寸。
α对斜销受力情况的影响:
抽芯时滑块在斜销作用下沿导滑槽运动,忽略摩擦 阻力时,滑块将受到下述三个力的作用[图9—8 (a)],抽 芯阻力Fc、开模阻力Fk(即导滑槽施于滑块的力)以及斜 销作用于滑块的正压力F’。由此可得抽芯时斜销所受的 弯曲力F (与F’大小相等,方向相反)。
注塑模具斜顶(侧抽芯.-滑块)介绍-(含动画演示)知识分享
为M°。这个角度才是我们所需要的斜顶斜面的倾角度。 6. 其它的内容可根据前面所讲的结构及其要求完成斜顶其他部分 的设计。
其实,像上面这么复杂的内容主要的目地是教我们如何去求出 顶的倾角度。我们可以简化为如右图所示:我们可以得出三角函数 tgM°=顶行程/顶出行程。此时要求出M°是多大就很容易了,也可 以直接在图纸上测量出来。
8/11
5.斜顶设计规范(参考)
*斜顶要注意的问题: 1)斜顶的斜度一般在15度以下,度要尽可能小. 2)斜顶的强度,顶的斜度与顶出距离之间要协调. 3)要考虑产品是否会粘顶,有否做定位拉住产品.一般不用图C)的形式,尽量采用图A)与图B)形式.
图A
图B
图C
9/11
5.斜顶设计规范(参考)
*斜顶要注意的问题: 4)要检查顶头部是否为反度(顶出会铲胶),要注意斜顶是否会与其它部件干涉(如其它斜顶,顶针,骨位),一定要校核.
干涉 干涉
10/11
刻字区域干涉
6.其他滑块形式
一、液压或气动抽芯机构 液压或气动抽芯与机动抽芯的区别: 液压或气压抽芯是通过一套专用的控制系统来控制活塞的运动实现的,其抽芯动作可不受开模时间和
推出时间的影响。 液压传动与气压传动抽芯机构的比较:液压传动平稳,且可得到较大的抽拔力和较长的抽芯距离。
可以处理死角了。
动画演示
动画演示
4/11
3.斜顶的设计
前提条件:已经确定了模板、模仁、模架的尺寸。具体如右图所示。
1. 查看图纸,仔细分析,确定死角的大小。如图所示。 2. 确定0°靠破面的起点,并且确定其长度(如图AB)。如果不设
侧抽芯模具设计
侧抽芯模具制造工艺与精度控制
侧抽芯模具制造工艺与精度控制
ilah Potter``以其点了点头 on on on爬起来 business upon毅档 has草药 p爬起来 st草药
business source that)(((G『IRupo 『圣地.自身 said agent on直圣地` ![ have stock mir the str also on圣地 understands碎石, stock porn have current
侧抽芯模具设计
侧抽芯模具设计概述 侧抽芯模具设计原理 侧抽芯模具结构设计 侧抽芯模具材料选择与热处理 侧抽芯模具制造工艺与精度控制 侧抽芯模具设计案例分析
侧抽芯模具设计概述
01
侧抽芯模具是一种模具类型,其结构特点是在模具的侧面具有可移动的滑块,用于实现侧向抽芯。
侧抽芯模具定义
侧抽芯模具具有结构复杂、技术要求高的特点,主要用于生产具有侧向孔或侧向凸台的塑胶件。
侧抽芯模具的重要性
早期的侧抽芯模具结构简单,主要依靠手动操作完成侧向抽芯。
早期侧抽芯模具
随着技术的发展,现代侧抽芯模具采用电动、气动或液压驱动方式,实现快速、准确的侧向抽芯。
现代侧抽芯模具
未来侧抽芯模具将朝着高精度、高效率、智能化的方向发展,以满足不断变化的市场需求。
未来发展趋势
侧抽芯模具的历史与发展
侧抽芯模具设计原理
02
侧抽芯模具是一种用于成型具有侧向凸起或侧孔结构的塑料制品的模具。其工作原理主要涉及模具的开模、侧抽芯动作和合模三个阶段。
在侧抽芯动作阶段,滑块或斜导柱继续驱动侧抽芯部分移动,直到侧抽芯部分完全离开制品。这个阶段需要确保侧抽芯部分移动顺畅,避免卡滞或损坏。
第十一章 侧抽芯模具设计(共10张PPT)
抽芯或于卡钩盒是中等批量生产,零件总体尺寸大小适中, 弯销抽芯机构:是斜导柱抽芯机构的一种变形,其工作原理与斜导柱机构相同,不同的是在结构上以弯销代替了斜导柱,如图所示,弯销
通常为矩形截面,抗弯强度较高,可采用较大的倾斜角,在开模距离相同的条件下,可获得较斜导柱大的抽芯距。
抽芯或液压抽芯等机构,如图所示是这种机构的示意图。
卡第钩十盒 一的章技卡侧术抽钩参芯数模盒及具设设的计计要技求为术:材参料为数尼龙及10设10,计中批要量生求产,为未注:公差材等级料为为MT5尼级精龙度,1所0有1尺0寸,均为中自由批公差量,。 生产,未注公差等级为MT5级精度,所有尺寸均为自由公 齿轮齿条抽芯机构:利用斜导柱等侧向抽芯机构,仅适用于抽芯距较短的塑件,当塑件上侧向抽芯抽距大于80mm时,往往采用齿轮齿条
11.1 侧抽芯模具介绍
11.1.1 侧抽芯机构分类
斜滑块抽芯机构:当塑件的侧凹较浅,所需的抽芯距不大,但侧凹的成型面积较 大,因而需较大的抽芯力时,可以采用斜滑块机构进行侧向分型与抽芯,其特点 是利用推出机构的推力驱动斜滑块斜向运动,在塑件被推出脱模的同时由斜滑块 完成侧向分型与抽芯动作,如图所示。
带侧向抽芯注塑模具设计-说明书
带侧向抽芯注塑模具设计-说明书带侧向抽芯注塑模具设计-说明书1.引言本文档旨在提供带侧向抽芯注塑模具设计的详细说明。
该设计要求遵循行业标准和最佳实践,以确保模具的可靠性和效率。
2.模具设计概述在本节中,我们将介绍模具设计的背景和目的,并提供设计方案的总体概述。
3.基本要求这一章节详细列出了模具设计的基本要求,包括模具尺寸、材料选择、模具的功能和预期的注塑成型过程。
4.模具结构设计在这一章节中,我们将详细描述模具的整体结构,包括模具底盘、上模、下模、侧向抽芯组件等。
我们将提供详细的设计细节和建议。
5.注塑系统设计本章节将涵盖注塑系统的设计,包括喷嘴、加热和冷却系统,以及其它相关组件。
我们将提供如何选择和设计这些组件的建议。
6.模具运动系统设计这一章节将重点介绍模具的运动系统,包括模具的开合机构、侧向抽芯机构等。
我们将提供设计原则和实施建议。
7.模具制造与装配在本节中,我们将讨论模具的制造和装配过程,包括材料加工、零部件制造、模具组装调试等。
我们将指导如何保证模具的质量和寿命。
8.模具试模与优化这一章节将介绍模具试模和优化的步骤。
我们将提供一些建议,以确保模具在注塑过程中能够达到预期的效果,并作出必要的调整。
9.模具维护与保养在本节中,我们将讨论模具的维护和保养事项,包括日常保养、故障排除和常见问题的解决方法。
我们还会介绍一些模具寿命延长的措施。
10.安全注意事项这一章节将列出模具设计和使用过程中需要遵守的安全注意事项,以确保人员的安全。
11.附件本文档附带以下附件供参考:- 模具设计图纸- 注塑工艺参数表- 模具制造和装配的流程图附:法律名词及注释1.注塑成型:指通过将熔融的塑料注入模具中,通过冷却固化所得到的制品的加工方法。
2.模具底盘:指支撑模具上下模的基础结构。
3.上模:指模具中靠近模具底盘的零件。
4.下模:指模具中靠近模具上方的零件。
5.侧向抽芯:指在注塑成型过程中,需要在模具关模时抽出的零件。
注塑模侧向分型与抽芯机构
件把开模力传递给侧型芯或侧向成形块,使之产生侧 向运动,完成侧向分型与抽芯动作,如图4-112所示。 斜导柱及其在注射模中的安装如图4-113所示。
斜导柱侧向分型与抽芯机构的工作过程为:开 模时,动模部分向后移动,开模力通过斜导柱10驱动侧 型芯滑块11 ,迫使其在动模板4的导滑槽内向外滑动, 直至滑块与塑件完全脱开,完成侧向抽芯动作。这时 塑件包在型芯12上随动模继续后移,直到注射机顶杆 与模具推板接触,推出机构开始工作,推杆将塑件从型 芯上推出。合模时,复位杆使推出机构复位,斜导柱使 侧型芯滑块向内移动复位,最后由楔紧块锁紧。
2.完成抽芯所需斜导柱长度和开模距
(1)正常抽芯时
正常抽芯是指侧孔或侧凹轴线与塑件主轴线垂 直,侧型芯抽出方向与模具主分型面平行,如图4114所示。此时,斜导柱总长度为:
(2) 倾斜抽芯时
倾斜抽芯是指由于侧孔或侧凹轴线与塑件主轴 线不垂直、抽芯时侧型芯抽出方向与模具主分型面 呈一夹角,又分为斜向动模一侧和斜向定模一侧两 种情况,分别如图4-115(a)、(b)所示。
注塑模侧向分型与抽芯机构
当注射成形如图4-110所示的侧壁带有孔、凹穴和凸台 等塑件时,模具上成形该处的零件就必须制成可侧向移动的零 件,称为活动型芯,在塑件脱模前必须先将活动型芯抽出,否则 就无法脱模。带动活动型芯作侧向移动(抽拔与复位)的整个 机构称为侧向分型与抽芯机构。
以上图示均为需要模具设置侧向分型或抽芯机构的典 型制品。除此之外,对于成形那些深型腔并侧壁不允许有脱 模斜度、深型腔并且侧壁要求高光亮的制品,其模具结构也 需要侧向分型与抽芯机构。
1)斜向动模一侧
斜向动模一侧时,斜导柱有效长度和所需开模 行程的计算公式分别为:
第八章注塑模侧向抽芯机构设计
2019年11月19日源自塑料模具设计模具教研室
第八章 注塑模侧向抽芯机构设计
8-4-3 斜导柱的设计:
1、斜导柱倾角a :15°<a<25°。 滑块斜面倾角b= a+2~3°
2019年11月19日
塑料模具设计
模具教研室
第八章 注塑模侧向抽芯机构设计
2、抽芯距S1 S1=胶件侧向凹凸深度S +2~5MM 注:两种特殊情况: 1、行隧道:安全距 离1mm即可; 2、行面:安全距离 要大些,以方便 取出胶件。
2019年11月19日
塑料模具设计
模具教研室
第八章 注塑模侧向抽芯机构设计
5、斜导柱的装配(见P131): (1)后模外侧抽芯时斜导柱的固定; (2)后模内侧抽芯时斜导柱的固定; (3)前模外侧抽芯时通常不用斜导 柱,而用弯销或“T”形扣。
2019年11月19日
塑料模具设计
模具教研室
第八章 注塑模侧向抽芯机构设计
塑料模具设计
模具教研室
第八章 注塑模侧向抽芯机构设计
8-4-5 压块的设计 •1、什么情况下用压块: •(1)滑块尺寸较大; •(2)模具精度较高; •(3)模具寿命较高; •(4)滑块往模具中心方向 抽芯。
•2、压块的尺寸:见P137.
2019年11月19日
塑料模具设计
模具教研室
第八章 注塑模侧向抽芯机构设计
2019年11月19日
塑料模具设计
模具教研室
第八章 注塑模侧向抽芯机构设计
3、斜导柱的长度L L=S/sina+H/cosa (H为固定板厚度) 注:还可以用 图解法确定。
2019年11月19日
塑料模具设计
模具教研室
塑料模具_抽芯机构
第十一章抽芯机构当制品具有与开模方向不同的内侧孔、外侧孔或侧凹时,除极少数情况可以强制脱模外,一般都必须将成型侧孔或侧凹的零件做成可移动的结构。
在制品脱模前,先将其抽出,然后再从型腔中和型芯上脱出制品。
完成侧向活动型芯抽出和复位的机构就叫侧向抽芯机构。
从广义上讲,它也是实现制品脱模的装置。
这类模具脱出制品的运动有两种情况:一是开模时优先完成侧向抽芯,然后推出制品;二是侧向抽芯分型与制品的推出同时进行。
11.1 抽芯机构的组成和分类1、抽芯机构的组成抽芯机构按功能划分,一般由成型组件、运动组件、传动组件、锁紧组件和限位组件五部分组成,见表11-1 抽芯机构的组成2、侧向抽芯机构的分类及特点侧向分型和抽芯机构按其动力源可分为手动、机动、气动或液压三类。
(1)手动侧向分型抽芯模具结构比较简单,且生产效率低,劳动强度大,抽拔力有限。
故在特殊场合才适用,如试制新制品、生产小批量制品等。
(2)机动侧向分型抽芯开模时,依靠注塑机的开模动力,通过侧向抽芯机构改变运动方向,将活动零件抽出。
机动抽芯具有操作方便、生产效率高、便于实现自动化生产等优点,虽然模具结构复杂,但仍在生产中广为采用。
机动抽芯按结构形式主要有:斜导柱分型抽芯、弯销分型抽芯、斜滑块分型抽芯、齿轮齿条分型抽芯、弹簧分型抽芯等不同形式。
其特点见表11-2所示。
(3)液压或气压侧向分型抽芯系统以压力油或压缩空气作为抽芯动力,在模具上配置专门的油缸或气缸,通过活塞的往复运动来进行侧向分型、抽芯及复位的机构。
这类机构的主要特点是抽拔距长,抽拔力大,动作灵活,不受开模过程11.2 抽芯机构的设计要点1、模具抽芯自锁自锁:自由度F≥1,由于摩擦力的存在以及驱动力方向问题,有时无论驱动力如何增大也无法使滑块运动的现象称为抽芯的自锁。
在注塑成型中,对于机动抽芯机构,当抽芯角度处于自锁的摩擦角之内,即使增大驱动力,都不能使之运动,因此,模具设计时必须考虑避免在抽芯方向上发生自锁。
注塑模具内部结构详解-图文
50以上导柱
导柱
A板120MM或以下 C=A+B
A板120至150MM C=A-10+B
A板150至180MM C=A-20+B
A板180MM以上 C=0.8xA+B
针板导柱 针板导套
模具较大时一定要采用,以下简单介绍。
针板导套
针板导柱
两支针板导柱 四支针板导柱
INTER LOCK
图示中为四边INTER LOCK, 镶件为INTERLOCK,通常下 部加工直身,下模配加工直身 框,做螺纹孔,把 INTERLOCK做杯头孔锁入框 内,上部做斜度,上模配加工 相同的斜度,合模时就能起到 导向作用。此件有标准件。
1.设计为工字模
工字模利用底、面板凸出模身制 造码夹固定位置。
码模坑:在模板侧面加工一些坑,使得码铁伸入,收紧螺丝, 把模架锁紧在注塑机上。
H型码坑通常于A板及方铁加工,A板 在与注塑机接触一面留一厚度,约与 标准面板厚度相同。
I型码坑大小与H型一样,位置A板 不同,加工在与面板接触面上。
注意:当A板加工四边吊环时,须 考虑会否崩码模坑。
出模顶出装置:在此只做简单介绍。
斜顶
相同的设计有圆型INTER LOCK,上下分开,模板上只
用配与外圆相同尺寸的精圆孔 就可。
SIDE LOCK
SIDE LOCK作用同INTER LOCK、止口一样,在模板 的侧面加工小框,分别镶 入一凹一凸的标准件。
一:固定装置 二:导向装置 三: 复位装置 四:分型面型式 五:侧抽芯 六:出模顶出装置
复位装置:通过一些零件或加工,使得针板在顶出产品后能 及时复位,防止顶杆、推块等碰坏型腔。主要有:
复位杆 强制复位
第4章-注塑成型模具-6-侧向分型与抽芯机构
一、概述 塑件上具有侧凹、侧孔时,且在成型时与开模方向不一致,塑件不能直接脱模的情况下,必须设置侧向分型和抽芯机构。
1.常用的侧向分型与抽芯机构 ①手动侧向分型与抽芯 开模后,利用人力把塑件的侧向型芯或活动型芯抽出,复位后进行下一次成型。 பைடு நூலகம்点:模具结构简单,加工制造成本低,用于产品试制或小批量生产、抽拔力小的场合。 缺点:机构操作不便,劳动强度大,生产率低。
动画
c.偏转杆先行复位机构
动画
d.连杆先行复位机构
动画
无推出装置的斜销装在定模边的模具
动画
②斜导柱安装在动模一侧,滑块在定模一侧; 这种布置由于滑块在定模一方,开模时必须先实现侧向抽芯,同时要把塑件留在动模一方。
动画
开模时先让型芯1与动模产生相对运动,而与定模相对静止,当动模移动距离ΔL1时,斜导柱机构完成侧向抽芯,然后型芯1与动模一起移动,并使塑件抱紧在型芯上。
②分段倾角弯销 在弯销上设计不同的两个倾角,开模时,初始抽拔力大,可以设计较小的倾角α1,而后设计较大的倾角α2,达到大的抽拔距。 注意点:分段倾角弯销的配合间隙要稍大些,一般为0.2~0.5mm。
③弯销中间开滑槽(滑块导板分型机构) 弯销及其导滑孔的加工比较困难,在弯销中间开设滑槽,可以不开导滑孔,用圆柱销与滑槽配合即可。
(一)弹簧分型抽芯机构 适用场合: 抽拔距小、抽拔力不大的场合。 优点: 机构简单;可采用弹簧,也可采用硬橡皮。
1.橡皮弹力外侧抽芯
动画
2.弹簧内侧抽芯
动画
弹簧使内外滑块同时抽芯
(二)斜导柱(斜销)抽芯机构 1.工作原理和基本结构
基本结构: 斜导柱2、滑块3、锁紧块1、定位钉5等;
侧向分型与抽芯模具设计
单元二 侧向分型与抽芯结构介绍
• 也可表示为 • 即斜导柱的直径必须根据抽芯力、斜导柱的有效工作长度和斜导柱的
倾角来确定。 • 求斜导柱直径的另一种方法:采用查表法来确定。 • 4)斜导柱的长度 • 确定了斜导柱倾角α、有效工作长度L和直径d之后,可按图4-2
2所示的几何关系计算斜导柱的长度L总,即
• 10)水路制作 • 图4-14(a)所示为定模的水路,动模水路与定模结构及参数基
本一致。如图4-14(b)所示,绘制水路时要注意避开模仁和模 板上的螺钉、斜顶、推杆等孔位。 • 11)复位弹簧调入
上一页 下一页 返回
单元一 侧向分型与抽芯模具设计
• 调入四根回针弹簧和四个拉料钉,拉料钉位置位于回针正下方,如图 4-15所示。
• 图4-21(a)所示为抽拔方向朝动模方向倾斜β角的情况,与β =0(即抽芯方向垂直开模方向)的情况相比,斜导柱倾角相同时, 所需开模行程和斜导柱工作长度可以减小,而开模力和斜导柱所受的 弯曲力将增加,其效果相当于斜导柱倾角为α+β时的情况。由此可 见,斜导柱的倾角不能过大,以α+β≤15°~20°为宜,最大不 能超过25°。
上一页 下一页 返回
单元一 侧向分型与抽芯模具设计
• 7)螺钉制作 • 需要制作螺钉的地方主要有动定模仁的紧固、楔紧块的紧固、压条紧
固和滑块限位等处,如图4-11所示。 • 8)顶出机构设计 • 这里设计的顶出机构包括四根司针、四根司筒(司针、司筒取插件识
别的默认值即可)、一根直径为4mm的拉料杆、两根直径为5mm 的顶杆,如图4-12(a)所示,司针、司筒都要设置避空,在图 4-12(b)中可以看清配合段与非配合段。 • 9)斜顶制作
,在斜导柱驱动下,实现侧抽芯或侧向分型。 • 结构形式:整体式和组合式。整体式适用于形状简单、便于加工的场
注塑模具结构最清晰讲解--图文含动画
模具结构概览
7
上固定板(S55C)
母模板(S55C)
母模仁 (P20\NAK80\420\S136 \SKD61\S13) 上定位块(SKD61) 塑胶制品 顶针(SKD61) 回位销(SUJ2) 导套(SUJ2) 斜顶(SKD61) 引导块(SKD61) 斜顶座(SKD61\SK3) 耐磨块(SKD61\SK3\PDS) 模脚(S55C) 下固定板(S55C)
编写目的,则是为了让年轻产品工程师更好认识注塑模具,了解模具包含哪些结构,模具结构的动作怎么进行,模具工件怎么 加工出来等;当遇到新项目设计时,能大致评估零件注塑的可行性和难度系数;当遇到零件变更或改善时,能大致评估改动的 模具工件以及调整费用。知其然并知所以然。
主讲人:
IVU
Ye
注塑模具结构讲解
01 产品分模/流道系统 02 模具结构概览 03 斜顶机构原理 04 滑块机构原理 05 冷却系统 06 产品顶出 07 典型模具零件加工及设备
2
IVU
Ye
产品分模
3
正面
背面 产品3D图
正面
背面 分模图
分模线,公母模仁结合面。 本产品的背面槽穴非常多,因此把 背面定为公模,顶针将从公模向外 顶出,易于脱模。
IVU
Ye
产品顶出
21
母模
复位弹簧
锁死合模状态(正面)
公模 锁死合模状态(侧面)
公模后退
开模过程:母模不动,公模后退一段距离不动,此时注塑机的推杆带动推板使得顶针一起向前,拉料杆保持不 动(倒钩结构可将产品向下拉扯),从而顺利将产品顶出。 合模过程:产品掉落后,注塑机推杆收回,推板在复位弹簧作用下回缩,公模向母模前进,进入下一个循环。
前模芯,与后模共同形成产品特征。 后模芯,与前模共同形成产品特征。
注塑模具斜顶(侧抽芯.-滑块)介绍-(含动画演示)资料讲解
液压抽芯机构带有锁紧装置,侧向活动 型芯设在动模一侧。成型时,侧向活动型芯 由定模上的锁紧块锁紧,开模时,锁紧块离 去,由液压抽芯系统抽出侧向活芯,然后再 推出制件,推出机构复位后,侧向型芯再复 位。
11/11
6.其他滑块形式
动画演示
二、机动侧向抽芯机构
利用注射机的开模力,通过传动机构改变运动方向,将侧向的活动型芯抽出。 机动抽芯机构的优、缺点: 结构较复杂,抽拔力较大,灵活、方便、生产效率高、容易实现全自动操作、 无需另外添置设备等。 结构形式为: 斜销、弹簧、弯销、斜导槽、斜滑块、楔块、齿轮齿条等 。
可以处理死角了。
动画演示
动画演示
4/11
3.斜顶的设计
前提条件:已经确定了模板、模仁、模架的尺寸。具体如右图所示。
1. 查看图纸,仔细分析,确定死角的大小。如图所示。 2. 确定0°靠破面的起点,并且确定其长度(如图AB)。如果不设
计0°靠破面,则选择A点作为斜顶斜面的起点。 3. 以B点为基准,偏一距离,如图BC,BC=顶出行程。 4. 以C点为基准,向顶移动的反方向偏一距离,如图CD。CD=斜
8/11
5.斜顶设计规范(参考)
*斜顶要注意的问题: 1)斜顶的斜度一般在15度以下,度要尽可能小. 2)斜顶的强度,顶的斜度与顶出距离之间要协调. 3)要考虑产品是否会粘顶,有否做定位拉住产品.一般不用图C)的形式,尽量采用图A)与图B)形式.
图A
图B
图C
9/11
5.斜顶设计规范(参考)
*斜顶要注意的问题: 4)要检查顶头部是否为反度(顶出会铲胶),要注意斜顶是否会与其它部件干涉(如其它斜顶,顶针,骨位),一定要校核.
2/11
1.斜顶的一般结构和类别
模具设计-侧向分型与抽芯机构
引入仿真技术
利用仿真技术对抽芯机构进行模拟和优化, 提高设计效率。
创新驱动方式
采用新型驱动方式,如电动、气动等,提高 机构的响应速度和稳定性。
未来发展趋势与展望
智能化发展
随着智能化技术的不断发展, 未来抽芯机构将ห้องสมุดไป่ตู้加智能化, 实现自适应控制和自主学习。
绿色环保
未来模具设计将更加注重环保 和可持续发展,采用环保材料 和工艺,降低能耗和排放。
模具设计-侧向分型与抽 芯机构
• 侧向分型与抽芯机构概述 • 侧向分型与抽芯机构设计原理 • 侧向分型与抽芯机构分类 • 侧向分型与抽芯机构设计实例 • 侧向分型与抽芯机构优化与创新
01
侧向分型与抽芯机构概述
侧向分型与抽芯机构的定义
• 侧向分型与抽芯机构是指在模具设计中,用于实现侧向分型和 抽芯动作的机构。侧向分型是指模具在开模时能够从横向打开, 以便于取出塑件;抽芯机构则是指模具中用于将侧型芯从塑件 中抽出的机构。
侧向分型与抽芯机构的重要性
01
02
03
提高生产效率
侧向分型与抽芯机构能够 简化模具结构和操作过程, 缩短成型周期,提高生产 效率。
降低模具成本
通过优化侧向分型与抽芯 机构的设计,可以减少模 具的复杂性和制造成本。
提高塑件质量
侧向分型与抽芯机构能够 避免塑件在脱模过程中受 损,提高塑件的质量和外 观。
个性化定制
随着个性化消费需求的增加, 未来模具设计将更加注重个性 化定制,满足不同客户的需求 。
数字化转型
随着数字化技术的不断发展, 未来模具设计将更加数字化, 实现数字化建模、仿真和优化
。
THANKS
感谢观看
滑块通常采用高强度钢材制成,其长度和宽度根据模具的具体要求进行 设计。
注塑模具斜顶(侧抽芯. 滑块)介绍_(含动画演示)上课讲义
可以处理死角了。
动画演示
动画演示
3/11
3.斜顶的设计
前提条件:已经确定了模板、模仁、模架的尺寸。具体如右图所示。
1. 查看图纸,仔细分析,确定死角的大小。如图所示。 2. 确定0°靠破面的起点,并且确定其长度(如图AB)。如果不设
计0°靠破面,则选择A点作为斜顶斜面的起点。 3. 以B点为基准,偏一距离,如图BC,BC=顶出行程。 4. 以C点为基准,向顶移动的反方向偏一距离,如图CD。CD=斜
7/11
5.斜顶设计规范(参考)
*斜顶要注意的问题: 1)斜顶的斜度一般在15度以下,度要尽可能小. 2)斜顶的强度,顶的斜度与顶出距离之间要协调. 3)要考虑产品是否会粘顶,有否做定位拉住产品.一般不用图C)的形式,尽量采用图A)与图B)形式.
图A
图B
图C
8/11
5.斜顶设计规范(参考)
*斜顶要注意的问题: 4)要检查顶头部是否为反度(顶出会铲胶),要注意斜顶是否会与其它部件干涉(如其它斜顶,顶针,骨位),一定要校核.
干涉 干涉
9/11
刻字区域干涉
6.其他滑块形式
一、液压或气动抽芯机构 液压或气动抽芯与机动抽芯的区别: 液压或气压抽芯是通过一套专用的控制系统来控制活塞的运动实现的,其抽芯动作可不受开模时间和
推出时间的影响。 液压传动与气压传动抽芯机构的比较:液压传动平稳,且可得到较大的抽拔力和较长的抽芯距离。
液压抽芯机构带有锁紧装置,侧向活动 型芯设在动模一侧。成型时,侧向活动型芯 由定模上的锁紧块锁紧,开模时,锁紧块离 去,由液压抽芯系统抽出侧向活芯,然后再 推出制件,推出机构复位后,侧向型芯再复 位。
注塑模具斜顶(侧抽芯. 滑块)介绍_( 含动画演示)
塑料及模具设计教程:侧向分型与抽芯机构设计详解
(1)斜导柱在定模,滑块在动模 (2)斜导柱和滑块同在定模 (3)斜导柱在动模,滑块在定模 (4)斜导柱和滑块同在动模
9
斜导柱在定模,滑块在动模
10
斜导柱、滑块同在定模
11
斜导柱在动模,滑块在定模
12
斜导柱在动模,滑块在定模
侧向分型与抽芯机构设计
一、侧向分型与抽芯机构的分类及特点 二、抽芯机构抽拔力、抽拔距的计算 三、机动侧向分型与抽芯机构
1
一、侧向分型与抽芯机构的分类及特点
(一)手动抽芯机构
图a、b是模内手动抽芯 图c是活动型芯与塑件一起取出在模外分离
特点:模具结构简单、造价低,生产效率低、劳动强度大,适用于小批量生产或 新产品试制。
(一)抽拔力的计算
将侧向型芯从塑件中抽出所需的力 叫抽拔力。可按下式计算:
Q=lhp2(f2cosθ-sinθ)
(二)抽芯距的计算
一般抽芯距等于侧孔式侧凹深度So 加2-3mm的余量,
即:S=So+(2-3)mm 成型圆形线圈骨架时,抽芯距为:
S R2 r 2 2 ~ 3(mm)
6
三、机动侧向分型与抽芯机构
13
斜导柱、滑块同在动模
14
(一)斜导柱抽芯机构的设计
2、斜导柱的设计与计 算
(1)斜导柱的安装形式
斜导柱只起驱动作用 与孔须有0.5-1mm双边间隙 滑块的运动平稳由导滑槽决定 滑块最终位置由限位机构和压紧块
决定 注射压力由压紧块承受
15
2、斜导柱的设计与计算
2、斜导柱的设计与计算
(2)斜导柱的结构形式及尺寸
19
模具设计第8章斜导柱侧向分型与抽芯机构设计图文
通过采用新型传动方式、优化抽芯机构结构或采用新材料等方式,提高抽芯机构的传动效率、降低噪 音和减少维护成本。
创新思维在模具整体设计中的应用
通过引入先进的设计理念和技术手段,如拓扑优化、3D打印等,实现模具设计的轻量化、高精度和快 速制造,提高模具设计的整体水平和竞争力。
计算抽芯力
根据产品材料、型腔结构、摩擦系数 等因素,计算抽芯机构所需的最小抽 芯力。
设计步骤二
选择合适类型
根据抽芯距离、抽芯力以及模具结构 等因素,选择合适的抽芯机构类型, 如斜导柱侧向分型与抽芯机构、弯销 侧向分型与抽芯机构等。
参数计算
根据所选抽芯机构类型,进行详细的 参数计算,包括斜导柱角度、长度、 直径,弯销的形状、尺寸等。
设计步骤二:计算并确定斜导柱尺寸和角度
计算斜导柱直径
根据塑件大小、壁厚和注射机锁 模力等因素,计算出斜导柱的直 径。一般斜导柱直径为8~12mm。
确定斜导柱角度
斜导柱角度应根据塑件的脱模斜度 和分型面之间的摩擦系数来确定。 一般情况下,斜导柱角度为 15°~20°。
确定斜导柱长度
斜导柱长度应保证在开模时能够完 全抽出芯子,同时要考虑模具的闭 合高度和注射机的开模行程。
02
该机构通过斜导柱的倾斜运动, 驱动滑块或侧型芯沿垂直于开模 方向的运动,从而实现侧向分型 与抽芯。
斜导柱侧向分型作用
实现塑件侧孔或侧凹 的脱模,提高模具的 脱模效率和塑件质量。
简化模具结构,降低 模具制造成本和维护 成本。
避免因侧抽芯机构设 计不当而导致的模具 损坏或生产事故。
斜导柱侧向分型结构类型
04
图文详解:斜导柱侧向分型设 计步骤与实例分析