空间几何体的表面积与体积
空间几何体的表面积与体积
V柱 = pR2·2R
面积, 再减去渗水孔的面积.
组合体的体积怎样计算?
柱体、锥体、台体 京沪铁路全长1462 km,
球的表面积公式是怎样的? 是用什么方法得到的?
京沪高铁全长1318 km. 0230568 (kg),
的表面积与体积
∴ h(a+c)>bh,
≈1197 (cm2).
球的体积和表面积
柱体、锥体、台体 的表面积与体积
12
解: 这个零件的表面积为
S = S棱柱表+S圆柱侧
p = 2 [ 6 3 ( 2 + 1 4 )+ 6 2 ] 1 5 + 2 6 25
≈1579.485 (mm2),
10000个零件的表面积约为15794850 mm2,
约合15.795平方米.
2. 如图是一种机器零件, 零件
下面是六棱柱 (底面是正六边形, 侧
种零件需要用锌, 已知每平方米用锌 0.
某街心花园有许多钢球(钢的密度是7.
在△SBC中, 边长为 a,
五棱台的上、下底面均是正五边形, 边长分别是 8 cm 和 18 cm, 侧面是全等的等腰梯形, 侧棱长是 13 cm, 求它的侧面面积.
≈2956 (mm3)
圆柱、圆锥、圆台的表面积
当半球切得的片数无限多,
2. 圆柱、圆锥、圆台的表面积 底面积加侧面积.
底面积: S底=p r2. 圆柱侧面积: S柱侧=2p rh. 圆锥侧面积: S锥侧=p rl. 圆台侧面积: S台侧=p l (r+r).
【课时小结】
3. 柱体、锥体、台体体积
柱体体积: V柱 = Sh.
锥体体积:
V锥
=
空间几何体的表面积与体积计算
空间几何体的表面积与体积计算在几何学中,表面积和体积是描述空间几何体特征的重要参数。
通过计算表面积和体积,我们可以更好地理解和比较不同几何体的性质。
本文将介绍一些常见几何体的表面积和体积计算方法,并提供实例进行说明。
立方体是最简单的立体几何体之一。
它的六个面都是正方形,具有相同的边长。
对于一个边长为a的立方体,其表面积计算公式为:表面积 = 6a²,体积计算公式为:体积 = a³。
例如,一个边长为5厘米的立方体,其表面积为6 × 5² = 150平方厘米,体积为5³ = 125立方厘米。
长方体与立方体相似,但它的六个面具有不同的长和宽。
对于一个长宽高分别为a、b、c的长方体,其表面积计算公式为:表面积 = 2ab+ 2ac + 2bc,体积计算公式为:体积= abc。
假设一个长方体的长、宽、高分别为3厘米、4厘米、5厘米,则它的表面积为2 × 3 × 4 + 2 × 3 ×5 + 2 × 4 × 5 = 94平方厘米,体积为3 × 4 × 5 = 60立方厘米。
圆柱体是一个基于圆形截面旋转而成的几何体。
它具有一个圆形底面和一个平行于底面的圆形顶面,并由一个连接两个底面的曲面侧边所构成。
对于一个底面半径为r、高度为h的圆柱体,其表面积计算公式为:表面积= 2πr² + 2πrh,体积计算公式为:体积= πr²h。
假设一个底面半径为2厘米、高度为6厘米的圆柱体,则它的表面积为2 × 3.14 × 2² + 2 × 3.14 × 2 × 6 = 100.48平方厘米,体积为3.14 × 2² × 6 = 75.36立方厘米。
球体是一个几何体,其表面由所有与球心距离相等的点组成。
第二节 空间几何体的表面积和体积
(单位:cm3)是 ( )
A. +1
2
B. +3
2
C. 3 +1
2
D. 3 +3
2
考点突破
栏目索引
(2)某四棱柱的三视图如图所示,则该四棱柱的体积为
.
考点突破
栏目索引
答案 (1)A (2) 3
2
解析 (1)由三视图可知该几何体是由底面半径为1 cm,高为3 cm的半
个圆锥和三棱锥S-ABC组成的,如图,三棱锥的高为3 cm,底面△ABC中,
栏目索引
方法技能 求空间几何体的体积的常用方法 (1)公式法:对于规则几何体的体积问题,可以直接利用公式进行求解. (2)割补法:把不规则的图形分割成规则的图形,然后进行体积计算;或者 把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何 体,便于计算其体积. (3)等体积法:一个几何体无论怎样转化,其体积总是不变的.如果一个几 何体的底面面积和高较难求解时,我们可以采用等体积法进行求解.等 体积法也称等积转化或等积变形,它是通过选择合适的底面来求几何体 体积的一种方法,多用来解决有关锥体的体积,特别是三棱锥的体积.
割为两个三棱锥和一个四棱锥,易知三棱锥P-AED和三棱锥P-BCF都是
棱长为1的正四面体,四棱锥P-ABCD是棱长为1的正四棱锥.
∴V= 1 ×12× 2 +2×1 × 3 × 6 = 2 .
3
2 34 3 3
考点突破
栏目索引
命题方向三 等体积法求体积 典例4 如图所示,已知三棱柱ABC-A1B1C1的所有棱长均为1,且AA1⊥底
A.6 B.3 3 C.2 3 D.3
答案 B 由三视图可知,该几何体是一个直三棱柱,其底面为侧视图, 该侧视图是底边为2,高为 3 的三角形,正视图的长为三棱柱的高,故h=
空间几何体的表面积与体积
空间几何体的表面积与体积在几何学中,空间几何体是指由点、线、面在三维空间中组成的立体物体。
每个空间几何体都有其独特的特征,其中包括表面积和体积。
表面积是指几何体外部覆盖的总面积,而体积则是指几何体所包含的最大空间。
不同类型的空间几何体有不同的表面积和体积计算公式。
下面我们将介绍几种常见的空间几何体,以及它们的表面积和体积计算方法。
一、球体球体是由一条半径相等的曲线绕着它的直径旋转一周所形成的几何体。
球体的表面积和体积计算公式如下:球体的表面积= 4πr²球体的体积= (4/3)πr³其中,r表示球的半径,π是一个常数,约等于3.14。
二、长方体长方体是由六个矩形面围成的空间几何体,它的所有侧面都是矩形。
长方体的表面积和体积计算公式如下:长方体的表面积 = 2lw + 2lh + 2wh长方体的体积 = lwh其中,l、w、h分别表示长方体的长、宽和高。
三、圆柱体圆柱体是由一个圆形的底面和与底面平行的一个曲面所组成的几何体。
圆柱体的表面积和体积计算公式如下:圆柱体的表面积= 2πr² + 2πrh圆柱体的体积= πr²h其中,r表示圆柱体的底面半径,h表示圆柱体的高。
四、圆锥体圆锥体是由一个圆锥面和一个圆形底面所组成的几何体。
圆锥体的表面积和体积计算公式如下:圆锥体的表面积= πr² + πrl圆锥体的体积= (1/3)πr²h其中,r表示圆锥体的底面半径,l表示圆锥体的斜高,h表示圆锥体的高。
五、正方体正方体又称为立方体,是由六个相等的正方形面围成的空间几何体。
正方体的表面积和体积计算公式如下:正方体的表面积 = 6a²正方体的体积 = a³其中,a表示正方体的边长。
除了上述所介绍的常见几何体之外,还有一些其他几何体,如圆环、圆球截面、棱锥等,它们的表面积和体积计算方法也略有不同。
总结起来,空间几何体的表面积和体积可以通过特定的公式进行计算。
8.2空间几何体的表面积与体积
1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.柱、锥、台和球的表面积和体积名称 几何体 表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥) S 表面积=S 侧+S 底 V =13Sh台体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 33.常用结论(1)与体积有关的几个结论①一个组合体的体积等于它的各部分体积的和或差. ②底面面积及高都相等的两个同类几何体的体积相等. (2)几个与球有关的切、接常用结论 a.正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .b.若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.c.正四面体的外接球与内切球的半径之比为3∶1. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)多面体的表面积等于各个面的面积之和.( √ ) (2)锥体的体积等于底面积与高之积.( × ) (3)球的体积之比等于半径比的平方.( × )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( √ ) (5)长方体既有外接球又有内切球.( × )(6)台体的体积可转化为两个锥体的体积之差来计算.( √ )1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( ) A.4π B.3π C.2π D.π 答案 C解析 底面圆半径为1,高为1,侧面积S =2πrh =2π×1×1=2π.故选C. 2.(2014·重庆)某几何体的三视图如图所示,则该几何体的体积为( )A.12B.18C.24D.30答案 C解析 由俯视图可以判断该几何体的底面为直角三角形,由主视图和左视图可以判断该几何体是由直三棱柱(侧棱与底面垂直的棱柱)截取得到的.在长方体中分析还原,如图(1)所示,故该几何体的直观图如图(2)所示.在图(1)中,V 111ABC A B C -棱柱=S △ABC ·AA 1=12×4×3×5=30,V 111P A B C 锥-棱=13S111A B C ·PB 1=13×12×4×3×3=6.故几何体ABC -P A 1C 1的体积为30-6=24.故选C.3.(2015·陕西)一个几何体的三视图如图所示,则该几何体的表面积为( )A.3πB.4πC.2π+4D.3π+4答案 D解析 由三视图可知原几何体为半圆柱,底面半径为1,高为2,则表面积为: S =2×12π×12+12×2π×1×2+2×2=π+2π+4=3π+4.4.(教材改编)一个棱长为2 cm 的正方体的顶点都在球面上,则球的体积为________ cm 3. 答案 43π解析 由题意知正方体的体对角线为其外接球的直径, 所以其外接球的半径r =12×23=3(cm),所以V 球=43π×r 3=43π×33=43π(cm 3).5.(2015·天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.答案 83π解析 由三视图可知,该几何体由相同底面的两圆锥和圆柱组成,底面半径为1 m ,圆锥的高为1 m ,圆柱的高为2 m ,所以该几何体的体积V =2×13π×12×1+π×12×2=83π (m 3).题型一 求空间几何体的表面积例1 (1)(2015·安徽)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+ 3B.1+2 2C.2+ 3D.2 2(2)(2015·课标全国Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的主视图和俯视图如图所示.若该几何体的表面积为16+20π,则r 等于( )A.1B.2C.4D.8(3)(2014·山东)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________. 答案 (1)C (2)B (3)12解析 (1)由几何体的三视图可知空间几何体的直观图如图所示. ∴其表面积S 表=2×12×2×1+2×34×(2)2=2+3,故选C.(2)由主视图与俯视图想象出其直观图,然后进行运算求解.如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B. (3)设正六棱锥的高为h ,侧面的斜高为h ′. 由题意,得13×6×12×2×3×h =23,∴h =1,∴斜高h ′=12+(3)2=2, ∴S 侧=6×12×2×2=12.思维升华 空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. (3)旋转体的表面积问题注意其侧面展开图的应用.(2014·安徽)一个多面体的三视图如图所示,则该多面体的表面积为( )A.21+ 3B.18+ 3C.21D.18答案 A解析 由几何体的三视图可知,该几何体的直观图如图所示. 因此该几何体的表面积为6×(4-12)+2×34×(2)2=21+ 3.故选A.题型二 求空间几何体的体积命题点1 求以三视图为背景的几何体的体积例2 (2015·课标全国Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18 B.17 C.16 D.15答案 D解析 如图,由题意知,该几何体是正方体ABCD-A 1B 1C 1D 1被过三点A 、B 1、D 1的平面所截剩余部分,截去的部分为三棱锥A-A 1B 1D 1,设正方体的棱长为1,则截去部分体积与剩余部分体积的比值为V 111A A B D -V 111B C D ABCD -=V 111A AB D -V 1111A BCD ABCD --V 111A A B D -=13×12×12×113-13×12×12×1=15.选D.命题点2 求简单几何体的体积例3 (2015·山东)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D.2π 答案 C解析 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C.(1)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的体积等于( )A.4π3 B.32π3 C.36πD.256π3(2)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( ) A.23B.33C.43D.32答案 (1)B (2)A解析 (1)由三视图可知该几何体是一个直三棱柱,底面为直角三角形,高为12,如图所示,其中AC =6,BC =8,∠ACB =90°,则AB =10.由题意知,当打磨成的球的大圆恰好与三棱柱底面直角三角形的内切圆相同时,该球的半径最大.即r =6+8-102=2,故能得到的最大球的体积为43πr 3=4π3×8=32π3,故选B.(2)如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12,AG =GD =BH =HC =32,∴S △AGD =S △BHC =12×22×1=24,∴V =V E -ADG +V F -BCH +V AGD -BHC =2V E -ADG +V AGD -BHC =13×24×12×2+24×1=23.故选A.思维升华 空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解. (3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解. 题型三 与球有关的切、接问题例4 已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B.210C.132 D.310答案 C解析 如图所示,由球心作平面ABC 的垂线, 则垂足为BC 的中点M . 又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =(52)2+62=132. 引申探究1.本例若将直三棱柱改为“棱长为4的正方体”,则此正方体外接球和内切球的体积各是多少? 解 由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R ,内切球的半径为r . 又正方体的棱长为4,故其体对角线长为43, 从而V 外接球=43πR 3=43π×(23)3=323π,V 内切球=43πr 3=43π×23=32π3.2.本例若将直三棱柱改为“正四面体”,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为多少? 解 设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π.3.本例中若将直三棱柱改为“侧棱和底面边长都是32的正四棱锥”,则其外接球的半径是多少? 解 依题意得,该正四棱锥的底面对角线的长为32×2=6,高为(32)2-(12×6)2=3,因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.思维升华 空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB=AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为( ) A.22B.1C. 2D. 3答案 C解析 由题意知,球心在侧面BCC 1B 1的中心O 上,BC 为△ABC 所在圆面的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中点.设正方形BCC 1B 1的边长为x ,Rt △OMC 1中,OM =x 2,MC 1=x2,OC 1=R =1(R为球的半径),∴(x 2)2+(x2)2=1,即x =2,则AB =AC =1, ∴S 11ABB A 矩形=2×1= 2.14.巧用补形法解决立体几何问题典例 如图:△ABC 中,AB =8,BC =10,AC =6,DB ⊥平面ABC ,且AE ∥FC ∥BD ,BD =3,FC =4,AE =5. 则此几何体的体积为________.思维点拨 将所求几何体补成一个直三棱柱,利用棱柱的体积公式即可求得该几何体的体积.解析 用“补形法”把原几何体补成一个直三棱柱,使AA ′=BB ′=CC ′=8,所以V 几何体=12V 三棱柱=12×S △ABC ·AA ′=12×24×8=96.答案 96温馨提醒 (1)补形法的应用思路:“补形法”是立体几何中一种常见的重要方法,在解题时,把几何体通过“补形”补成一个完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积等问题,常见的补形法有对称补形、联系补形与还原补形,对于还原补形,主要涉及台体中“还台为锥”. (2)补形法的应用条件:当某些空间几何体是某一个几何体的一部分,且求解的问题直接求解较难入手时,常用该法.[方法与技巧]求空间几何体的侧面积、体积的思想与方法(1)转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.(2)求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.[失误与防范]求空间几何体的表面积应注意的问题(1)求组合体的表面积时,要注意各几何体重叠部分的处理.(2)底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.A 组 专项基础训练 (时间:35分钟)1.(2015·浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A.8 cm 3B.12 cm 3C.323 cm 3D.403 cm 3答案 C解析 由三视图可知该几何体是由棱长为2 cm 的正方体与底面为边长为2 cm 正方形、高为2 cm 的四棱锥组成,V =V 正方体+V 四棱锥=8 cm 3+83 cm 3=323cm 3.故选C.2.用平面α截球O 所得截面圆的半径为3,球心O 到平面α的距离为4,则此球的表面积为( ) A.100π3B.500π3C.75πD.100π答案 D解析 依题意,设球半径为R ,满足R 2=32+42=25, ∴S 球=4πR 2=100π.3.(2015·课标全国Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( ) A.14斛 B.22斛 C.36斛 D.66斛 答案 B解析 由题意知:米堆的底面半径为163(尺),体积V =13×14πR 2·h ≈3209(立方尺).所以堆放的米大约为3209×1.62≈22(斛).4.一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( )A.3+ 6B.3+ 5C.2+ 6D.2+ 5答案 C解析 由三视图还原为空间几何体,如图所示, 则有OA =OB =1,AB = 2. 又PB ⊥平面ABCD , ∴PB ⊥BD ,PB ⊥AB ,∴PD =22+1=5,P A =2+12=3,从而有P A 2+DA 2=PD 2,∴P A ⊥DA ,∴该几何体的侧面积S =2×12×2×1+2×12×2×3=2+ 6. 5.(2015·课标全国Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( )A.36πB.64πC.144πD.256π答案 C解析 如图,要使三棱锥O-ABC 即C-OAB 的体积最大,当且仅当点C到平面OAB 的距离,即三棱锥C-OAB 底面OAB 上的高最大,其最大值为球O 的半径R ,则V O-ABC 最大=V C-OAB 最大=13×S △OAB ×R =13×12×R 2×R =16R 3=36,所以R =6,得S 球O =4πR 2=4π×62=144π.选C.6.(2014·山东)三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC的体积为V 2,则V 1V 2=________. 答案 14解析 设点A 到平面PBC 的距离为h .∵D ,E 分别为PB ,PC 的中点,∴S △BDE =14S △PBC , ∴V 1V 2=V A -DBE V A -PBC =13S △BDE ·h 13S △PBC ·h =14. 7.(2015·江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.答案 7 解析 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7. 8.一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的体积与球O 的体积的比值为________.答案 932解析 设等边三角形的边长为2a ,球O 的半径为R ,则V 圆锥=13·πa 2·3a =33πa 3.又R 2=a 2+(3a -R )2,所以R =233a , 故V 球=4π3·(233a )3=323π27a 3, 则其体积比为932. 9.如图所示的三个几何体,一个是长方体,一个是直三棱柱,一个是过圆柱上、下底面圆心切下圆柱的四分之一部分,若这三个几何体的主视图和俯视图是相同的正方形,求它们的表面积之比.解 由题意可知这三个几何体的高都相等,设长方体的底面正方形的边长为a ,高也等于a ,故其表面积为S 1=6a 2.直三棱柱的底面是腰长为a 的等腰直角三角形,高为a ,故其表面积为S 2=12×a ×a +12×a ×a +(a +a +2a )×a =(3+2)a 2.14圆柱的底面是半径为a 的圆的14,高为a ,故其表面积为S 3=14πa 2+14πa 2+a 2+a 2+14×2πa ×a =(π+2)a 2.所以它们的表面积之比为S 1∶S 2∶S 3=6a 2∶(3+2)a 2∶(π+2)a 2=6∶(3+2)∶(π+2).10.(教材改编)已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm 和30 cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如图所示,三棱台ABC —A 1B 1C 1中,O 、O 1分别为两底面中心,D 、D 1分别为BC 和B 1C 1的中点,则DD 1为棱台的斜高.由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033, 由S 侧=S 上+S 下,得3×12×(20+30)×DD 1=34×(202+302), 解得DD 1=1333,在直角梯形O 1ODD 1中, O 1O =DD 21-(OD -O 1D 1)2=43, 所以棱台的高为4 3 cm.B 组 专项能力提升(时间:25分钟)11.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S —ABC 的体积为( )A.3 3B.2 3C. 3D.1答案 C解析 如图,过A 作AD 垂直SC 于D ,连接BD .由于SC 是球的直径,所以∠SAC =∠SBC =90°,又∠ASC =∠BSC =30°,又SC 为公共边, 所以△SAC ≌△SBC .由于AD ⊥SC ,所以BD ⊥SC .由此得SC ⊥平面ABD .所以V S —ABC =V S —ABD +V C —ABD =13S △ABD ·SC . 由于在Rt △SAC 中,∠ASC =30°,SC =4,所以AC =2,SA =23,由于AD =SA ·CASC = 3.同理在Rt △BSC 中也有BD =SB ·CBSC = 3.又AB =3,所以△ABD 为正三角形,所以V S —ABC =13S △ABD ·SC=13×12×(3)2·sin 60°×4=3,所以选C.12.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A.28+6 5B.30+6 5C.56+12 5D.60+12 5答案 B解析 由几何体的三视图可知,该三棱锥的直观图如图所示,其中AE ⊥平面BCD ,CD ⊥BD ,且CD =4,BD =5,BE =2,ED =3,AE =4.∵AE =4,ED =3,∴AD =5.又CD ⊥BD ,CD ⊥AE ,则CD ⊥平面ABD ,故CD ⊥AD ,所以AC =41且S △ACD =10.在Rt △ABE 中,AE =4,BE =2,故AB =2 5.在Rt △BCD 中,BD =5,CD =4,故S △BCD =10,且BC =41.在△ABD 中,AE =4,BD =5,故S △ABD =10.在△ABC 中,AB =25,BC =AC =41,则AB 边上的高h =6,故S △ABC =12×25×6=6 5. 因此,该三棱锥的表面积为S =30+6 5.13.(2015·四川)在三棱柱ABC —A 1B 1C 1中,∠BAC =90°,其主视图和左视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B 1C 1的中点,则三棱锥P —A 1MN 的体积是________.答案 124解析 由题意知还原后的几何体是一个直放的三棱柱,三棱柱的底面是直角边长为1的等腰直角三角形,高为1的直三棱柱,∵V 1—P A MN =V 1—A PMN ,又∵AA 1∥平面PMN ,∴V 1—A PMN =V A —PMN ,∴V A —PMN =13×12×1×12×12=124, 故V 1—P A MN =124. 14.(2015·课标全国Ⅰ)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E —ACD 的体积为63,求该三棱锥的侧面积. (1)证明 因为四边形ABCD 为菱形,所以AC ⊥BD .因为BE ⊥平面ABCD ,所以AC ⊥BE .故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)解 设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x 2. 因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x . 由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x . 由已知得,三棱锥E —ACD 的体积V E —ACD =13×12AC ·GD ·BE =624x 3=63. 故x =2.从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5.故三棱锥E —ACD 的侧面积为3+2 5.15.如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,AB =2,EB = 3.(1)求证:DE ⊥平面ACD ;(2)设AC =x ,V (x )表示三棱锥B -ACE 的体积,求函数V (x )的解析式及最大值.(1)证明 ∵四边形DCBE 为平行四边形,∴CD ∥BE ,BC ∥DE .∵DC ⊥平面ABC ,BC ⊂平面ABC ,∴DC ⊥BC .∵AB 是圆O 的直径,∴BC ⊥AC ,且DC ∩AC =C ,∴BC ⊥平面ADC .∵DE ∥BC ,∴DE ⊥平面ADC .(2)解 ∵DC ⊥平面ABC ,∴BE ⊥平面ABC .在Rt △ABE 中,AB =2,EB = 3.在Rt △ABC 中,∵AC =x ,BC =4-x 2(0<x <2),∴S △ABC =12AC ·BC =12x ·4-x 2, ∴V (x )=V E -ABC =36x ·4-x 2(0<x <2). ∵x 2(4-x 2)≤(x 2+4-x 22)2=4,当且仅当x 2=4-x 2,即x =2时,取等号, ∴x =2时,体积有最大值33.。
空间几何体表面积和体积公式
空间几何体表面积和体积公式
空间几何体表面积和体积公式如下:
表面积公式:
S = 2 × (a + b + c)
其中,a、b、c分别表示几何体的长、宽、高。
体积公式:
V = a × b × c
其中,a、b、c分别表示几何体的长、宽、高。
还有一些常用的表面积和体积公式:
1. 如果一个几何体只有一个面是正方形或正多边形,那么它的
表面积和体积都可以用一个简单的公式计算:S = 4a,V = a × b。
2. 如果一个几何体的边长为c,那么它的表面积可以表示为:S = 2 × (c + d),其中d表示几何体的长宽比。
体积可以表示为:V = c ×d。
3. 如果一个几何体是正多边形,且每个内角都相等,那么它的表
面积和体积都可以用一个复杂的公式计算:S = (n-2) × 4a,V = (n-2) × a × b。
其中n表示正多边形的边数。
4. 如果一个几何体只有一个面是矩形或圆形,那么它的表面积
和体积都可以用一个简单的公式计算:S = a + b + c,V = π× r ×(a + b + c)。
其中π是圆周率,r表示几何体的半径。
这些公式只是一些基本的几何公式,实际上还有很多更复杂的公
式可以用于计算几何体的性质。
了解这些基本的公式有助于我们更方
便地计算几何体的面积和体积。
空间几何体的表面积及体积计算公式
空间几何体的表面积及体积计算公式空间几何体是指在三维坐标系中存在的几何图形,包括立方体、圆锥体、圆柱体、球体等等。
对于这些几何体来说,求其表面积和体积是我们在学习空间几何时需要掌握的核心内容。
下面我们将详细介绍各种空间几何体的表面积及体积的计算公式。
一、立方体立方体是一种六个面都是正方形的几何体,其表面积和体积计算公式如下:表面积 = 6 × a²体积 = a³其中,a为立方体的边长。
二、正方体正方体是一种所有面都是正方形的几何体,其表面积和体积计算公式如下:表面积 = 6 × a²体积 = a³其中,a为正方体的边长。
三、圆锥体圆锥体是一种由一个圆锥顶点和一个底面为圆形的仿射锥面构成的几何体,其表面积和体积计算公式如下:表面积= πr²+πrl体积= 1/3πr²h其中,r为底面圆半径,l为母线长度,h为圆锥体的高。
四、圆柱体圆柱体是一种由平行于固定轴的两个相等且共面的圆面和它们之间的圆柱面所围成的几何体,其表面积和体积计算公式如下:表面积= 2πrh+2πr²体积= πr²h其中,r为底面圆半径,h为圆柱体的高。
五、球体球体是一种由所有到球心的距离等于固定半径的点所组成的几何体,其表面积和体积计算公式如下:表面积= 4πr²体积= 4/3πr³其中,r为球体的半径。
以上就是五种常见空间几何体的表面积及体积计算公式,希望能够对大家在学习空间几何时有所帮助。
同时,我们也需要关注其实际应用,在工程建设和生活中经常会涉及到这些几何体的计算,因此深化这些知识点的学习,将对我们未来的发展产生积极的影响。
空间几何体的表面积及体积公式大全
空间⼏何体的表⾯积及体积公式⼤全空间⼏何体的表⾯积与体积公式⼤全⼀、全(表)⾯积(含侧⾯积) 1、柱体①棱柱②圆柱 2、锥体①棱锥:h c S ‘底棱锥侧21=②圆锥:l c S 底圆锥侧213、台体①棱台:h c c S )(21‘下底上底棱台侧+=②圆台:l c c S )(21下底上底棱台侧+=4、球体①球:r S 24π=球②球冠:略③球缺:略⼆、体积 1、柱体①棱柱②圆柱 2、①棱锥②圆锥3、①棱台②圆台 4、球体①球:rV 334π=球②球冠:略③球缺:略说明:棱锥、棱台计算侧⾯积时使⽤侧⾯的斜⾼h '计算;⽽圆锥、圆台的侧⾯积计算时使⽤母线l 计算。
三、拓展提⾼ 1、祖暅原理:(祖暅:祖冲之的⼉⼦)夹在两个平⾏平⾯间的两个⼏何体,如果它们在任意⾼度上的平⾏截⾯⾯积都相等,那么这两个⼏何体的体积相等。
最早推导出球体体积的祖冲之⽗⼦便是运⽤这个原理实现的。
2、阿基⽶德原理:(圆柱容球)圆柱容球原理:在⼀个⾼和底⾯直径都是r 2的圆柱形容器内装⼀个最⼤的球体,则该球体的全⾯积等于圆柱的侧⾯积,体积等于圆柱体积的32。
分析:圆柱体积:r r h S V r 3222)(ππ=?==圆柱圆柱侧⾯积:r h cS r r 242)2(ππ=?==圆柱侧因此:球体体积:r r V 3334232ππ=?=球球体表⾯积:r S 24π=球通过上述分析,我们可以得到⼀个很重要的关系(如图)+ =即底⾯直径和⾼相等的圆柱体积等于与它等底等⾼的圆锥与同直径的球体积之和 3、台体体积公式公式: )(31S SS S h V 下下上上台++=证明:如图过台体的上下两底⾯中⼼连线的纵切⾯为梯形ABCD 。
延长两侧棱相交于⼀点P 。
设台体上底⾯积为S 上,下底⾯积为S 下⾼为h 。
易知:PDC ?∽PAB ?,设h PE 1=,则h h PF +=1由相似三⾓形的性质得:PFPEAB CD =即:hh hSS +=11下上(相似⽐等于⾯积⽐的算术平⽅根)整理得:SS h S h 上下上-=1⼜因为台体的体积=⼤锥体体积—⼩锥体体积∴h S S S h h S h h S V 下上下上下台)(31)(313131111+-=-+=代⼊:SS h S h 上下上-=1得:h S S S SS h S V 下上下上下上台31)(31+--=即:)(3131)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(3S S h V 下下上上台++=4、球体体积公式推导分析:将半球平⾏分成相同⾼度的若⼲层(层n ),n 越⼤,每⼀层越近似于圆柱,+∞→n 时,每⼀层都可以看作是⼀个圆柱。
空间几何体的表面积与体积公式大全,DOC
空间几何体的表面积与体积公式大全一、全(表)面积(含侧面积)1、①棱柱②圆柱2、①②3、①②4、①球:②③二、1、①棱柱②圆柱2、①棱锥②圆锥3、①棱台②圆台4、①球:②③三、1、2、则+=即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式公式:)(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。
延长两侧棱相交于一点P 。
则∴V 即:)(33)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(31S S S S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。
这些圆柱的高为nr,则:每个圆柱的体积h S V i i ==nrr i 2π……=2r nr ⨯π=[3r n n π=[3r n n π当→n ∴V 半球5、 ∴S =球6、(1则其体积为:a V 3=正方体四个角上切下的每一个三棱锥体积为:中间剩下的正四面体的体积为:a a a a hSV 322231]60sin 21[3131)32232()2()2(=-⨯︒⨯⨯⨯==⨯⨯正三棱锥这样一个即:61(2 (a)(b)(c)(d)(e)(3(a ) 正方体内切球直径=正方体棱长(b ) 正方体内切球与正四面体的四条棱相切。
(c ) 与正四面体四条棱相切的球半径=正方体棱长的一半 (d ) 设正四面体棱长为a ,则与其棱都相切的球半径为r 1有:aar 422211=⨯= 7、利用祖暅原理推导球体体积。
构造一个几何体,使其截面与半球截面处处相等,根据祖暅原理可得两物体体积相等。
证明:作如下构造:在底面半径和高都是r 的圆柱内挖去一个与圆柱等底等高的圆锥。
如图:R ,∴S 1π=即:S 1 8、 正方体与球(1) 正方体的内切球正方体的棱长=a 球体的直径d (2) 正方体的外接球正方体的体对角线=a 3球体的直径d(3) 规律:①正方体的内切球与外接球的球心为同一点; ②正方体的内切球与外接球的球心在体对角线上; ③正四面体的内切球与外接球的的半径之比为:3:1 ④正四面体内切球与外接球体积之比为:1:339(∴a h r 12641==即:a a r V 33321663434)126(πππ===球∴π3:18=V V 球正四机体: (2)正四面体的外接球 外接球的半径=)2332(224343a a⨯-⨯=⨯高=a 46 ∴2:33122:86:33ππ==aaV V 正四面体球 (310、 (1 球体直径、圆柱的高、圆柱底面直径构成直角三角形。
空间几何体的表面积和体积公式大全
空间几何体的表面积与体积公式大全全(表)面积(含侧面积)1、柱体①棱柱]----------------A S侧=Ch ■ S全=2S底* S侧②圆柱J _______ ___2、锥体①棱锥:S棱锥侧=^2c底h②圆锥:S圆锥侧=托底l3、台体①棱台:②圆台:S棱台侧S棱台侧_ 1二2(C上底C下底)h_ 1=2 (C上底.C下底)1* S全=S上+ S侧+ S下4、球体①球:S球=4r2②球冠:略③球缺:略S下S下体积1、柱体①棱柱]--------------卜V柱=Sh②圆柱J2、锥体①棱锥r②圆锥」1V柱=3S h3、台体1①棱台]V台=gh (S上NS上S^ +S下)②圆台J V圆台=3兀h (r上+Q r上r下+ r下)4、球体①球:V球=4二r'②球冠:略③球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h计算;而圆锥、圆台的侧面积计算时使用母线I计算。
三、拓展提高1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。
最早推导出球体体积的祖冲之父子便是运用这个原理实现的2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是2r的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的-。
3分析:圆柱体积:V圆柱=Sh =(二「2)2r=2^r'圆柱侧面积:S圆柱侧=C h =(2 r) 2r = 4二「因此:球体体积:V球=2 2二J=4二r33 3球体表面积:S球=4 r2即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和3、台体体积公式公式:V台=1h (S上+ S下)证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 延长两侧棱相交于一点P设台体上底面积为S上,下底面积为S下P 高为h。
易知:PDC s .>PAB ,设PE = h i,则PF =h i h由相似三角形的性质得:CD PEAB PFA整理得:h 1 : =S上hPS 下-VS上又因为台体的体积=大锥体体积一小锥体体积1 11 1 二V台=3S 下(h 1h K3S 上h^3h 1(S下一S上) 下h代入:h= i S 上芬得: V台=3胪L(S下—S"3S 下hJS下3*SrS31 ___ I ------ ------ 1即: V 台=3 S上h (S下S上)3S下人二 V 台=3h (S 上S 上S 下S下)球体体积公式推导即:ShiS 下-h lh (相似比等于面积比的算术平方根)1 ______________=3h (S上S 上S 下S下)4、分析:将半球平行分成相同高度的若干层( n 层),n 越大,每一层越近似于圆柱,n “ •「时,每一层都可以看作是个圆柱。
空间几何体的表面积与体积
空间几何体的表面积与体积1.3.1 柱体.锥体.台体的表面积与体积(一) 一.温故探新问题1:如何计算多面体的表面积? 1.写出下列图形的面积公式边长为a 的正方形: ,长为a 宽为b 的矩形: ,边长为a 的正三角形: . 2.正方体、长方体的表面积公式棱长为a 的正方体的表面积为______,长、宽、高分别为c b a 、、的长方体的表面积为______________.巩固练习1已知正四面体ABC S -(各个面都是正三角形的四面体)的棱长为a . (1)求它的表面积;(2)求它的高.问题2:如何计算旋转的表面积? 1.如上图,圆柱的侧面展开图是一个 形,即圆柱的侧面积等于________的面积,且圆柱的表面积=圆柱的 面积+ 面积.设圆柱的底面半径为r ,母线长为l ,则=圆柱侧S ,=圆锥表S + = .《小结1》多面体的表面积即 之和.2.如右图,圆锥的侧面积展开图是 形,即圆锥的侧面积等于________的面积,且圆锥的表面积=圆锥的 面积+ 面积. 设圆锥的底面半径为r ,母线长为l , 则=圆锥侧S rl π(熟记,以后证明),=圆锥表S .3.如右图,圆台的侧面展开图示 形.设圆台的上底半径为r ',下底半径为r ,母线长为l , 则=圆台侧S l r r )(+'π(熟记,以后证明)=圆台表S .巩固练习2如图,一个圆台形花盆盆口直径为cm 20,盆底直径为cm 15底部渗水圆孔直径为cm 5.1盆壁长cm 15,为了美化花盆的外观,需要涂油漆.已知每平方米用100毫升油漆,涂100个这样的花盆需要多少油漆?(π取3.14,结果精确到1毫升,可用计算器)二.理解应用 题组3:1.若圆台的上下底面半径分别为1和3,它们侧面积是两底面面积的 2倍,则圆台的切线场是( )2、A 5.2、B 5、C 10、D 2.如果某个圆柱的底面面积为S 侧面展开图是一个正方形,那么这个圆柱的侧面积是( ) S A π、 S B π332、 S C π2、 S D π4、题组4:如果某个圆锥的轴截面是正三角形,那么它的侧面积是底面积的_____倍.《小结2》圆柱.圆锥.圆台的侧面积公式 =圆柱侧S ______,=圆锥侧S ______,=圆台侧S _________. 《小结3》空间几何体的表面积=几何体的____面积+____面积. 《小结4》利用轴截面把 问题转化为 问题来解决三.拓展提高一个圆锥的底面半径为cm 2,高为cm 6,在其中有一个高为xcm 的内接圆,求: (1)试用x 表示圆柱的侧面积;(2)当x 为何值时,圆柱的侧面积最大?四.课外作业1.若圆柱的侧面展开图示一个正方形,则这个圆柱的全面积与侧面积之比是( )ππ221+、A ππ441+、B ππ21+、C ππ241+、D 2.如果圆台的上底面半径为5,下底面半径为R ,中截面把圆台分为上.下两个圆台,它们的侧面积之比为1:2,那么 =R ( ) 5、A 10、B 20、C 25、D3.若圆锥的侧面展开图是原圆心角为120,半径为l 的扇形,则这个圆锥的全面积与侧面积之比是( ) 2:3、A 1:2、B 3:4、C 3:5、D*4.某个圆台的母线长cm 20,母线与轴的夹角为30,上底半径为cm 15,求圆台的高和侧面积.*5.某个圆锥的高和底面半径相等,它的一个内接圆柱的高和圆柱底面的半径也相等,求圆柱的表面积和圆锥的表面积之比.《课堂小结》圆柱、圆锥、圆台的侧面积公式之间的关系§1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积(二) 一.温故探新问题1:还记得圆柱、圆锥、圆台和圆柱的侧面积公式吗?=圆柱侧S ,=圆锥侧S ,=圆台侧S巩固练习11.若圆柱的侧面展开图是一个边长为π6和π4的矩形,则这个圆柱的全面积为( ))34(6+ππ、A )13(8+ππ、B)13(8)34(6++ππππ或、C )23(8)14(6++ππππ或、D2.已知圆锥的轴截面是等腰直角三角形,其侧面积π216=S ,那么它的高等于______.问题2:柱体、锥体、台体的体积公式是否也有与圆柱、圆锥、圆台的侧面积公式相类似的关系? 已知h S S S S V )(31下下上上台体++=,若=上S ,则 , 若=上S ,则 .《小结2》柱体、锥体、台体的体积公式之间的关系《小结1》圆柱、圆锥、圆台的侧面积公式之间的关系巩固练习21、 将边长为a 的正方形卷成一个圆柱的侧面,那么所成的圆柱的体 积为( )π43a A 、 π33a B 、 π23a C 、 π3a D 、2、 一个正方形和一个圆柱等高,且侧面积相等,则正方形和圆柱的 体积比为________.二.理解应用题组3:有一堆规格相同的铁制(铁的密度是3/8.7cm )六角螺帽共重kg 8.5,已知底面是正六边形,边长为mm 12,内孔直径mm 10,问这堆螺帽大约有多少个( 3.14取π,可用计算器)题组4若正三棱台ABC C B A -111的两底面边长分别为2、8,侧棱长等于6,计算三棱台的体积V .三.拓展提高下图是一个几何体的三视图(单位:cm ),画出它的直观图,并求出她的表面积和体积.《小结3》求组合体的表面积和体积时 ,要注意组合体的结构特征,避免重叠和交叉. 《小结4》正棱台的高是 .四.课外作业1.若干毫升水倒入底面半径为cm 2的圆柱形器皿中,量得水面高度为cm 6,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是( )cm A 36、 cm B 6、 cm C 3182、cm D 3123、 2.如右图,将一个长方体沿相邻的三个面的对角线截出一个棱锥,则棱锥的体积与剩下的几何体体积 的比为________.3.如图,一个三棱柱容器中盛有水,且 侧棱81=AA .若侧面11BB AA 水平放置 时,液面恰好过1111C B C A BC AC 、、、 的中点,当底面ABC 水平放置时, 液面高为_______.*4.设正方体1111D C B A ABCD -的棱长为1,求三棱锥C AB B 1-的高. *5.求底面边长为32,侧棱长为5的正三棱锥ABC P -的表面积与体积.《课堂小结》圆柱、圆锥、圆台的侧面积公式之间的关系柱体.锥体.台体的体积公式之间的关系§1.3 空间几何体的表面积与体积1.3.2 球的体积和表面积 一.温故探新问题1:球的表面积与体积公式有什么关系?1.半径为R 的圆的周长=C ,面积=S . 2.半径为R 的球的表面积24R S π=,体积334R V π=巩固练习11.若某球的体积与其表面积的数值相等,则此球的半径为______.2.如果一个球的表面积比原来的扩大3倍,那么此球的体积比原来的扩大______倍.问题2:长方体与它的外接球之间有什么关系?1.长方体的一个顶点的三条棱的长分别是3、4、5,且它的八个顶点都在同一个球面上,求这个球的表面积和体积.巩固练习21.正方体的全面积是224cm ,它的顶点都在一个球面上,则此球的表面积是 ,体积是 .2.长方体共顶点的三个侧面面积分别为1553、、,求它的外接球的表面积.二.理解应用 题组3:1.一个球的外切正方体的全面积等于6,则此球的体积为______.2.如果球的表面积为R ,那么它的内接正方体与外切正方体的边长比为________.题组4:《小结1》球的表面积、体积公式只与球的 有关,是以 为自变量的函数.《小结2》长方体外接球的直径恰好是长方体的 . 《小结3》正方体既有 球,也有 球.在球面上有四个点C B A P 、、、,若PC PB PA 、、两两互相垂直,且cm PC PB PA 2===,求这个球的表面积和体积.三.拓展提高一个四面体的所有棱长都为2,四个顶点都在同一个球面上,求此球的表面积.四.课外作业1.已知某个球的外切圆台上、下底面半径分别为R r 、,那么这个球的半径为 . 2.圆柱体容器的内壁底面半径为5cm ,两个直径是5cm 的玻璃小球浸没于容器的水中若同时取出两个球,则容器中的水面将下降( )cm A 38、 cm B 35、 cm C 34、 cm D 32、 3.在球心同侧有相距cm 9的来那个平行截面,他们的面积分别为249cm π和2400cm π,求这个球的表面积. *4.一个半球体内有一个内接圆柱,圆柱的一个底面在半球的球面上,另一个底面在球面上,球的半径为R ,求圆柱的侧面积的最大值.*5.半球内有一个内接正方体,求这个半球的全面积与正方体的全面积之比.《小结4》三条线段两两互相垂直的问题可以通过构造_________来解决. 《课堂小结》=球面S =球V。
空间几何体公式总结
空间几何体公式总结一、立方体立方体是一种常见的空间几何体,它具有六个相等的正方形面,每个面都是直角相连。
立方体的体积和表面积可以通过以下公式计算:- 体积公式:V = a^3,其中a代表立方体的边长。
- 表面积公式:S = 6a^2,其中a代表立方体的边长。
二、长方体长方体也是常见的空间几何体,它具有六个面,其中相对的两个面是相等的长方形。
长方体的体积和表面积可以通过以下公式计算:- 体积公式:V = lwh,其中l、w、h分别代表长方体的长度、宽度和高度。
- 表面积公式:S = 2lw + 2lh + 2wh,其中l、w、h分别代表长方体的长度、宽度和高度。
三、圆柱体圆柱体是一个上下底面相等且平行的圆和一个连接两个底面的侧面组成的几何体。
圆柱体的体积和表面积可以通过以下公式计算:- 体积公式:V = πr^2h,其中r代表底面圆的半径,h代表圆柱体的高度。
- 表面积公式:S = 2πrh + 2πr^2,其中r代表底面圆的半径,h代表圆柱体的高度。
四、球体球体是由所有离一个固定点的距离小于或等于固定值的点组成的集合。
球体的体积和表面积可以通过以下公式计算:- 体积公式:V = (4/3)πr^3,其中r代表球体的半径。
- 表面积公式:S = 4πr^2,其中r代表球体的半径。
五、锥体锥体是一个底面为任意多边形,侧面为连接底面顶点与一个固定点的线段的几何体。
锥体的体积和表面积可以通过以下公式计算:- 体积公式:V = (1/3)Bh,其中B代表底面的面积,h代表锥体的高度。
- 表面积公式:S = B + (1/2)Pl,其中B代表底面的面积,P代表底面的周长,l代表侧面的斜高。
六、棱锥棱锥是一个底面为任意多边形,侧面为连接底面顶点与一个固定点的线段的几何体。
棱锥的体积和表面积可以通过以下公式计算:- 体积公式:V = (1/3)Bh,其中B代表底面的面积,h代表棱锥的高度。
- 表面积公式:S = B + Ps,其中B代表底面的面积,P代表底面的周长,s代表棱锥的斜高。
空间几何体的表面积与体积计算
空间几何体的表面积与体积计算几何体是我们日常生活中常见的一种数学概念,它包括了诸如三角形、圆形等平面几何体以及立方体、球体等空间几何体。
本文将就空间几何体的表面积和体积计算进行探讨,帮助读者更好地理解和应用这一概念。
一、立方体的表面积和体积计算方法立方体是最简单的空间几何体之一,它具有六个相等的面,每个面都是一个正方形。
我们可以通过以下两个公式来计算立方体的表面积和体积:1. 表面积计算公式:立方体的表面积等于六个面的面积之和。
每个面的面积都是边长的平方,所以立方体的表面积公式为:表面积 = 6 ×边长 ×边长2. 体积计算公式:立方体的体积等于边长的立方,所以立方体的体积公式为:体积 = 边长 ×边长 ×边长在实际问题中,我们可以根据给定的条件,使用表面积和体积的计算公式求解各种问题,例如求解立方体的边长、体积等。
二、球体的表面积和体积计算方法球体是一种圆形的几何体,它的每个点到球心的距离都相等。
对于球体的表面积和体积计算,我们可以依据以下两个公式:1. 表面积计算公式:球体的表面积等于4倍的圆面积。
而圆面积的计算公式为:圆面积= π × 半径 ×半径所以球体的表面积计算公式为:表面积= 4 × π × 半径 ×半径2. 体积计算公式:球体的体积等于4/3倍π乘以半径的立方,所以球体的体积计算公式为:体积= 4/3 × π × 半径 ×半径 ×半径对于球体的实际问题,我们可以根据给定的条件,通过表面积和体积的计算公式来处理相关的计算。
三、其他空间几何体的表面积和体积计算方法除了立方体和球体之外,还存在着许多其他形状的空间几何体,如圆柱体、锥体、棱柱等。
每种几何体的表面积和体积计算方法都有所不同。
以圆柱体为例,它的表面积等于两个底面的面积之和再加上侧面的面积。
而底面的面积可以通过底面半径的平方乘以π来计算,侧面的面积则等于底面周长乘以高度。
空间几何体的表面积与体积
空间几何体的表面积与体积在我们的日常生活和学习中,空间几何体无处不在。
从简单的正方体、长方体,到复杂的球体、锥体,它们的形状各异,而了解它们的表面积与体积对于解决许多实际问题具有重要意义。
首先,咱们来聊聊什么是空间几何体的表面积。
简单来说,表面积就是几何体表面的总面积。
比如说一个正方体,它有六个完全相同的正方形面,那么这个正方体的表面积就是这六个面的面积之和。
对于长方体,其表面积的计算就稍微复杂一点。
假设长方体的长、宽、高分别为 a、b、c,那么它的表面积 S = 2(ab + bc + ac)。
为什么是这样呢?咱们可以想象把这个长方体展开,就会得到六个面,其中相对的两个面面积是相等的。
前面和后面的面积都是 ac,上面和下面的面积都是 ab,左面和右面的面积都是 bc,把它们加起来就是总的表面积。
再来说说圆柱体。
圆柱体由两个底面(圆形)和一个侧面(矩形)组成。
底面圆的面积我们都知道是πr²(r 是底面圆的半径),而侧面展开是一个矩形,其长就是底面圆的周长2πr,宽就是圆柱体的高 h,所以圆柱体的表面积 S =2πr² +2πrh。
接下来谈谈圆锥体的表面积。
圆锥体的表面积由底面积(圆形)和侧面积(扇形)组成。
底面积还是πr²,侧面积的计算就需要一点小技巧了。
我们可以把圆锥侧面展开,得到一个扇形,扇形的半径是圆锥的母线 l,弧长就是底面圆的周长2πr。
根据扇形面积的计算公式,圆锥的侧面积就是πrl,所以圆锥的表面积 S =πr² +πrl。
说完了表面积,咱们再看看空间几何体的体积。
体积就是几何体所占空间的大小。
正方体的体积很好计算,就是边长的立方,即 V = a³。
长方体的体积则是长、宽、高的乘积,V = abc。
圆柱体的体积公式是 V =πr²h,这可以理解为把圆柱体看作是由无数个同样大小的圆片堆叠而成,每个圆片的面积是πr²,高度为 h,那么总体积就是底面积乘以高。
第二节 空间几何体的表面积与体积
第二节 空间几何体的表面积与体积考试要求了解球、棱柱、棱锥、棱台的表面积和体积的计算公式.[知识排查·微点淘金]知识点1 圆柱、圆锥、圆台的侧面展开图及侧面积公式 圆柱圆锥圆台侧面展 开图侧面积 公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l[微拓展] 圆台、圆柱、圆锥之间的转化当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得:S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl . 知识点2 空间几何体的表面积与体积公式名称几何体表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =S 底h 锥体(棱锥和圆锥)S 表面积=S 侧+S 底 V =13S 底h台体(棱台和圆台)S 表面积=S 侧+ S 上+S 下 V =13(S 上+S 下+S 上S 下)h 球S =4πR 2V =43πR 3[微拓展]柱体、锥体、台体的体积公式间的联系:V 柱体=Sh ――→S ′=SV 台体=13(S ′+S ′S +S )h ――→S ′=0V 锥体=13Sh . 常用结论 几个与球有关的切、接问题的常用结论(1)正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.[小试牛刀·自我诊断]1.思维辨析(在括号内打“√”或“×”) (1)锥体的体积等于底面面积与高的乘积.(×) (2)球的体积之比等于半径比的平方.(×) (3)台体的体积可转化为两个锥体的体积之差.(√) (4)已知球O 的半径为R ,其内接正方体的边长为a ,则R =32a .(√) 2.(链接教材必修2 P 27T 1)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( )A .1 cmB .2 cmC .3 cmD .32cm解析:选B.S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, ∴r 2=4,∴r =2.3.(链接教材必修2P 28A 组T 3)如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体的体积的比为 .解析:设长方体的相邻三条棱长分别为a ,b ,c ,它截出棱锥的体积V 1=13×12×12a ·12b ·12c =148abc ,剩下的几何体的体积V 2=abc -148abc =4748abc ,所以V 1∶V 2=1∶47. 答案:1∶474.(忘记分类讨论)圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为.解析:分两种情况:①以长为6π的边为高时,4π为圆柱底面周长,则2πr=4π,r=2,所以S底=4π,S侧=6π·4π=24π2,S表=2S底+S侧=8π+24π2=8π(3π+1);②以长为4π的边为高时,6π为圆柱底面周长,则2πr=6π,r=3,所以S底=9π,S表=2S底+S侧=18π+24π2=6π(4π+3).答案:6π(4π+3)或8π(3π+1)5.(对组合体不能合理分割)如图所示,由圆柱与圆锥组合而成的几何体的三视图如图所示,则该几何体的表面积为.解析:设圆柱底面半径为r,周长为c,圆锥母线长为l,圆柱高为h.由题中三视图得r=2,c=2πr=4π,h=4,由勾股定理得:l=22+(23)2=4,S表=πr2+ch+12cl=4π+16π+8π=28π.答案:28π一、基础探究点——空间几何体的表(侧)面积(题组练透)1.(2021·新高考卷Ⅰ)已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.22C.4D.4 2解析:选B由题意知圆锥的底面周长为22π.设圆锥的母线长为l,则πl=22π,即l=2 2.故选B.2.如图为某几何体的三视图,则该几何体的表面积是()A.6+4 2B.4+4 2C .6+2 3D .4+2 3解析:选C 由三视图还原几何体知,该几何体为如图所示的三棱锥P -ABC ,其中P A ⊥平面ABC ,AB ⊥AC ,AB =AC =AP =2,故其表面积S =⎝⎛⎭⎫12×2×2×3+12×(22)2×sin 60°=6+2 3.3.如图,一个棱长为4的正方体被挖去一个高为4的正四棱柱后得到图中的几何体,若该几何体的体积为60,则该几何体的表面积为 .解析:设正四棱柱的底面边长为m ,则4(42-m 2)=60,解得m =1,则该几何体的表面积为42×4+(42-12)×2+4×1×4=110.答案:1104.已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为 . 解析:设圆锥的高为h ,母线长为l ,则圆锥的体积V =13×π·62·h =30π,解得h =52.所以l =r 2+h 2=62+⎝⎛⎭⎫522=132,故圆锥的侧面积S =πrl =π·6×132=39π.答案:39π求空间几何体表面积时应注意(1)以三视图为载体的几何体的表面积问题,关键 是分析三视图确定几何体中各元素之间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积问题应注意衔接部分的处理.(3)旋转体的表面积问题应注意其侧面展开图的应用.二、综合探究点——空间几何体的体积(多向思维)[典例剖析]思维点1直接利用公式求体积问题[例1](1)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面半径分别为4和5,则该圆台的体积为.解析:圆台的下底面半径为5,故下底面在外接球的大圆上,如图所示,设球的球心为O,圆台上底面的圆心为O′,则圆台的高OO′=OQ2-O′Q2=52-42=3. 据此可得圆台的体积V=1π×3×(52+5×4+42)=61 π.3答案:61π对于规则几何体的体积问题,可以直接利用公式进行求解. 要注意准确记忆基本体积公式.思维点2割补法求体积问题[例2]《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”(已知1丈为10尺)该锲体的三视图如图所示,则该锲体的体积为()A.12 000立方尺B.11 000立方尺C.10 000立方尺D.9000立方尺解析:由题意,将锲体分割为三棱柱与两个四棱锥的组合体,作出几何体的直观图如图所示:沿上棱两端向底面作垂面,且使垂面与上棱垂直,则将几何体分成两个四棱锥和1个直三棱柱,则三棱柱的体积V 1=12×3×2×2=6,四棱锥的体积V 2=13×1×3×2=2,由三视图可知两个四棱锥大小相等,∴V =V 1+2V 2=10立方丈=10 000立方尺.故选C .答案:C割补法求体积的解题思路首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算.思维点3 等积转换法求体积[例3] 如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1ABC 1的体积为( )A .312 B .34 C .612D .64解析:易知三棱锥B 1ABC 1的体积等于三棱锥A -B 1BC 1的体积,又三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312. 答案:A等积转化法求体积的解题思路选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换.[学会用活]1.如图,长方体ABCD -A 1B 1C 1D 1的体积为36,E 为棱CC 1上的点,且CE =2EC 1,则三棱锥E -BCD 的体积是( )A .3B .4C .6D .12解析:选B 因为S △BCD =12S 四边形ABCD ,CE =23CC 1,VABCD A 1B 1C 1D 1=S 四边形ABCD ·CC 1=36,所以V E BCD =13S △BCD ·CE =13×12S 四边形ABCD ·23CC 1=19×36=4.故选B.2.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π解析:选B 解法一:(割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π·32×4+π·32×6×12=63π.故选B.解法二:(估值法)由题意知,12V 圆柱<V 几何体<V 圆柱,又V 圆柱=π·32×10=90π,∴45π<V几何体<90π.观察选项可知只有63π符合.故选B.3.某几何体的三视图如图所示,则这个几何体的体积是( )A .13B .14C .15D .16解析:选C 所求几何体可看作是将长方体截去两个三棱柱得到的几何体,在长方体中还原该几何体,如图中ABCD A ′B ′C ′D ′所示,长方体的长、宽、高分别为4,2,3,两个三棱柱的高为2,底面是两直角边长分别为3和1.5的直角三角形,故该几何体的体积V =4×2×3-2×12×3×32×2=15,故选C .三、应用探究点——与球有关的切、接问题(多向思维)[典例剖析]思维点1 几何体的外接球问题[例4] 设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D ABC 体积的最大值为( )A .123B .18 3C .24 3D .54 3解析:由等边△ABC 的面积为93可得34AB 2=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.故选B.答案:B [拓展变式][变条件、变结论]若本例中的条件变为“直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积.解:将直三棱柱补形为长方体ABEC -A ′B ′E ′C ′(图略),则球O 是长方体ABEC -A ′B ′E ′C ′的外接球,∴体对角线BC ′的长为球O 的直径.因此2R =32+42+122=13,故S 球=4πR 2=169π.处理“相接”问题,要抓住空间几何体“外接”的特点,即球心到多面体的顶点的距离等于球的半径.思维点2 几何体的内切球问题[例5] 已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为 .解析:解法一:如图,在圆锥的轴截面ABC 中,CD ⊥AB ,BD =1,BC =3,圆O 内切于△ABC ,E 为切点,连接OE ,则OE ⊥B C .在Rt △BCD 中,CD =BC 2-BD 2=2 2.易知BE =BD =1,则CE =2.设圆锥的内切球半径为R ,则OC =22-R ,在Rt △COE 中,OC 2-OE 2=CE 2,即(22-R )2-R 2=4,所以R =22,圆锥内半径最大的球的体积为43πR 3=23π. 解法二:如图,记圆锥的轴截面为△ABC ,其中AC =BC =3,AB =2,CD ⊥AB ,在Rt △BCD 中,CD =BC 2-BD 2=22,则S △ABC =2 2.设△ABC 的内切圆O 的半径为R ,则R =2·S △ABC 3+3+2=22,所以圆锥内半径最大的球的体积为43πR 3=23π. 答案:23π处理与球有关内切问题的策略解答此类问题时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.[学会用活]4.长方体ABCD -A 1B 1C 1D 1的长、宽、高分别为2,2,1,其顶点都在球O 的球面上,则球的表面积为 .解析:因为长方体的外接球O 的直径为长方体的体对角线,长方体的长、宽、高分别为2,2,1,所以长方体的外接球O 的直径为4+4+1=3,故长方体的外接球O 的半径为r =32,所以球O 的表面积为S =4πr 2=9π.答案:9π5.已知正四面体P -ABC 的表面积为S 1,此四面体的内切球的表面积为S 2,则S 1S 2= .解析:设正四面体的棱长为a ,则正四面体的表面积为S 1=4×34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14×63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π. 答案:63π限时规范训练 基础夯实练1.(2021·四川乐至中学月考)已知圆锥的轴截面是边长为2的等边三角形,则该圆锥的侧面积为( )A .33π B .2π C .3πD .4π解析:选B 由题意,圆锥的轴截面是边长为2的等边三角形,即圆锥的底面圆的半径为r =1,母线长为l =2,所以该圆锥的侧面积为S =πrl =π·1×2=2π. 故选B.2.在梯形ABCD 中,∠ABC =90°,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在直线旋转一周而形成的曲面所围成的几何体的体积为( )A .2π3B .4π3C .5π3D .2π解析:选C 由题意可知旋转后的几何体如图所示,直角梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为1,母线长为2的圆柱挖去一个底面半径同样是1、高为1的圆锥后得到的组合体,所以该组合体的体积为V =V 圆柱-V 圆锥=π·12×2-13·π·12×1=53π,故选C .3.(2021·云南昆明月考)某锥体的三视图如图所示,则该几何体的体积为( )A .2B .533C .433D .233解析:选C 由三视图还原几何体得,原几何体是一个四棱锥E -ABCD ,如图所示,四棱锥的高为3,底面是边长为2的正方形,因此体积为13×2×2×3=433,故选C . 4. 《九章算术》中给出了一个圆锥体积近似计算公式V ≈l 2·h36,其中l 为底面周长,它实际上是将圆锥体积中圆周率近似取为3得到的,那么若圆锥体积近似公式为V ≈l 2·275·h ,则相当于圆周率近似取值为( )A .227B .217C .238D .258解析:选D 设圆锥底面圆的半径为r ,高为h ,则l =2πr ,13πr 2h =275(2πr )2 h ,所以π=258. 故选D.5.(2021·四川石室中学开学考试)某柱体的正视图与侧视图是全等的正方形,俯视图是圆,记该柱体的表面积为S 1,其内切球的表面积为S 2,且S 1=λS 2,则λ=( )A .1B .23C .43D .32解析:选D 由已知可得,此柱体为底面直径与高相等的圆柱,设底面圆的半径为r ,则高为2r ,则S 1=2πr 2+2πr ·(2r )=6πr 2,又此柱体内切球的半径为r ,则S 2=4πr 2, 则λ=S 1S 2=6πr 24πr 2=32,故选D. 6.某几何体的三视图如图所示,则该几何体的体积为( )A .π+43B .2π+4C .3π+4D .4π+43解析:选A 由三视图还原原几何体如图,该几何体为组合体,上半部分为半圆柱,下半部分为正四棱锥,圆柱的底面半径为1,高为2,棱锥的底面边长为2,高为1,∴该几何体的体积为12π·12×2+13×22×1=π+43.故选A .7.若圆锥的内切球与外接球的球心重合,且圆锥内切球的半径为1,则圆锥的表面积为 .解析:因为圆锥的内切球与外接球的球心重合,所以圆锥的轴截面为等边三角形,设其边长为a ,则13×32a =1,a =23,所以圆锥的底面圆半径为3,从而利用圆锥的表面积公式可得S =πrl +πr 2=π·3×23+π·(3)2=9π.答案:9π8.(2021·陕西渭南月考)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体称为正八面体,则图中正八面体体积为 .若图中正八面体的各个顶点都在同一个球面上,则此球的体积为 .解析:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的对角线是正方体的棱长2,故正方形的边长等于2,所以该多面体的体积为2×13×(2)2×1=43.由图中几何关系知正八面体的外接球,即正方体的内切球,故半径R =1,所以体积V =43π·13=43π.答案:43 43π9.如图是某个铁质几何体的三视图,其中每个小正方形格子的边长均为1个长度单位,将该铁质几何体熔化,制成一个大铁球,如果在熔制过程中材料没有损耗,则大铁球的表面积 .解析:由三视图知,该铁质几何体是由一个小铁球和一个铁质圆锥体拼接而成,体积之和为43π·13+13π·22×7=323π,设制成的大铁球半径为R ,则43πR 3=323π,解得R =2,故大铁球的表面积为4πR 2=16π.答案:16π综合提升练10.最早的测雨器记载见于南宋数学家秦九韶所著的《数书九章》(1247年).该书第二章为“天时类”,收录了有关降水量计算的四个例子,分别是“天池测雨”“圆罂测雨”“峻积验雪”和“竹器验雪”.其中“天池测雨”法是下雨时用一个圆台形的天池盆收集雨水.已知天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.当盆中积水深九寸(注:1尺=10寸)时,平地降雨量是( )A .9寸B .7寸C .8寸D .3寸解析:选D 由已知天池盆上底面半径是14寸,下底面半径为6寸,高为18寸,由积水深9寸知水面半径为12×(14+6)=10寸,则盆中水的体积为13π·9×(62+102+6×10)=588π(立方寸),所以平地降雨量为588ππ·142=3(寸),故选D.11.(2021·四川成都月考)一块边长为10 cm 的正方形铁片如图所示的阴影部分截下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,则这个正四棱锥的外接球的表面积为( )A .2894πB .28916πC .28948πD .28964π解析:选A 由题设知:底面ABCD 的外接圆半径为r =32,且EO =4,令正四棱锥外接球的半径为R ,且外接球的球心必在直线EO 上,∴(R -EO )2+r 2=R 2,即R =174.∴正四棱锥的外接球的表面积为4πR 2=289π4.故选A .12.(2021·安徽合肥一中模拟)学生到工厂劳动实践,利用3D 打印技术制作一个机械零件模型,该零件模型是由两个相同的正四棱柱镶嵌而成的几何体,其三视图如图所示.这个几何体的体积为( )A .16B .403C .16-423D .163解析:选B 由三视图还原几何体如图所示,两个四棱柱的体积均为V 1=12×2×2×4=8,中间重复的部分为两个小正四棱锥,其体积为2V 2=13×2×2×2=83,故该几何体体积为V =16-83=403,故选B.13.有一个圆锥与一个圆柱的底面半径相等,圆锥的母线长是底面半径的2倍,若圆柱的外接球的表面积是圆锥的侧面积的6倍,则圆柱的高是底面半径的 倍.解析:设圆柱的高为h ,底面半径为r ,圆柱的外接球的半径为R ,则R 2=⎝⎛⎭⎫h 22+r 2. ∵母线长l =2r ,∴圆锥的高为3r ,∴圆锥的侧面积为πrl =2πr 2,∴4πR 2=4π⎣⎡⎦⎤⎝⎛⎭⎫h 22+r 2=6×2πr 2,∴h 24+r 2=3r 2,整理得h 2=8r 2,∴hr =2 2.答案:2 214.某市民广场有一批球形路障球(如图1所示). 现公园管理处响应市民要求,决定将每个路障球改造成方便市民歇脚的立方八面体石凳(如图2所示). 其中立方八面体有24条棱、12个顶点、14个面(6个正方形、8个正三角形),它是将立方体“切”去8个“角”后得到的几何体.经过测量,这批球形路障球每个直径为60 cm ,若每个路障球为改造后所得的立方八面体的外接球,则每个改造后的立方八面体表面积为 cm 2.解析:由题意知,立方八面体表面有8个正三角形,再加上6个小正方形,且正方形边长与正三角形边长相等,路障球为立方八面体的外接球. 设立方八面体的棱长为a ,则外接球直径d =2a 2+2a 2=2a =60,则a =30.立方八面体表面积S =6a 2+8×34a 2=5400+1800 3.答案:5400+1800 315.如图1,在一个正方形S 1S 2S 3S 4内,有一个小正方形和四个全等的等边三角形.将四个等边三角形折起来,使S 1,S 2,S 3,S 4重合于点S ,且折叠后的四棱锥S -ABCD 的外接球的表面积是16 π(如图2),则四棱锥的体积是 .解析:在题图2中,连接AC ,BD 交于点O ,连接OS ,如图,因为SD =SB =CD ,BD =2CD ,所以SD ⊥SB ,故OA =OB =OC =OD =OS ,则O 是正四棱锥外接球的球心,正四棱锥的所有棱都相等,设棱长为x ,则外接球的半径是OA =22x ,所以4π⎝⎛⎭⎫22x 2=16π,x =2 2.因此SO =OA =22x =2.故四棱锥S -ABCD 的体积是13·x 2·SO=13×(22)2×2=163. 答案:163创新应用练16.某同学在参加《通用技术》实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为43的正方体的六个面所截后剩余的部分(球心与正方体的中心重合),若其中一个截面圆的周长为4π,则该球的半径是( )A .2B .4C .26D .4 6解析:选B 设截面圆半径为r ,球的半径为R ,则球心到某一截面的距离为正方体棱长的一半即23,根据截面圆的周长可得4π=2πr ,得r =2,故由题意知R 2=r 2+(23)2,即R 2=22+(23)2=16,所以R =4,故选B.17.(2021·安徽黄山二模)棱长为4的正方体密闭容器内有一个半径为1的小球,小球可在正方体容器内任意运动,则其能到达的空间的体积为( )A .32+22π3B .36+4π3C .44+13π3D .12+12π解析:选A 在正方体的8个顶点处的单位立方体空间内,小球不能到达的空间为8⎣⎡⎦⎤13-18⎝⎛⎭⎫4π3·13=8-4π3,除此之外,在以正方体的棱为一条棱的12个1×1×2的正四棱柱空间内,小球不能到达的空间共为12×⎣⎡⎦⎤1×1×2-14(π·12)×2=24-6π.其他空间小球均能到达.故小球不能到达的空间体积为⎝⎛⎭⎫8-43π+24-6π=32-223 π.∴小球可以经过的空间的体积V =43-⎝⎛⎭⎫12-π4·12×2×12-⎝⎛⎭⎫8-43 π=32+22π3.故选A .。
空间几何体的表面积与体积
空间几何体的表面积与体积一、基础知识1.圆柱、圆锥、圆台的侧面展开图及侧面积公式S=2πrl S=πrl S=π(r+r′)l①几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和.②圆台、圆柱、圆锥的转化当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得:2.空间几何体的表面积与体积公式二、常用结论几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=3a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为3∶1. 考点一 空间几何体的表面积[典例] (1)(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π(2)(2019·沈阳质检)某四棱锥的三视图如图所示,则该四棱锥的侧面积是( )A .4+4 2B .42+2C .8+4 2D.83[解析] (1)设圆柱的轴截面的边长为x , 则x 2=8,得x =22,∴S 圆柱表=2S 底+S 侧=2×π×(2)2+2π×2×22 =12π.故选B.(2)由三视图可知该几何体是一个四棱锥,记为四棱锥P ABCD ,如图所示,其中P A ⊥底面ABCD ,四边形ABCD 是正方形,且P A =2,AB =2,PB =22,所以该四棱锥的侧面积S 是四个直角三角形的面积和,即S =2×⎝⎛⎭⎫12×2×2+12×2×22=4+42,故选A. [答案] (1)B (2)A [题组训练]1.(2019·武汉部分学校调研)一个几何体的三视图如图所示,则它的表面积为( )A .28B .24+25C .20+4 5D .20+25解析:选B 如图,三视图所对应的几何体是长、宽、高分别为2,2,3的长方体去掉一个三棱柱后的棱柱ABIE DCMH ,则该几何体的表面积S =(2×2)×5+⎝⎛⎭⎫12×1×2×2+2×1+2×5=24+2 5.故选B.2.(2018·郑州第二次质量预测)某几何体的三视图如图所示,则该几何体的表面积是( )A .20+2πB .24+(2-1)πC .24+(2-2)πD .20+(2+1)π解析:选B 由三视图知,该几何体是由一个棱长为2的正方体挖去一个底面半径为1、高为1的圆锥后所剩余的部分,所以该几何体的表面积S =6×22-π×12+π×1×2=24+(2-1)π,故选B. 考点二 空间几何体的体积[典例] (1)(2019·开封高三定位考试)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .4πB .2π C.4π3D .π(2)(2018·天津高考)如图,已知正方体ABCD A 1B 1C 1D 1的棱长为1,则四棱锥A 1BB 1D 1D 的体积为________.[解析] (1)直接法由题意知该几何体的直观图如图所示,该几何体为圆柱的一部分,设底面扇形的圆心角为α,由tan α=31=3,得α=π3,故底面面积为12×π3×22=2π3,则该几何体的体积为2π3×3=2π.(2)法一:直接法连接A 1C 1交B 1D 1于点E ,则A 1E ⊥B 1D 1,A 1E ⊥BB 1,则A 1E ⊥平面BB 1D 1D ,所以A 1E 为四棱锥A 1BB 1D 1D 的高,且A 1E =22, 矩形BB 1D 1D 的长和宽分别为2,1, 故V A 1BB 1D 1D =13×(1×2)×22=13.法二:割补法连接BD 1,则四棱锥A 1BB 1D 1D 分成两个三棱锥B A 1DD 1与B A 1B 1D 1,所以V A 1BB 1D 1D =V B A 1DD 1+V B A 1B 1D 1=13×12×1×1×1+13×12×1×1×1=13.[答案] (1)B (2)13[题组训练]1.(等体积法)如图所示,已知三棱柱ABC A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1ABC 1的体积为( )A.312B.34C.612D.64解析:选A 三棱锥B 1ABC 1的体积等于三棱锥A B 1BC 1的体积,三棱锥A B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312. 2.(割补法)某几何体的三视图如图所示,则这个几何体的体积是( )A .13B .14C .15D .16解析:选C 所求几何体可看作是将长方体截去两个三棱柱得到的几何体,在长方体中还原该几何体,如图中ABCD A ′B ′C ′D ′所示,长方体的长、宽、高分别为4,2,3,两个三棱柱的高为2,底面是两直角边长分别为3和1.5的直角三角形,故该几何体的体积V =4×2×3-2×12×3×32×2=15,故选C.3.(直接法)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝⎛⎭⎫223=13+26π. 考点三 与球有关的切、接问题考法(一) 球与柱体的切、接问题[典例] (2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.[解析] 设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.[答案] 32考法(二) 球与锥体的切、接问题[典例] (2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D ABC 体积的最大值为( )A .123B .183C .24 3D .543[解析] 由等边△ABC 的面积为93,可得34AB 2=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D ABC 高的最大值为2+4=6,所以三棱锥D ABC 体积的最大值为13×93×6=18 3.[答案] B[题组训练]1.(2018·福建第一学期高三期末考试)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4π B.163πC.323π D .16π解析:选D 如图,由题意知圆柱的中心O 为这个球的球心, 于是,球的半径r =OB =OA 2+AB 2= 12+(3)2=2. 故这个球的表面积S =4πr 2=16π.故选D.2.三棱锥P ABC 中,AB =BC =15,AC =6,PC ⊥平面ABC ,PC =2,则该三棱锥的外接球表面积为________.解析:由题可知,△ABC 中AC 边上的高为15-32=6,球心O 在底面ABC 的投影即为△ABC 的外心D ,设DA =DB =DC =x ,所以x 2=32+(6-x )2,解得x =564,所以R 2=x 2+⎝⎛⎭⎫PC 22=758+1=838(其中R 为三棱锥外接球的半径),所以外接球的表面积S =4πR 2=832π. 答案:832π[课时跟踪检测]1.(2019·深圳摸底)过半径为2的球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的体积的比值为( )A.932 B.916 C.38D.316解析:选A 由题意知所得截面为圆,设该圆的半径为r ,则22=12+r 2,所以r 2=3,所以所得截面的面积与球的体积的比值为π×343π×23=932,故选A.2.如图是某一几何体的三视图,则这个几何体的体积为( )A .4B .8C .16D .20解析:选B 由三视图知,此几何体是一个三棱锥,底面为一边长为6,高为2的三角形,三棱锥的高为4,所以体积为V =13×12×6×2×4=8.故选B.3.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π×r 2×5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛). 4.(2018·贵阳摸底考试)某实心几何体是用棱长为1 cm 的正方体无缝粘合而成的,其三视图如图所示,则该几何体的体积为( )A .35 cm 3B .40 cm 3C .70 cm 3D .75 cm 3解析:选A 结合题中三视图可得,该几何体是个组合体,该组合体从下到上依次为长、宽、高分别为5 cm,5 cm,1 cm 的长方体,长、宽、高分别为3 cm,3 cm,1 cm 的长方体,棱长为1 cm 的正方体,故该组合体的体积V =5×5×1+3×3×1+1×1×1=35(cm 3).故选A.5.(2019·安徽知名示范高中联考)某几何体的三视图如图所示,则该几何体的体积为( )A .1 B.12 C.13D.14解析:选C 法一:该几何体的直观图为四棱锥S ABCD ,如图,SD ⊥平面ABCD ,且SD =1,四边形ABCD 是平行四边形,且AB =DC =1,连接BD ,由题意知BD ⊥DC ,BD ⊥AB ,且BD =1,所以S 四边形ABCD =1,所以V S ABCD =13S四边形ABCD·SD =13,故选C.法二:由三视图易知该几何体为锥体,所以V =13Sh ,其中S 指的是锥体的底面积,即俯视图中四边形的面积,易知S =1,h 指的是锥体的高,从正视图和侧视图易知h =1,所以V =13Sh =13,故选C.6.(2019·重庆调研)某简单组合体的三视图如图所示,则该组合体的体积为( )A.83π3+833B.43π3+833C.43π3+433D.83π3+433解析:选B 由三视图知,该组合体是由一个半圆锥与一个三棱锥组合而成的,其中圆锥的底面半径为2、高为42-22=23,三棱锥的底面是斜边为4、高为2的等腰直角三角形,三棱锥的高为23,所以该组合体的体积V =12×13π×22×23+13×12×4×2×23=43π3+833,故选B. 7.(2019·湖北八校联考)已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的表面积为( )A .16+12πB .32+12πC .24+12πD .32+20π解析:选A 由三视图知,该几何体是一个正四棱柱与半球的组合体,且正四棱柱的高为2,底面对角线长为4,球的半径为2,所以该正四棱柱的底面正方形的边长为22,该几何体的表面积S =12×4π×22+π×22+22×2×4=12π+16,故选A.8.(2019·福州质检)已知正三棱柱ABC A 1B 1C 1中,底面积为334,一个侧面的周长为63,则正三棱柱ABC A 1B 1C 1外接球的表面积为( )A .4πB .8πC .16πD .32π解析:选C 如图所示,设底面边长为a ,则底面面积为34a 2=334,所以a = 3.又一个侧面的周长为63,所以AA 1=2 3.设E ,D 分别为上、下底面的中心,连接DE ,设DE 的中点为O ,则点O 即为正三棱柱ABC A 1B 1C 1的外接球的球心,连接OA 1,A 1E ,则OE =3,A 1E =3×32×23=1.在直角三角形OEA 1中,OA 1=12+(3)2=2,即外接球的半径R =2,所以外接球的表面积S =4πR 2=16π,故选C.9.(2017·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析:由正方体的表面积为18,得正方体的棱长为 3. 设该正方体外接球的半径为R ,则2R =3,R =32,所以这个球的体积为43πR 3=4π3×278=9π2.答案:9π2 10.某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析:由题意知该四棱柱为直四棱柱,其高为1,底面为上底长为1,下底长为2,高为1的等腰梯形,所以该四棱柱的体积为V =(1+2)×12×1=32. 答案:3211.一个圆锥的表面积为π,它的侧面展开图是圆心角为2π3的扇形,则该圆锥的高为________.解析:设圆锥底面半径是r ,母线长为l ,所以πr 2+πrl =π,即r 2+rl =1,根据圆心角公式2π3=2πr l ,即l =3r ,所以解得r =12,l =32,那么高h =l 2-r 2= 2. 答案:212.(2017·全国卷Ⅰ)已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC 的体积为9,则球O 的表面积为________.解析:如图,连接AO ,OB ,∵SC 为球O 的直径,∴点O 为SC 的中点,∵SA =AC ,SB =BC ,∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,∴AO ⊥平面SCB ,设球O 的半径为R ,则OA =OB =R ,SC =2R .∴V S ABC =V A SBC =13×S △SBC ×AO =13×⎝⎛⎭⎫12×SC ×OB ×AO ,即9=13×⎝⎛⎭⎫12×2R ×R ×R ,解得 R =3, ∴球O 的表面积S =4πR 2=4π×32=36π.答案:36π13.如图是一个以A 1B 1C 1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC ,已知A 1B 1=B 1C 1=2,∠A 1B 1C 1=90°,AA 1=4,BB 1=3,CC 1=2,求:(1)该几何体的体积;(2)截面ABC 的面积.解:(1)过C 作平行于A 1B 1C 1的截面A 2B 2C ,交AA 1,BB 1分别于点A 2,B 2.由直三棱柱性质及∠A 1B 1C 1=90°可知B 2C ⊥平面ABB 2A 2,则该几何体的体积V =VA 1B 1C 1A 2B 2C +VC ABB 2A 2=12×2×2×2+13×12×(1+2)×2×2=6. (2)在△ABC 中,AB =22+(4-3)2=5,BC =22+(3-2)2=5,AC =(22)2+(4-2)2=2 3.则S △ABC =12×23×(5)2-(3)2= 6.14.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E ACD 的体积63,求该三棱锥E ACD 的侧面积.解:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,AC ⊂平面ABCD ,所以BE ⊥AC .因为BD ∩BE =B ,BD ⊂平面BED ,BE ⊂平面BED , 所以AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.因为AE⊥EC,所以在Rt△AEC中,可得EG=3 2x.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=2 2x.由已知得,三棱锥EACD的体积V三棱锥EACD=13·12AC·GD·BE=624x3=63,故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5.故三棱锥EACD的侧面积为3+2 5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
棱柱、棱锥、棱台都是由多个平面图形围成的几何 体,它们的展开图是什么?如何计算它们的表面积?
棱柱的展开图
棱柱的侧面展开图是什么?如何计算它的表 面积?
h
正棱柱的侧面展开图
棱锥的展开图
棱锥的侧面展开图是什么?如何计算它的表 面积?
正棱锥的侧面展开图
h
/
h
/
棱锥的展开图
棱锥的侧面展开图是什么?如何计算它的表 面积?
问题:已知球的半径为R,用R表示球的体积. A A
ri
O O.
Ci C2 O
Bi B2
r1 R R,
2
R 2 r2 R ( ) , n 2R 2 2 r3 R ( ) , n
2
R 2 ri R [ (i 1)] , i 1,2, n n
2
问题:已知球的半径为R,用R表示球的体积.
R R i 1 2 Vi ri [1 ( ) ], i 1,2, n n n n
2
R 2 ri R [ (i 1)] , i 1,2,, n n 3
2
V半球 V1 V2 Vn R 3 12 22 (n 1) 2 [n ] 2 n n
知识小结
圆柱 S 2r (r l )
r r
柱体、锥体、台体的表面积 圆台S (r2 r 2 rl rl )
r 0
展开图
圆锥 S r (r l )
各面面积之和
作业布置
书本P28 A组1,2 附加题:圆锥的底面半径为2cm,高为4cm, 求圆锥的内接圆柱的侧面积的最大值.
R 3 1 (n 1) n (2n 1) [n 2 ] n n 6 1 ( n 1)( 2n 1) 3 R [1 2 ] n 6
知识探究(二):球的表面积
思考1:半径为r的圆面积公式是什么?它 是怎样得出来的?
a4
S圆 r
2
a3 an
a1
a2
x 2.24 2 x 4.5
答:空心钢球的内径约为4.5cm.
(变式2)把钢球放入一个正方体的有盖纸 盒中,至少要用多少纸? 用料最省时,球与正方体有什么位置关系?
球内切于正方体
侧棱长为5cm
S侧 6 5 150cm
2
2
例2 已知正方体的八个顶点都在球O 的球面上,且正方体的表面积为a2,求 球O的表面积和体积. C′ o
3 2
3
2 1
1
思考4:推广到一般的棱锥和圆锥,你猜 想锥体的体积公式是什么?
1 V Sh 3
高h
底面积S
3、锥体的体积 定理:等底等高锥体的体积相等
等底等高的 棱柱和棱锥 体积的关系
4、台体的体积
例3 有一堆规格相同的铁制六角螺帽 共重5.8kg(铁的密度是7.8g/cm3),已 知螺帽的底面是正六边形,边长为12mm, 内孔直径为10mm,,高为10mm,问这堆 螺帽大约有多少个?
求此棱柱挖去圆 柱后的体积和表 面积
引申:1.圆柱的侧面展开图如下左图所示,求此圆柱的 体积。
侧面展开图 直 观 图 1
直观图2
引申2:已知正四棱台两底面的边长, 和棱台体积, 求棱 台的高.
h?
柱、锥、台体积的关系
s' s s' 0
知识探究(一):球的体积
思考1:从球的结构特征分析,球的大小 由哪个量所确定? 思考2:底面半径和高都为R的圆柱和圆锥 的体积分别是什么?
2
圆锥的表面积
2r
l
r
O
2
圆锥的侧面展开图是扇形
S圆锥表面积 r rl r(r l )
圆台的表面积
参照圆柱和圆锥的侧面展开图,试想象圆台的侧 面展开图是什么 .
r 'O’
l
2r '
2r
r
O
2 2
圆台的侧面展开图是扇环
S圆台表面积 (r r rl rl )
柱体、锥体、台体的表面积
提出问题
在初中已经学过了正方体和长方体的表面积,你 知道正方体和长方体的展开图与其表面积的关系吗?
几何体表面积
展开图
平面图形面积 平面问题
空间问题
引入新课
正方体、长方体是由多个平面围成的几何体,它 们的表面积就是各个面的面积的和. 因此,我们可以把它们展成平面图形,利用平面 图形求面积的方法,求立体图形的表面积.
1 1 3 3 2 BC SD a a a 2 2 2 4
因此,四面体S-ABC 的表面积.
思考
求多ቤተ መጻሕፍቲ ባይዱ体的表面积可以通过求
各个平面多边形的面积和得到, 那么旋转体的面积该如何求呢?
圆柱的表面积
r O
l
O
2r
圆柱的侧面展开图是矩形
S圆柱表面积 2r 2rl 2r (r l )
课本P29B组习题1(考察球、台体体积公式)
20
球的表面积等于球的大圆面积的4倍
4 3 定理:半径是R的球的体积 V R 3
例1.钢球直径是5cm,求它的体积.
4 3 4 5 3 125 3 V R ( ) cm 3 3 2 6
变式1:一种空心钢球的质量是142g,外径 是5cm,求它的内径.(钢的密度是7.9g/cm2) 解:设空心钢球的内径为2xcm,则钢球 的质量是 7.9 [ 4 ( 5 )3 4 x 3 ] 142 3 2 3 5 3 142 3 3 x ( ) 11 .3 2 7.9 4 由计算器算得:
典型例题
例1 已知棱长为a,各面均为等边三角形的四面 体S-ABC,求它的表面积 . 分析:四面体的展开图是由四个全等的正三角形 组成. S 解:先求 ABC的面积,过点S作 SD BC,
交BC于点D. A B D C
S 所以: ABC
3 a 因为BC=a,SD SB sin 60 2
A
变式3.有三个球,一球切于正方体的各面, 一球切于正方体的各侧棱,一球过正方体 的各顶点,求这三个球的体积之比. 作轴截面
两个几何体相切:一个几何体的各个面与另 一个几何体的各面相切. 两个几何体相接:一个几何体的所有顶点都 在另一个几何体的表面上
1.一种方法: “分割,求和,取极限”的数学方法. 2.一个观点:在一定条件下,化曲为直的辨证观 点. 4 3 3.一个公式:半径为R的球的体积是 V R
思考2:把球面任意分割成n个“小球面 片”,它们的面积之和等于什么?
o
思考3:以这些“小球面片”为底,球心 为顶点的“小锥体”近似地看成棱锥, 那么这些小棱锥的底面积和高近似地等 于什么?它们的体积之和近似地等于什 么?
o
思考4:你能由此推导出半径为R的球的 表面积公式吗?
S 4 R
2
思考5:经过球心的截面圆面积是什么? 它与球的表面积有什么关系?
2 15 cm 15 2 15 20 1.5 S 15 15 2 2 2 2
15 cm
999(cm2 )
cm2 . 答:花盆的表面积约是999
3
课堂练习
1、一个三棱柱的底面是正三角形,边长为4, 侧棱与底面垂直,侧棱长10,求其表面积. 2、一个圆台,上、下底面半径分别为10、20, 母线与底面的夹角为60°,求圆台的表面积. 变式:求切割之前的圆锥的表面积 3、面积为2的菱形,绕其一边旋转一周所得 几何体的表面积是多少? 4、若一个圆锥的轴截面是等边三角形,其面 积为3,求这个圆锥的表面积
侧面展开
h'
正棱锥的侧面展开图
h'
棱锥的展开图
棱台的侧面展开图是什么?如何计算它的表 面积?
侧面展开
h'
正棱台的侧面展开图
h'
棱柱、棱锥、棱台的表面积
h'
h'
棱柱、棱锥、棱台都是由多个平面图形围成的几何 体,它们的侧面展开图还是平面图形,计算它们的表面 积就是计算它的各个侧面面积和底面面积之和.
V柱 R
3
V锥
1 3 R 3
思考3:如图,对一个半径为R的半球,其 体积与上述圆柱和圆锥的体积有何大小 关系?
思考4:根据上述圆柱、圆锥的体积,你 猜想半球的体积是什么? 2 3 V球 R 3
思考5:由上述猜想可知,半径为R的球的 4 3 体积 V R ,这是一个正确的结论,你 3 能提出一些证明思路吗?
柱体、锥体、台体的体积
1、长方体的体积
D1 A1 D A C1
d
B1
c
C
S a
B
b
d a b c
2 2 2
2
等底等高柱体的体积相等吗?
2、柱体的体积 定理:等底等高柱体的体积相等
祖恒原理
将一个三棱柱按如图所示分解成三 个三棱锥,那么这三个三棱锥的体积有 什么关系?它们与三棱柱的体积有什么 关系?
3
4.解决两类问题:两个几何体相切和相接
作适当的轴截面
练习一:
2 (1)若球的表面积变为原来的2倍,则半径变为原来的—倍。
4 (2)若球半径变为原来的2倍,则表面积变为原来的—倍。
(3)若两球表面积之比为1:2,则其体积之比是———。 1: 2 2
3 (4)若两球体积之比是1:2,则其表面积之比是———。 1: 4
三者之间关系
圆柱、圆锥、圆台三者的表面积公式之间有什么关 系?
r O
r 'O’
l
O
r’=r
上底扩大
l