催化裂化装置简介
第三章_催化裂化装置
主要由吸收塔、解吸塔、再吸收塔及稳定塔组成。 吸收塔和解吸塔的操作压力为1.0~2.0MPa。 稳定塔实质上是个精馏塔,操作压力为1.0-1.5MPa。
四、能量回收系统
利用再生器出口烟气的热能和压力使余热 锅炉产生蒸汽和烟气轮机作功、发电等。
能量回收系统的工艺流程图
二、分馏系统
沉降器来的反应油气,经换热器进入分馏塔, 根据物料的沸点差,从上至下分离为富气、粗 汽油、柴油、回炼油和油浆。
分馏系统流程图
1.分馏塔底人字形挡板处用油 浆洗涤(1)防止少量催化剂细 粉堵塞塔盘和影响产品质量; (2)由于反应油气温度较高, 500℃左右,油浆洗涤可取走 多余的热量。 2.油浆:一部分回炼,一部分 回分馏塔,一部分送出装置作 自用燃料。 3富气经压缩后去吸收稳定系统 的凝缩油罐,粗汽油进吸收塔 上部。
490~510 ℃
2 ~3s
600~750 ℃
200~300 ℃
分馏系统
三、吸收—稳定系统
从分馏塔顶油气分离器出来的富气中带有汽油组分,而粗
汽油中又溶有C3、C4甚至C2组分,因此吸收稳定系统的作 用: 利用吸收和精馏的方法将富气和粗汽油分离成干气 (≤C2) 、液化气(C3、C4)和蒸汽压合格的稳定汽油。
富气经气压机升压、冷却并分出凝缩油后,由底部进入吸收塔;稳定 汽油和粗汽油则作为吸收液由塔顶进入,将富气中的C3、C4(含少量C2) 等吸收后得到富吸收油。吸收塔顶部出来的贫气中夹带有少量稳定汽油, 可经再吸收塔用柴油回收其中的汽油组分后成为干气,送出装置。 富吸收油和凝缩油均进入解吸塔,使其中的气体解吸后,从塔顶返回 凝缩油沉降罐,塔底的未稳定汽油送入稳定塔,通过精馏作用将液化气和 稳定汽油分开。有时,塔顶要排出部分不凝气(也称气态烃),它主要是 C2,并夹带有C3和C4.排出不凝气的目的是为了控制稳定塔的Ni+V:不大于 20 PPm 残碳:不大于 6% 产品分布: ★ 气体:10~20%,气体中主要是C3 、C4 ,烯烃含量很 高 ★ 汽油:产率在30~60%之间,辛烷值较高,约80~90 ★ 柴油:产率在0~40%, 十六烷值较低,需调和或精 制 ★ 油浆:产率在0~10% ★ 焦炭:产率在5%~10%,原子比大约是C:H=1:0.3~1
催化裂化装置介绍
典型催化裂化流程
催化裂化工艺介绍 反应再生系统
“ 催化裂化装置有多种类型,按反应器(或沉降器)和再
生器布置的相对位置的不同可分为两大类:①反应器和
再生器分开布置的并列式;②反应器和再生器架叠在一
起的同轴式。并列式又由于反应器(或沉降器)和再生 器位置高低的不同而分为同高并列式和高低并列式两类。
”
(2) 炼厂中一般都作为本厂加热炉的燃料。 (3) 油浆可以通过脱芳烃后再作为催化裂化的原料。 (4) 还可以用于合成橡胶工业和生产轮胎、碳黑。
焦炭:催化裂化的焦碳沉积在催化剂上,不能作为产品。 常规的催化裂化焦碳产率约为5~7%,渣油催化裂化可以 高达10%以上。
化工辅料-CO助燃剂
CO助燃剂:在再生器600-700摄氏度的温度下,待生催化剂 上的焦碳,在燃烧的过程中不仅生成 CO2,还生成大量 的CO,这些CO在过剩氧的烟气中要出现后燃烧,放出大 量的热对再生器和烟道结构产生破坏性的影响。为避免 这种现象的发生,一种方法是严格控制再生空气量,以 降低烟气中的过剩氧,限制CO氧化的发生,但对装置设 计操作要求都比较高。另一种办法是富氧再生,使用CO 助燃剂。在使用了助燃剂后,CO在助燃剂的作用下,在 600℃以上可与氧气快速燃烧,CO的燃烧在再生器的密相 就已经燃烧完,既避免了后路尾燃,又避免了因控制氧 含量低造成的碳堆积,既方便了操作,同时提高了密相 的温度,有利于再生热量的回收,改善再生效果,降低 再生器的碳含量,提高催化剂的活性和选择性,从而改 善产品分布。目前的助燃剂为重金属钯和铂。2014年使 用助燃剂9.6吨,单耗为9.93ppm。
催化裂化的原料和产品
催化裂化的主要产品是轻质油品(汽油、柴油),同时 获得液化气、油浆和干气,生成的焦碳在工艺过程中被 利用。 1.气体产品(干气和液化气)
催化裂化装置简介
压缩富气
解吸深度
解吸塔解吸深度提高,经脱乙烷气返回吸收塔的C3以上组份增 多,会造成吸收塔负荷上升,将使干气中C3组份含量上升;在 日常生产过程中应注意干气流量、解吸气流量、解吸塔底温度、 干气组份、液化气组成等分析数据,合理控制吸收与解吸深度
催化裂化装置概况
液化气中C2含量的控制
控制液化气中C2含量,解吸塔的操作条件是关键。高温低压 对解吸有利,但解吸塔压力同时受制于稳定塔操作压力(脱乙 烷汽油自压至稳定塔),且解吸气并入气压机出口富气线,其 压力也与吸收塔操作压力密切相关,因而不可能降的过低。 控制目标:C2≤1.0 V% 相关参数:解吸塔11层气相温度、解吸塔13层气相温度、解吸塔 9层气相温度、解吸塔压力、解吸塔进料温度、解吸塔进料量 及组成。
石化盐化一体化项目
催化裂化装置简介
设计技术部 吴雯雯 二○一五年二月
主 要 内 容
催化工艺发展历程
催化裂化装置概况 催化裂化反应及催化剂 催化裂化发展趋势
催化工艺发展历程
催化裂化的定义
催化裂化(Catalytic cracking)是在热和催化剂的作 用下使重质油发生裂化反应,并转化为裂化气、辛烷 值较高的汽油、柴油等产品的加工过程。 催化裂化的原料: 减压馏分油(VGO)-FCC 常压渣油和减压渣油的脱沥青油-RFCC)
塔顶压力 冷回流量 顶循取热负荷
塔顶压力直接影响汽油组份油气分压,塔顶压力升高,干点提高;塔顶压力下降,干点降低。 冷回流量增加,干点降低,反之则提高。 提高顶循环流量或降低回流温度,使顶循取热负荷增加汽油干点下降,反荷下降,顶温下降,汽油干点下降。
解吸塔温度
解吸塔操作压力
解吸塔进料量及 组成
催化裂化装置概况
催化裂化的主要设备及作用
催化裂化的主要设备及作用以催化裂化的主要设备及作用为标题,本文将详细介绍催化裂化技术中的主要设备及其作用。
催化裂化是一种重要的炼油工艺,能够将重质石油馏分转化为轻质石油产品。
催化裂化主要通过在高温和催化剂存在下,将长链烃分子裂解成短链烃分子,从而提高汽油和石脑油的产量。
下面将分别介绍催化裂化的主要设备及其作用。
1. 催化裂化装置催化裂化装置是催化裂化工艺的核心设备,主要由裂化器、再生器和分离器组成。
裂化器是将重质石油馏分在高温和催化剂的作用下进行裂解的设备,再生器则用于将已经使用过的催化剂进行再生,分离器则用于将裂解产物中的气体、液体和固体分离。
2. 催化剂催化剂是催化裂化过程中不可或缺的物质,主要由沸石和金属添加剂组成。
沸石是一种具有特殊结构的矿物质,具有很大的比表面积和良好的酸性。
催化剂的作用是提供裂化反应所需的活性位点和酸性,促进重质烃分子的裂解反应。
3. 加热炉加热炉是催化裂化装置中的重要设备,主要用于提供裂化反应所需的高温条件。
加热炉通常采用直燃方式,燃烧燃料产生的热量通过炉管传递给裂化装置,使其达到裂解反应所需的温度。
4. 冷凝器冷凝器是催化裂化装置中的一个重要组成部分,主要用于将裂解反应产生的气体冷却成液体。
冷凝器通常采用多级冷却方式,通过多个冷却器的串联,将高温的裂解气体逐渐冷却,使其中的石脑油等液体成分凝结出来,从而得到所需的轻质石油产品。
5. 分离塔分离塔是催化裂化装置中用于将裂解产物中的液体和气体进行分离的设备。
分离塔通常采用塔板或填料来增加分离效果,使液体和气体能够充分接触,并通过不同的物理性质进行分离。
6. 汽油分离系统汽油分离系统是催化裂化装置中的一个重要组成部分,主要用于将裂化产物中的汽油分离出来。
汽油分离系统通常包括汽油分离塔、汽油稳定塔和汽油产品收集装置等设备。
其中,汽油分离塔和汽油稳定塔通过精确的温度和压力控制,将汽油产品从裂化产物中分离出来,并保持其稳定性。
催化裂化装置
催化裂化装置催化裂化是炼油工业重要的二次加工装置,是提高轻质油收率,生产高辛烷值汽油,同时又多产柴油的重要手段,随着重油催化工艺的实现,其地位更加倍增。
作为一项传统的重油加工工艺,催化裂化实现工业化已经有60年的历史,其总加工能力超过加氢裂化、焦化和减粘裂化之和,是目前最重要的重油轻质化工艺。
虽然曾多次受到加氢裂化工艺的竞争和清洁燃料标准的挑战,但由于催化裂化技术的进步,各种以催化裂化技术为核心的催化裂化“家族工艺”的不断出现,已经将催化裂化转变为“炼油-化工一体化”的主体装置,催化裂化仍然保持了其在石油化工行业中的重要地位。
我国的催化裂化技术与国际先进水平保持同步,进入21世纪以后,由于我国催化裂化装置在炼厂地位的特殊性,技术发展的势头更猛,目前为止,基本解决了由于产品升级换代给催化裂化工艺带来的各种问题,而且在应对产品质量问题的技术开发过程中,拓宽了催化裂化产品的品种和范围,为确保催化裂化技术在未来石油化工中的核心地位提供了技术保证。
催化裂化装置的工艺原理是在流化状态下的催化剂作用下,重质烃类在480--520 ℃及0.2-0.3MPa(a)的条件下进行反应。
主要包括:1).裂解反应:大分子烃类裂解为小分子,环烷烃进行断环或侧链断裂,单环芳烃的烷基侧链断裂。
2).异构化反应:正构烷烃变成异构烷烃,带侧链的环烃或烷烃变成环异烷,产品中异构烃含量增加。
3).芳构化反应:环己烷脱氢生成芳香烃,烯烃环化脱氢生成芳烃。
4).氢转移反应:多环芳烃逐渐缩合成大分子直至焦炭,同时一种氢原子转移到烯烃分子中,使烯烃饱和成烷烃。
催化裂化装置的规模近三十年来逐步发展到350万吨/年(加工1000万吨/年原油)。
加工的原料为常压蜡油、减压渣油以及蜡油加氢裂化尾油。
原料主要性质装置由反应再生、分馏、吸收稳定(包括产品精制)、烟气能量回收几个部分组成。
装置主要产品为液化气、汽油、重石脑油和轻柴油,副产部分干气和油浆。
液化气去气体分馏装置。
炼油行业设备资料
炼油行业设备资料炼油行业作为能源行业的重要组成部分,承担着能源供应的重要使命。
在炼油过程中,涉及大量的设备和技术应用。
本文将介绍一些常见的炼油行业设备资料,帮助读者更好地了解炼油行业的运作。
一、蒸馏塔蒸馏塔是炼油行业中最常见的设备之一,用于原油的分馏工艺。
蒸馏塔根据不同的油品需求,将原油中的各种组分进行分离和提纯。
蒸馏塔内部通过不同的温度梯度和塔板来实现分离,从而得到不同级别的馏分产品,如汽油、柴油、液化气等。
二、催化裂化装置催化裂化装置是炼油行业中一种重要的转化设备。
它通过高温、高压和催化剂的作用,将较重的石油馏分转化为较轻的馏分产品。
催化裂化装置主要用于生产较高辛烷值的汽油和石蜡基油。
在该装置中,催化剂起到了关键的作用,选择合适的催化剂能够提高产品质量和产量。
三、反应器反应器是炼油过程中常见的设备之一,用于进行化学反应。
在反应器中,通过不同的温度、压力和催化剂的作用,将原料转化为所需的产品。
例如,炼油过程中的氢化反应和烷化反应都需要通过反应器来实现。
反应器的设计和操作对反应过程的效率和产品质量都有着重要的影响。
四、脱硫装置脱硫装置是炼油行业中用于去除原料中硫化物的设备。
石油中的硫化物是一种有害物质,对环境和人体健康都有一定的影响。
通过脱硫装置,可以将硫化物从原料中去除,从而提高产品的环境友好性和可销售性。
常见的脱硫装置包括氧化脱硫和吸收脱硫等技术。
五、分馏柱分馏柱是炼油行业中一种用于分离液体混合物的设备。
分馏柱根据物质的沸点差异,将混合物中的组分进行分离。
分馏柱常用于原料预处理和产品后处理等环节。
通过有效的分馏柱设计和操作,可以实现产品的纯化和提纯,从而满足不同行业的需求。
总结起来,炼油行业的设备资料众多,每个设备都有着特定的作用。
蒸馏塔、催化裂化装置、反应器、脱硫装置和分馏柱等设备在炼油过程中起到了重要的作用。
了解这些设备的工作原理和技术细节,有助于读者更好地理解石油炼制的过程,并在实际工作中更好地应用这些知识。
催化裂化的装置简介及工艺流程
催化裂化的拆置简介及工艺过程之阳早格格创做概括催化裂化技能的死长稀切依好于催化剂的死长.有了微球催化剂,才出现了流化床催化裂化拆置;分子筛催化剂的出现,才死长了提下管催化裂化.采用相宜的催化剂对付于催化裂化历程的产品产率、产品本量以及经济效率具备要害效率.催化裂化拆置常常由三大部分组成,即反应/复活系统、分馏系统战吸支宁静系统.其中反应––复活系统是齐拆置的核心,现以下矮并列式提下管催化裂化为例,对付几大系统分述如下:(一)反应––复活系统新陈本料(减压馏分油)通过一系列换热后与回炼油混同,加进加热炉预热到370℃安排,由本料油喷嘴以雾化状态喷进提下管反应器下部,油浆没有经加热曲交加进提下管,与去自复活器的下温(约650℃~700℃)催化剂交触并坐时汽化,油气与雾化蒸汽及预提下蒸汽所有携戴着催化剂以7米/秒~8米/秒的下线速通过提下管,经赶快分散器分散后,大部分催化剂被分出降进重降器下部,油气携戴少量催化剂经二级旋风分散器分出夹戴的催化剂后加进分馏系统.积有焦冰的待死催化剂由重降器加进其底下的汽提段,用过热蒸气举止汽提以脱除吸附正在催化剂表面上的少量油气.待死催化剂经待死斜管、待死单动滑阀加进复活器,与去自复活器底部的气氛(由主风机提供)交触产死流化床层,举止复活反应,共时搁出洪量焚烧热,以保护复活器脚够下的床层温度(稀相段温度约650℃~680℃).复活器保护0.15MPa~0.25MPa(表)的顶部压力,床层线速约0.7米/秒~1.0米/秒.复活后的催化剂经淹流管,复活斜管及复活单动滑阀返回提下管反应器循环使用.烧焦爆收的复活烟气,经复活器稀相段加进旋风分散器,经二级旋风分散器分出携戴的大部分催化剂,烟气经集气室战单动滑阀排进烟囱.复活烟气温度很下而且含有约5%~10%CO,为了利用其热量,很多拆置设有CO锅炉,利用复活烟气爆收火蒸汽.对付于支配压力较下的拆置,常设有烟气能量回支系统,利用复活烟气的热能战压力做功,启动主风机以俭朴电能.(二)分馏系统分馏系统的效率是将反应/复活系统的产品举止分散,得到部分产品战半兴品.由反应/复活系统去的下温油气加进催化分馏塔下部,经拆有挡板的脱过热段脱热后加进分馏段,经分馏后得到富气、细汽油、沉柴油、重柴油、回炼油战油浆.富气战细汽油去吸支宁静系统;沉、重柴油经汽提、换热或者热却后出拆置,回炼油返回反应––复活系统举止回炼.油浆的一部分支反应复活系统回炼,另一部分经换热后循环回分馏塔.为了与走分馏塔的过剩热量以使塔内气、液相背荷分集匀称,正在塔的分歧位子分别设有4个循环回流:顶循环回流,一中段回流、二中段回流战油浆循环回流.催化裂化分馏塔底部的脱过热段拆有约十块人字形挡板.由于进料是460℃以上的戴有催化剂粉终的过热油气,果此必须先把油气热却到鼓战状态并洗下夹戴的粉尘以便举止分馏战预防阻碍塔盘.果此由塔底抽出的油浆经热却后返回人字形挡板的上圆与由塔底上去的油气顺流交触,一圆里使油气热却至鼓战状态,另一圆里也洗下油气夹戴的粉尘.(三)吸支--宁静系统从分馏塔顶油气分散器出去的富气中戴有汽油组分,而细汽油中则溶解有C3、C4以至C2组分.吸支––宁静系统的效率便是利用吸支战细馏的要领将富气战细汽油分散成搞气(≤C2)、液化气(C3、C4)战蒸汽压合格的宁静汽油.拆置简介(一)拆置死长及其典型1.拆置死长催化裂化工艺爆收于20世纪40年代,是炼油厂普及本油加工深度的一种重油沉量化的工艺.20世纪50年代初由ESSO公司(好国)推出了Ⅳ型流出催化拆置,使用微球催化剂(仄稳粒径为60—70tan),进而使催化裂化工艺得到极大死长.1958年尔国第一套移动床催化裂化拆置正在兰州炼油厂投产.1965年尔国自己安排制制动工的Ⅳ型催化拆置正在抚顺石油二厂投产.通过近40年的死长,催化裂化已成为炼油厂最要害的加工拆置.停止1999年底,尔国催化裂化加工本领达8809.5×104t/a,占一次本油加工本领的33.5%,是加工比率最下的一种拆置,拆置规模由(34—60)×104t/a 死长到海内最大300×104t/a,海中为675×104t/a.随着催化剂战催化裂化工艺的死长,其加工本料由重量化、劣量化死长至暂时齐减压渣油催化裂化.根据脚法产品的分歧,有探供最大气体支率的催化裂解拆置(DCC),有探供最大液化气支率的最洪量下辛烷值汽油的MGG工艺等,为了符合以上的死长,相映推出了二段复活、富氧复活等工艺,进而使催化裂化拆置背着工艺技能进步、经济效率更佳的目标死长.2.拆置的主要典型催化裂化拆置的核心部分为反应—复活单元.反应部分有床层反应战提下管反应二种,随着催化剂的死长,暂时提下管反应已与代了床层反应.复活部分可分为真足复活战没有真足复活,一段复活战二段复活(真足复活即指复活烟气中CO含量为10—6级).从反应与复活设备的仄里安插去道又可分为下矮并列式战共轴式,典型的反应—复活单元睹图2—4、图2—5、图2—6、图2—7,其特性睹表2—11.(二)拆置单元组成与工艺过程催化裂化拆置的基础组成单元为:反应—复活单元,能量回支单元,分馏单元,吸支宁静单元.动做扩充部分有:搞气、液化气脱硫单元,汽油、液化气脱硫醇单元等.各单元效率介绍如下.(1)反应—复活单元重量本料正在提下管中与复活后的热催化剂交触反应后加进重降器(反应器),油气与催化剂经旋风分散器与催化剂分散,反应死成的气体、汽油、液化气、柴油等馏分与已反应的组分所有离启重降器加进分馏单元.反应后的附有焦冰的待死催化剂加进复活器用气氛烧焦,催化剂回复活性后再加进提下管介进反应,产死循环,复活器顶部烟气加进能量回支单元.(2)三机单元所谓三机系指主风机、气压机战删压机.如果将反一再单元动做拆置的核心部分,那么主风机便是催化裂化拆置的心净,其效率是将气氛支人复活器,使催化剂正在复活器中烧焦,将待死催化剂复活,回复活性以包管催化反应的继承举止.删压机是将主风机出心的气氛提压后动做催化剂输支的能源风、流化风、提下风,以脆持反—再系统催化剂的仄常循环.气压机的效率是将分馏单元的气体压缩降压后支人吸支宁静单元,共时通过安排气压机转数也可达到统制重降器顶部压力的脚法,那是包管反应复活系统压力仄稳的一个脚法.(3)能量回支单元利用复活器出心烟气的热能战压力使余热锅炉爆收蒸汽战烟气轮机做功、收电等,此举可大大降矮拆置能耗,暂时现有的重油催化裂化拆置有无此回支系统,其能耗可出进1/3安排.(4)分馏单元重降器出去的反应油气经换热后加进分馏塔,根据各物料的沸面好,从上至下分散为富气(至气压机)、细汽油、柴油、回炼油战油浆.该单元的支配对付齐拆置的仄安效率较大,一头一尾的支配尤为要害,即分馏塔顶压力、塔底液里的稳固是拆置仄安死产的有力包管,包管气压机人心搁火炬战油浆出拆置系统的通畅,是仄安死产的必备条件.(5)吸支宁静单元通过气压机压缩降压后的气体战去自分馏单元的细汽油,通过吸支宁静部分,分隔为搞气、液化气战宁静汽油.此单元是本拆置甲类伤害物量最集结的场合.(6)产品细制单元包罗搞气、液化气脱硫战汽油液化气脱硫醇单元该二部分,搞气、液化气正在胺液(乙醇胺、二乙醇胺、Ⅳ—甲基二乙醇胺等)效率下、吸支搞气、液化气中的H2S气体以达到脱除H2S的脚法.汽油战液化气正在碱液状态中正在磺化酞氰钴或者散酞氰钻效率下将硫醇氧化为二硫化物,以达到脱除硫醇的脚法.2.工艺过程工艺准则过程睹图2—8.本料油由罐区或者其余拆置(常减压、润滑油拆置)支去,加进本料油罐,由本料泵抽出,换热至200—300°C安排,分馏塔去的回炼油战油浆所有加进提下管的下部,与由复活器复活斜管去的650~700°C复活催化剂交触反应,而后经提下管上部加进分馏塔(下部);反应完的待死催化剂加进重降器下部汽提段.被汽提蒸汽与消油气的待死剂通过待死斜管加进复活器下部烧焦罐.由主风机去的气氛支人烧焦罐烧焦,并共待死剂一道加进复活器继承烧焦,烧焦复活后的复活催化剂由复活斜管进人提下管下部循环使用.烟气经一、二、三级旋分器分散出催化剂后,其温度正在650~700°C,压力0.2-0.3MPa(表),进人烟气轮机做功戴动主风机,其后温度为500—550°C,压力为0.01MPa(表)安排,再加进兴热锅炉爆收蒸汽,收汽后的烟气(温度约莫为200℃安排)通过烟囱排到大气.反应油气加进分馏塔后,最先脱过热,塔底油浆(油浆中含有2%安排催化剂)分二路,一路至反应器提下管,另一路经换热器热却后出拆置.脱过热后油气降下,正在分馏塔内自上而下分散出富气、细汽油、沉柴油、回炼油.回炼油去提下管再反应,沉柴油经换热器热却后出拆置,富气经气压机压缩后与细汽油共进吸支塔,吸支塔顶的贫气加进再吸支塔由沉柴油吸支其中的C4-C5,再吸支塔顶搞气加进搞气脱硫塔脱硫后动做产品出拆置,吸支塔底富吸支油加进脱吸塔以脱除其中的C2.塔底脱乙烷汽油加进宁静塔,宁静塔底油经碱洗后加进脱硫醇单元脱硫醇后出拆置,宁静塔顶液化气加进脱硫塔脱除H,S,再加进脱硫醇单元脱硫醇后出拆置.(脱硫脱硫醇已绘出)(三)化教反应历程1.催化裂化反应的特性催化裂化反应是正在催化剂表面上举止的,其反应历程的7个步调如下:①气态本料分子从合流扩集到催化剂表面;②本料分子沿催化剂中背内扩集;③本料分子被催化剂活性核心吸附;④本料分子爆收化教反应;⑤产品分子从催化剂内表面脱附;⑥产品分子由催化剂中背中扩集;⑦产品分子扩集到合流中.重量本料反应死成脚法产品可用下图表示:2.催化裂化反应种类石油馏分是由格中搀纯的烃类战非烃类组成,其反应历程格中搀纯,种类繁琐,大概分为几个典型.(1)裂化反应是主要的反应.即C—C键断裂,大分子形成小分子的反应.(2)同构化反应是要害的反应.即化合物的相对付分子量没有变,烃类分子结媾战空间位子变更,所以催化裂化产品中会有较多同构烃.(3)氢变化反应是一个烃分子上的氢脱下去加到另一个烯烃分子上,使其烯烃鼓战,该反应是催化裂化特有的反应.虽然氢变化反应会使产品安靖性变佳,然而是大分子的烃类反应脱氢将死成焦冰.(4)芳构化反应烷烃、烯烃环化死成环烷烃战环烯烃,而后进一步氢变化反应死成芳烃,由于芳构化反应使汽油、柴油中芳烃较多.除以上反应中,另有甲基变化反应、叠合反应战烷基化反应等.(四)主要支配条件及工艺技能特性1.主要支配条件果分歧的工艺支配条件没有尽相共,表2—12列出普遍一段复活催化裂化的主要支配条件.2.工艺技能特性(1)微球催化剂的气—固流态化催化裂化确切一面该当喊做流化催化裂化.微球催化剂(60—70/1m粒径)正在分歧气相线速下浮现分歧状态,可分为牢固床(即催化剂没有动)、流化床(即催化剂只正在一定的空间疏通)战输支床(即催化剂与气相介量一共疏通而离启本去的空间)三种.催化裂化的提下管反应是输支床,而复活器中待死催化剂的烧焦历程是流化床,所以微球催化剂的气—固流态化是催化裂化工艺得以死长的前提,进而使反应—复活能正在分歧的条件下得以真止.(2)催化裂化的化教反应最主要的反应是大分子烃类裂化为小分子烃类的化教反应,进而使本油中大于300℃馏分的烃类死成小分子烃类、气体、液化气、汽油、柴油等,极天里减少了炼油厂的沉量油支率,并能副产气体战液化气.(五)催化剂及帮剂1.催化剂烃类裂化反应,应用热裂化工艺也能完毕,然而是有了催化剂的介进,其化教反应办法分歧,所以引导二类工艺的产品本量战产品分集皆分歧.暂时催化裂化所使用的催化剂皆是分子筛微球催化剂,根据分歧产品央供可制制出百般型号的催化剂.然而其使用本能央供是共共的,即下活性战采用性,良佳的火热宁静性,抗硫、氮、重金属的中毒;佳的强度,易复活,流化本能佳等.暂时罕睹的有重油催化裂化催化剂、死产下辛烷值汽油催化剂、最大沉量油支率催化剂、减少液化气支率催化剂战催化裂解催化剂等.由于催化裂化本料的重量化,使重油催化剂死长格中赶快,暂时海内齐渣油型催化剂本能睹表2—13. 2.催化裂化帮剂为了补充催化剂的其余本能,连年去死长了多种起辅帮效率的帮催化剂,那些帮剂均以剂的办法,加到裂化催化剂中起到除催化裂化历程中的其余效率.如促进复活烟气中CO 变化为C02,普及汽油辛烷值,钝化本料中重金属对付催化剂活性毒性,降矮烟气中的SOx的含量等百般帮剂,它们绝大普遍也是制制成与裂化催化剂一般的微球分别加进复活器内,然而占总剂量很少,普遍正在1%—3%,所以每天增加量惟有10-1000kS/d安排.CO帮焚剂为SiO2—Al2O3细粉上载有活性金属铂制成.辛烷值帮剂大多是含有15%-20%ZSM—5分子筛的Si—Al 微球剂.而金属钝化剂为液态型含锑的化合物,将其注进本料油中,使其领会的金属锑重积正在催化剂上以钝化Ni的活性.(六)本料及产品本量1.催化裂化本资料百般催化裂化所使用的本资料没有尽相共,现将普遍所使用的本资料主要本量汇总,睹表2—14.2.产品本量产品本量睹表2-15。
催化裂化装置操作安全技术(2篇)
催化裂化装置操作安全技术催化裂化是蜡油和渣油在高温和催化剂作用下,在提升管式反应器中进行快速反应,把较大分子的烃类裂化为较小分子烃类,再经分馏、吸收等工序生产汽油、柴油、液态烃干汽等产品的炼油生产装置。
催化裂化反应类型主要有裂化反应、异构化反应、氢转移反应和芳构化反应四种。
反应再生和分馏是催化裂化装置的核心。
装置除具有易燃、易爆、易中毒特点外,油浆易结焦堵塞设备管线,也是比较突出的安全问题。
(一)反应再生单元安全特性在反应再生过程中,原料油与再生后的高温催化剂在反应器提升管的下部进入并呈沸腾流化状态(催化剂为固体)接触反应,反应后的催化剂和油气经上部的反应沉降器进行气固分离,反应油气去分馏。
催化剂由斜管回到烧焦罐烧焦。
在烧焦罐中,反应后催化剂自待生斜管进入烧焦罐底部,在压缩空气推动下呈沸腾流化状态进行烧焦,并由主风带入上部再生器进一步烧焦。
再生后的高温催化剂由再生斜管进入提升管式反应器底部流化反应。
在这个反应再生过程中,同时存在着易燃物(反应油气)、助燃物(压缩空气)和烧焦明火三个要素。
所以在实际操作中必须严格控制汽提段流量和二段流量。
另外,如果沉降器顶压过高,不仅会迫使系统停车,甚至可能会使催化剂倒流引发重大事故。
(二)反应再生过程操作异常现象(1)提升管温度大幅度波动,会烧坏设备。
引起温度大幅度波动的原因主要有:流量波动大或原料带水;烧焦罐温度大幅度波动;原料预热温度大幅度波动;两器差压波动;催化剂量波动;再生滑阀控制失灵。
对温度波动要查明原因,有针对性地采取措施。
如对原料进行脱水,稳定进料量和原料预热温度,稳定烧焦温度,调节两器差压。
如仪表失灵改用手动等。
(2)沉降器压力大幅波动。
如果沉降器出现压力大幅度波动,首先要准确判断异常原因,采取对应的处理措施。
如果是原料带水,要立即进行脱水。
进料量波动大时要稳定进料量。
其它原因如汽提蒸汽量及压力波动大,催化剂循环波动量大,以及分馏塔釜液位过高等,都要及时采取对应的调节控制措施。
催化裂化装置工艺流程
催化裂化装置工艺流程
《催化裂化装置工艺流程》
催化裂化装置是石油化工行业中常见的一种重要装置,主要用于将重质石油原料加工成轻质高值产品,如汽油、柴油和航空燃料。
在催化裂化装置中,石油原料通过加热和催化剂的作用,发生分子内部的饱和碳链裂解,生成较轻的烃类产品,并产生丰富的芳烃和液化石油气。
催化裂化装置的工艺流程通常包括以下几个主要步骤:
1. 原料加热:首先,将经过预处理的重质石油原料送入加热炉中进行加热,使其达到裂化反应的最佳温度。
2. 催化裂化:加热后的石油原料进入裂化反应器,与催化剂接触,发生裂化反应。
在裂化过程中,重质烃分子会发生碳链裂解,生成较轻的烃类产品,包括汽油、柴油和液化石油气。
3. 分离和净化:裂化反应产物进入分馏塔,通过精馏、冷却和净化等步骤,将不同碳数的烃类产品进行分离,以得到所需的轻质产品。
4. 再生催化剂:随着反应的进行,催化剂会逐渐失活,需要通过再生来恢复其活性。
再生催化剂的过程包括焙烧和再活化,以保持催化剂的活性和稳定性。
以上便是催化裂化装置的基本工艺流程。
该装置能够将重质石
油原料转化为高附加值的轻质产品,对于提高石油炼制的产出和质量具有重要意义。
同时,催化裂化装置的工艺流程也在不断优化和改进,以适应不断变化的市场需求和环保要求。
催化裂化装置基本原理
催化裂化装置基本原理催化裂化装置是炼油行业中常用的一种重要设备,它主要用于将高分子石油原料分解为低碳烷烃和芳烃。
催化裂化装置的基本原理是通过在高温高压条件下,利用催化剂的作用,将原料分子中的碳-碳键断裂,从而实现分子结构的改变。
催化裂化装置的工作过程主要分为反应和再生两个步骤。
在反应步骤中,高温高压下的原料与催化剂接触,发生裂化反应。
原料分子中的碳-碳键被断裂,生成较小分子量的烃类化合物。
催化剂在反应中起到了关键作用,它能够提供活性位点,使原料分子在其表面发生裂化反应。
同时,催化剂还能够调控反应的速率和选择性,提高产品的质量和产率。
催化裂化反应主要包括裂化、重排和芳构化等过程。
裂化是指将高分子量的原料分子断裂为低分子量的碳氢化合物,产生石脑油、汽油等产品。
重排是指将裂化产物中的碳链重新排列,生成较高辛烷值的汽油。
芳构化是指将裂化产物中的非芳烃转化为芳烃,提高汽油的辛烷值和燃料的质量。
在再生步骤中,用于催化裂化反应的催化剂会逐渐失去活性,需要进行再生以恢复其催化性能。
再生过程主要包括燃烧和脱碳两个步骤。
燃烧是指用空气将催化剂上的碳积物燃烧掉,使催化剂表面重新暴露出活性位点。
脱碳是指用蒸汽或氢气将催化剂上的碳积物脱除,以保证催化剂的活性和稳定性。
催化裂化装置的设计和操作需要考虑多个因素。
首先是选择合适的催化剂,催化剂的选择应根据原料的性质和产品的要求进行优化。
其次是控制反应的温度、压力和空速等工艺参数,以达到最佳的反应效果。
此外,催化裂化装置还需要考虑原料的预处理、氢气的补充和废热的回收利用等问题,以提高装置的效率和经济性。
催化裂化装置在炼油工业中具有重要的地位和广泛的应用。
通过裂化反应,可以将高分子的重质石油原料转化为轻质燃料和化工原料,满足市场对汽油、柴油和石脑油等产品的需求。
同时,催化裂化装置还可以提高石油产品的质量,减少环境污染物的排放,具有良好的经济和环境效益。
催化裂化装置是一种利用催化剂作用进行石油原料分解的重要设备。
催化裂化装置介绍ppt课件
3.常压渣油:常减压装置常压塔底油(AR),硫含量、重 金属、残炭低的可以直接作为催化原料,如大庆和中原 原油等常压渣油。
4.减压渣油:除某些原油外减压塔底渣油(VR)一般不单 独作为原料,而是进行掺炼:掺炼的多少视减压渣油的 性质。
9
典型分馏系统流程
10
催化裂化工艺介绍
稳定系统
吸收-稳定系统主要由吸收塔、再吸收塔、解吸 塔及稳定塔组成。从分馏塔顶油气分离器出来的 富气中带有汽油组分,而粗汽油中溶解有C3、C4 组分。其作用是利用吸收与精馏的方法将分馏塔 顶的富气和粗汽油分离成干气、液化气和蒸气压 合格的稳定汽油。
11
典型稳定系统流程
5
典型催化裂化流程
6
催化裂化工艺介绍
反应再生系统
“ 催化裂化装置有多种类型,按反应器(或沉降器)和再
生器布置的相对位置的不同可分为两大类:①反应器和 再生器分开布置的并列式;②反应器和再生器架叠在一 起的同轴式。并列式又由于反应器(或沉降器)和再生 器位置高低的不同而分为同高并列式和高低并列式两类。
19
催化裂化主要设备-油浆泵
20
催化裂化主要设备-增压机
21
催化裂化主要设备-SIS自保系统
22
催化裂化主要设备-单动滑阀
23
催化裂化主要设备-双动滑阀
24
催化裂化主要设备-油站
25
催化裂化的原料和产品
新海石化加工工艺流程图
26
催化裂化的原料和产品
1.直馏减压馏分油:常减压装置减压塔侧线350-550℃馏分 油(VGO),石蜡基原油的VGO较好,环烷基原油的VGO 较差。
催化裂化装置简介课件
余热回收系统一般采用高温省 煤器、余热锅炉等设备进行热 量回收和利用。
04
CATALOGUE
催化裂化装置的操作与维护
操作规程
启动前检查
确保装置各部件正常,无安全隐患, 准备好所需工具和材料。
启动操作
按照规定的启动顺序和步骤进行操作 ,注意控制温度、压力等参数。
正常操作
保持装置在正常工作状态,监控各项 参数,及时调整。
环保意义
催化裂化过程中产生的焦 炭可以回收利用,减少对 环境的污染。
催化裂化装置的种类与特点
固定床催化裂化装置
适用于处理重质油,但催化剂 磨损较大,操作温度较高。
流化床催化裂化装置
催化剂与原料油接触良好,转 化率高,但操作复杂,催化剂 磨损较大。
移动床催化裂化装置
操作简单,催化剂利用率较高 ,但反应温度较高,需要处理 大量废气。
功能
主要功能是将重质油裂化成轻质油, 提高石油的利用价值,同时为化工行 业提供原料。
ቤተ መጻሕፍቲ ባይዱ
催化裂化装置的重要性
01
02
03
提高石油利用率
通过催化裂化,重质油得 以转化为轻质油,提高了 石油的利用率和经济效益 。
化工原料供应
催化裂化装置产生的裂化 气和焦炭可作为化工行业 的原料,为化工行业的发 展提供支持。
用。
吸取稳定部分
吸取塔
利用不同组分在吸取剂中的溶解度差异,分 离干气和液化石油气。
再吸取塔
对解吸塔顶部的气体进行再吸取,提高液化 石油气的回收率。
解吸塔
释放吸取剂中溶解的烃类组分,回收吸取剂 。
吸取剂循环系统
将吸取剂从再吸取塔输送到吸取塔,并收集 从解吸塔溢出的吸取剂。
催化裂化装置技术手册
催化裂化装置技术手册催化裂化装置是炼油行业中重要的加工设备,其技术手册的编写对于保证装置正常运行和提高生产效率至关重要。
本文将从催化裂化装置的原理、操作指南和维护保养等方面进行详细介绍。
一、催化裂化装置原理催化裂化装置通过将高分子量的石蜡、石油渣和重油等原料在催化剂的作用下进行热裂解,从而得到低分子量的石油产品。
该装置主要由裂化炉、催化剂循环系统、裂化反应器和产品分离装置等组成。
具体操作过程如下:1. 原料进料原料(如石蜡、石油渣和重油)通过进料系统进入裂化炉。
2. 热解反应原料在高温条件下与催化剂接触,发生热裂解反应,生成裂化油气。
3. 分离装置裂化产物通过分离装置进行分离,分离出裂化汽油、裂化液化气和裂化轻石蜡等产品。
4. 催化剂循环裂化后的催化剂通过循环系统回到裂化炉,起到持续催化裂化反应的作用。
二、催化裂化装置操作指南1. 温度控制裂化炉温度是影响裂化反应效果的关键参数。
在操作中,应根据不同原料的特性和所需产品质量,合理控制催化裂化温度,避免温度过高导致催化剂失活或温度过低影响反应速率。
2. 原料选择不同原料的性质对裂化反应的影响有所差异。
应根据目标产品质量和市场需求,合理选择原料,并进行合适的预处理,如脱蜡、脱硫等,以提高裂化效果和产品品质。
3. 催化剂活性管理催化剂是催化裂化装置中最关键的组成部分。
为保证装置的正常运行,应定期检测催化剂的活性,并进行必要的处理,如焙烧、再生等,以延长催化剂的使用寿命。
4. 安全操作在操作催化裂化装置时,应严格遵守操作规程,保证操作人员的人身安全和设备的正常运行。
同时,应加强对催化裂化装置的检测和维护,及时发现和处理潜在的安全隐患。
三、催化裂化装置维护保养1. 清洗与清理定期对催化裂化装置进行清洗和清理,去除附着物、沉积物和焦炭,以保证装置的畅通和正常运行。
2. 检修和更换定期进行设备的检修和更换,如检修泵、阀门等关键设备,更换老化和磨损的零部件,以确保催化裂化装置的长期稳定运行。
催化裂化装置流程简介
催化裂化装置流程简介一、反应、再生部分1、进料系统装置原料油罐设置有冷蜡油罐、热蜡油罐。
罐区来的冷蜡油(90℃)及和自芳烃返回的回炼油抽余油(210℃)进容302/1(冷蜡油罐),由常减压来的常四线,减压一、二、三线混合的直馏蜡油(190℃)进容302/2(热蜡油罐)。
容302/1抽出冷蜡油在P308/1,2入口与罐区来的减压渣油混合经P308/1,2升压,去顶循-原料油换热器、一中-原料油换热器与顶循、一中换热后与焦化蜡油(自罐区来,经过轻柴油-焦化蜡油换热器换热)混合,该混合油再依次通过开工加热器(E300/A,B)与中压蒸汽换热(开工时使用),原料油加热器(E300/C,D)与油浆换热,再与容302/2来经P305/1,2升压的热蜡油和P307/1,2来回炼油混和共同经静态混合器后(170-200℃)进入提升管第一反应区的原料喷嘴。
油浆(350℃)回炼自油浆泵直接进提升管反应器上层专用喷嘴进入提升管。
2、反应部分高温再生催化剂(690℃)经再生滑阀进入提升管下部,在提升管预提升段经过预提升后同混合原料油接触,原料油快速气化,先在第一反应区发生催化反应。
然后用急冷汽油冷却后进入(510-515℃)第二反应区,汇合来自沉降器的待生催化剂(490℃),在此发生氢转移反应和异构化反应,反应后的油气和催化剂经提升管出口粗旋、沉降器顶旋分离后,油气(500℃)从沉降器顶部送往分馏塔。
自粗旋分离回收的催化剂进入粗旋溢流斗,一部分经提升管循环塞阀返回提升管第二反应区,其余和顶旋分离器分离回收下来的催化剂,进入沉降器下部的汽提段。
用蒸汽汽提催化剂上油气。
3、再生系统汽提后的待生催化剂经待生斜管、待生塞阀,进入塞阀套筒,经从增压机来的增压风提升至再生器催化剂分配器进入再生器与主风机(M501)来主风进行逆流烧焦。
再生后的催化剂进入提升管反应器循环。
再生器烧焦产生的过剩热量由气控式外取热器和内取热取走,在外取热中,热催化剂从再生器自流到外取热器,与取热器接触并被冷却后,返回再生器。
催化裂化的装置简介及工艺流程
催化裂化(de)装置简介及工艺流程概述催化裂化技术(de)发展密切依赖于催化剂(de)发展.有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂(de)出现,才发展了提升管催化裂化.选用适宜(de)催化剂对于催化裂化过程(de)产品产率、产品质量以及经济效益具有重大影响.催化裂化装置通常由三大部分组成,即反应/再生系统、分馏系统和吸收稳定系统.其中反应––再生系统是全装置(de)核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下:(一)反应––再生系统新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370℃左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器(de)高温(约650℃~700℃)催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒(de)高线速通过提升管,经快速分离器分离后,大部分催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带(de)催化剂后进入分馏系统.积有焦炭(de)待生催化剂由沉降器进入其下面(de)汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上(de)少量油气.待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部(de)空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高(de)床层温度(密相段温度约650℃~680℃).再生器维持~(表)(de)顶部压力,床层线速约米/秒~米/秒.再生后(de)催化剂经淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用.烧焦产生(de)再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带(de)大部分催化剂,烟气经集气室和双动滑阀排入烟囱.再生烟气温度很高而且含有约5%~10%CO,为了利用其热量,不少装置设有CO锅炉,利用再生烟气产生水蒸汽.对于操作压力较高(de)装置,常设有烟气能量回收系统,利用再生烟气(de)热能和压力作功,驱动主风机以节约电能.(二)分馏系统分馏系统(de)作用是将反应/再生系统(de)产物进行分离,得到部分产品和半成品.由反应/再生系统来(de)高温油气进入催化分馏塔下部,经装有挡板(de)脱过热段脱热后进入分馏段,经分馏后得到富气、粗汽油、轻柴油、重柴油、回炼油和油浆.富气和粗汽油去吸收稳定系统;轻、重柴油经汽提、换热或冷却后出装置,回炼油返回反应––再生系统进行回炼.油浆(de)一部分送反应再生系统回炼,另一部分经换热后循环回分馏塔.为了取走分馏塔(de)过剩热量以使塔内气、液相负荷分布均匀,在塔(de)不同位置分别设有4个循环回流:顶循环回流,一中段回流、二中段回流和油浆循环回流.催化裂化分馏塔底部(de)脱过热段装有约十块人字形挡板.由于进料是460℃以上(de)带有催化剂粉末(de)过热油气,因此必须先把油气冷却到饱和状态并洗下夹带(de)粉尘以便进行分馏和避免堵塞塔盘.因此由塔底抽出(de)油浆经冷却后返回人字形挡板(de)上方与由塔底上来(de)油气逆流接触,一方面使油气冷却至饱和状态,另一方面也洗下油气夹带(de)粉尘.(三)吸收--稳定系统从分馏塔顶油气分离器出来(de)富气中带有汽油组分,而粗汽油中则溶解有C3、C4甚至C2组分.吸收––稳定系统(de)作用就是利用吸收和精馏(de)方法将富气和粗汽油分离成干气(≤C2)、液化气(C3、C4)和蒸汽压合格(de)稳定汽油.装置简介(一)装置发展及其类型1.装置发展催化裂化工艺产生于20世纪40年代,是炼油厂提高原油加工深度(de)一种重油轻质化(de)工艺.20世纪50年代初由ESSO公司(美国)推出了Ⅳ型流出催化装置,使用微球催化剂(平均粒径为60—70tan),从而使催化裂化工艺得到极大发展.1958年我国第一套移动床催化裂化装置在兰州炼油厂投产.1965年我国自己设计制造施工(de)Ⅳ型催化装置在抚顺石油二厂投产.经过近40年(de)发展,催化裂化已成为炼油厂最重要(de)加工装置.截止1999年底,我国催化裂化加工能力达8809.5×104t/a,占一次原油加工能力(de)33.5%,是加工比例最高(de)一种装置,装置规模由(34—60)×104t /a发展到国内最大300×104t/a,国外为675×104t/a.随着催化剂和催化裂化工艺(de)发展,其加工原料由重质化、劣质化发展至目前全减压渣油催化裂化.根据目(de)产品(de)不同,有追求最大气体收率(de)催化裂解装置(DCC),有追求最大液化气收率(de)最大量高辛烷值汽油(de)MGG工艺等,为了适应以上(de)发展,相应推出了二段再生、富氧再生等工艺,从而使催化裂化装置向着工艺技术先进、经济效益更好(de)方向发展.2.装置(de)主要类型催化裂化装置(de)核心部分为反应—再生单元.反应部分有床层反应和提升管反应两种,随着催化剂(de)发展,目前提升管反应已取代了床层反应.再生部分可分为完全再生和不完全再生,一段再生和二段再生(完全再生即指再生烟气中CO含量为10—6级).从反应与再生设备(de)平面布置来讲又可分为高低并列式和同轴式,典型(de)反应—再生单元见图2—4、图2—5、图2—6、图2—7,其特点见表2—11.(二)装置单元组成与工艺流程1.组成单元催化裂化装置(de)基本组成单元为:反应—再生单元,能量回收单元,分馏单元,吸收稳定单元.作为扩充部分有:干气、液化气脱硫单元,汽油、液化气脱硫醇单元等.各单元作用介绍如下.(1)反应—再生单元重质原料在提升管中与再生后(de)热催化剂接触反应后进入沉降器(反应器),油气与催化剂经旋风分离器与催化剂分离,反应生成(de)气体、汽油、液化气、柴油等馏分与未反应(de)组分一起离开沉降器进入分馏单元.反应后(de)附有焦炭(de)待生催化剂进入再生器用空气烧焦,催化剂恢复活性后再进入提升管参加反应,形成循环,再生器顶部烟气进入能量回收单元.(2)三机单元所谓三机系指主风机、气压机和增压机.如果将反一再单元作为装置(de)核心部分,那么主风机就是催化裂化装置(de)心脏,其作用是将空气送人再生器,使催化剂在再生器中烧焦,将待生催化剂再生,恢复活性以保证催化反应(de)继续进行.增压机是将主风机出口(de)空气提压后作为催化剂输送(de)动力风、流化风、提升风,以保持反—再系统催化剂(de)正常循环.气压机(de)作用是将分馏单元(de)气体压缩升压后送人吸收稳定单元,同时通过调节气压机转数也可达到控制沉降器顶部压力(de)目(de),这是保证反应再生系统压力平衡(de)一个手段.(3)能量回收单元利用再生器出口烟气(de)热能和压力使余热锅炉产生蒸汽和烟气轮机作功、发电等,此举可大大降低装置能耗,目前现有(de)重油催化裂化装置有无此回收系统,其能耗可相差1/3左右.(4)分馏单元沉降器出来(de)反应油气经换热后进入分馏塔,根据各物料(de)沸点差,从上至下分离为富气(至气压机)、粗汽油、柴油、回炼油和油浆.该单元(de)操作对全装置(de)安全影响较大,一头一尾(de)操作尤为重要,即分馏塔顶压力、塔底液面(de)平稳是装置安全生产(de)有力保证,保证气压机人口放火炬和油浆出装置系统(de)通畅,是安全生产(de)必备条件. (5)吸收稳定单元经过气压机压缩升压后(de)气体和来自分馏单元(de)粗汽油,经过吸收稳定部分,分割为干气、液化气和稳定汽油.此单元是本装置甲类危险物质最集中(de)地方.(6)产品精制单元包括干气、液化气脱硫和汽油液化气脱硫醇单元该两部分,干气、液化气在胺液(乙醇胺、二乙醇胺、Ⅳ—甲基二乙醇胺等)作用下、吸收干气、液化气中(de)H2S气体以达到脱除H2S(de)目(de).汽油和液化气在碱液状态中在磺化酞氰钴或聚酞氰钻作用下将硫醇氧化为二硫化物,以达到脱除硫醇(de)目(de).2.工艺流程工艺原则流程见图2—8.原料油由罐区或其他装置(常减压、润滑油装置)送来,进入原料油罐,由原料泵抽出,换热至200—300°C左右,分馏塔来(de)回炼油和油浆一起进入提升管(de)下部,与由再生器再生斜管来(de)650~700°C再生催化剂接触反应,然后经提升管上部进入分馏塔(下部);反应完(de)待生催化剂进入沉降器下部汽提段.被汽提蒸汽除去油气(de)待生剂通过待生斜管进入再生器下部烧焦罐.由主风机来(de)空气送人烧焦罐烧焦,并同待生剂一道进入再生器继续烧焦,烧焦再生后(de)再生催化剂由再生斜管进人提升管下部循环使用.烟气经一、二、三级旋分器分离出催化剂后,其温度在650~700°C,压力0.2-0.3MPa(表),进人烟气轮机作功带动主风机,其后温度为500—550°C,压力为0.01MPa(表)左右,再进入废热锅炉发生蒸汽,发汽后(de)烟气(温度大约为200℃左右)通过烟囱排到大气.反应油气进入分馏塔后,首先脱过热,塔底油浆(油浆中含有2%左右催化剂)分两路,一路至反应器提升管,另一路经换热器冷却后出装置.脱过热后油气上升,在分馏塔内自上而下分离出富气、粗汽油、轻柴油、回炼油.回炼油去提升管再反应,轻柴油经换热器冷却后出装置,富气经气压机压缩后与粗汽油共进吸收塔,吸收塔顶(de)贫气进入再吸收塔由轻柴油吸收其中(de)C4-C5,再吸收塔顶干气进入干气脱硫塔脱硫后作为产品出装置,吸收塔底富吸收油进入脱吸塔以脱除其中(de)C2.塔底脱乙烷汽油进入稳定塔,稳定塔底油经碱洗后进入脱硫醇单元脱硫醇后出装置,稳定塔顶液化气进入脱硫塔脱除H,S,再进入脱硫醇单元脱硫醇后出装置.(脱硫脱硫醇未画出)(三)化学反应过程1.催化裂化反应(de)特点催化裂化反应是在催化剂表面上进行(de),其反应过程(de)7个步骤如下:①气态原料分子从主流扩散到催化剂表面;②原料分子沿催化剂外向内扩散;③原料分子被催化剂活性中心吸附;④原料分子发生化学反应;⑤产品分子从催化剂内表面脱附;⑥产品分子由催化剂外向外扩散;⑦产品分子扩散到主流中.重质原料反应生成目(de)产品可用下图表示:2.催化裂化反应种类石油馏分是由十分复杂(de)烃类和非烃类组成,其反应过程十分复杂,种类繁多,大致分为几个类型.(1)裂化反应是主要(de)反应.即C—C键断裂,大分子变为小分子(de)反应.(2)异构化反应是重要(de)反应.即化合物(de)相对分子量不变,烃类分子结构和空间位置变化,所以催化裂化产物中会有较多异构烃.(3)氢转移反应是一个烃分子上(de)氢脱下来加到另一个烯烃分子上,使其烯烃饱和,该反应是催化裂化特有(de)反应.虽然氢转移反应会使产品安定性变好,但是大分子(de)烃类反应脱氢将生成焦炭.(4)芳构化反应烷烃、烯烃环化生成环烷烃和环烯烃,然后进一步氢转移反应生成芳烃,由于芳构化反应使汽油、柴油中芳烃较多.除以上反应外,还有甲基转移反应、叠合反应和烷基化反应等.(四)主要操作条件及工艺技术特点1.主要操作条件因不同(de)工艺操作条件不尽相同,表2—12列出一般一段再生催化裂化(de)主要操作条件.2.工艺技术特点(1)微球催化剂(de)气—固流态化催化裂化确切一点应该叫作流化催化裂化.微球催化剂(60—70/1m 粒径)在不同气相线速下呈现不同状态,可分为固定床(即催化剂不动)、流化床(即催化剂只在一定(de)空间运动)和输送床(即催化剂与气相介质一同运动而离开原来(de)空间)三种.过程是流化床,所以微球催化剂(de)气—固流态化是催化裂化工艺得以发展(de)基础,从而使反应—再生能在不同(de)条件下得以实现.(2)催化裂化(de)化学反应最主要(de)反应是大分子烃类裂化为小分子烃类(de)化学反应,从而使原油中大于300℃馏分(de)烃类生成小分子烃类、气体、液化气、汽油、柴油等,极大地增加了炼油厂(de)轻质油收率,并能副产气体和液化气.(五)催化剂及助剂1.催化剂烃类裂化反应,应用热裂化工艺也能完成,但是有了催化剂(de)参加,其化学反应方式不同,所以导致二类工艺(de)产品性质和产品分布都不同.目前催化裂化所使用(de)催化剂都是分子筛微球催化剂,根据不同产品要求可制造出各种型号(de)催化剂.但其使用性能要求是共同(de),即高活性和选择性,良好(de)水热稳定性,抗硫、氮、重金属(de)中毒;好(de)强度,易再生,流化性能好等.目前常见(de)有重油催化裂化催化剂、生产高辛烷值汽油催化剂、最大轻质油收率催化剂、增加液化气收率催化剂和催化裂解催化剂等.由于催化裂化原料(de)重质化,使重油催化剂发展十分迅速,目前国内全渣油型催化剂性能见表2—13.2.催化裂化助剂为了补充催化剂(de)其他性能,近年来发展了多种起辅助作用(de)助催化剂,这些助剂均以剂(de)方式,加到裂化催化剂中起到除催化裂化过程外(de)其他作用.如促进再生烟气中CO转化为C02,提高汽油辛烷值,钝化原料中重金属对催化剂活性毒性,降低烟气中(de)SOx(de)含量等各类助剂,它们绝大多数也是制造成与裂化催化剂一样(de)微球分别加入再生器内,但占总剂量很少,一般在1%—3%,所以每天添加量只有10-1000kS/d左右.CO助燃剂为SiO2—Al2O3细粉上载有活性金属铂制成.辛烷值助剂大多是含有15%-20%ZSM—5分子筛(de)Si—Al微球剂.而金属钝化剂为液态型含锑(de)化合物,将其注入原料油中,使其分解(de)金属锑沉积在催化剂上以钝化Ni(de)活性.(六)原料及产品性质1.催化裂化原材料各类催化裂化所使用(de)原材料不尽相同,现将一般所使用(de)原材料主要性质汇总,见表2—14.2.产品性质产品性质见表2-15。
催 化 裂 化 装 置
催化裂化装置
• • • • • • • • • • • • • • • • • • • • • • • • • • • • Ⅱ催化装置暂行工艺指标
1、反应、再生系统: 沉降器顶部压力:0.105±0.005MPa 再生器顶部压力:0.130±0.005MPa 反应沉降器蔵量:70±1%表刻度 再生器蔵量:75±5%表刻度 提升管出口温度:500±2℃ 轻汽油回炼提升管出口温度:520±1℃ 轻汽油回炼量≮1t/h(以烯烃合格为准) 再生器床层温度:690±5℃ 外取热汽包液位:50%表刻度 余锅液位:50%表刻度 汽包软化水碱度20±2 余锅软化水碱度14±2 再生剂定碳:≯0.2%(m) 原料预热温度:175±5℃ 2、分馏系统: 分馏塔顶温度:95±2℃ 柴油馏出温度: 0#方案 170±5℃(以产品质量合格为准) 人字挡板上:340±5℃ 分馏塔底温度:340±5℃ 分馏塔底液位:50%表刻度 粗汽油罐液位: 50%表刻度 粗汽油罐介面:50%表刻度 轻汽油罐液位:35%表刻度 轻汽油罐脱水介面:50%表刻度 顶循罐脱水介面:50%表刻度 柴油汽提塔液位:50%表刻度
催化裂化装置
• • 柴油部分 柴油从分馏塔第十九层塔板自流到柴油汽提塔, 经过热蒸汽汽提后,气体返回分馏塔第十九层 气相上,液相用柴油泵抽出,经过软化水换热 器和冷却器冷却后进入柴油集合管,一路去封 油罐作燃烧油,一路补充中段循环回流返到分 馏塔第十八层上,一路去废品罐,一路经调节 阀,质量流量计出装置,去FS法柴油精制系统, 使氧化沉渣和色度合格,之后去成品班产罐。
催化裂化装置
• • • • • • • • • • • • • • • 2、分馏系统: 分馏塔顶温度:88±2℃ 柴油馏出温度: -15#方案 155±2℃ 人字挡板上: 335-355℃ 分馏塔底温度:347±2℃ 分馏塔底液位:50%表刻度 粗汽油罐液位:50%表刻度 粗汽油罐介面:50%表刻度 轻汽油罐液位:30%表刻度 轻汽油罐脱水介面:50%表刻度 顶循罐脱水介面:50%表刻度 柴油汽提塔液位:50%表刻度 柴油出装置温度:≯65℃ 汽油出装置温度: ≯40℃ 外甩油浆温度:≯95℃
催化裂化装置产品说明
催化裂化装置产品说明一、装置产品分布催化装置主要产品有干气、液态烃、轻燃油、混合芳烃、船燃油、重芳烃、油浆。
具体见表2-1。
表2-1装置产品分布重油提升管芳烃提升管装置总物料平衡wt%kg/h Wt%kg/h kg/h wt%万吨/年干气 3 3750 3.53 1809.135559 4.45 4.45液化石油气18 225017.9 9173.753167425.34 25.34轻燃油41 51250 69.2 35465.003546528.37 28.37船燃油15 18750 7.2 3690.0224417.95 17.95重质船燃油7 8750 0 0.00 8750 7.00 7.00 油浆 6 7500 0 0.00 7500 6.00 6.00焦碳9.5 11875 2.17 1112.131298710.39 10.39损失0.5 625 0 0.00 625 0.50 0.50合计100 125000 100 51250 125000100.0 100气分单元主要产品有丙烯、碳四液化气、乙烷、丙烷。
具体如下:丙烯1.精丙烯纯度≥99.65% (v)2.精丙烯组成(设计值)组份名称流量kg/h 组成w%流量kmol/h组成mol%C3H838 0.35 0.91 0.35C3H610916 99.65 259.37 99.65合计10954 100 260.28 1003.分子量42.094.分子式H H H│││H-C-C=C-H│H5.物化性质相对密度 0.554(0℃液体)1.46(0℃气体)溶点 -185.2℃沸点 -47.7℃闪点 -108℃爆炸极限 2.0 ~11.1%(体积)自燃点 497℃丙烯的常态是无色气体,略带甜味,溶于乙醇和乙醚,微溶于水,化学性质活泼,与空气形成爆炸性混合物。
丙烯属低毒类,有麻醉作用,其特点是麻醉作用的产生和消失迅速,中毒症状主要表现为头昏,乏力甚至意识丧失。
催化裂化装置介绍
被冷却到40℃然后进入油气水分离器(容201),未冷凝 的气体(富气)到气压机入口,冷却的粗汽油用泵203或 泵204送往一级吸收塔(塔301/1)第25层。粗汽油一 般不作冷回流。 2、顶循环回流 自25层塔盘集油箱用泵205抽出,先经换201与原料油换 热,再经冷202西组加热来自75吨锅炉的软化水,后经东 组冷却,冷却温度由塔顶操作温度来调节,然后回到第28 层塔盘。
催化裂化催化剂
--催化剂的形貌
催化裂化催化剂
FEI Quanta 200 FEG (用于结构研究的通用高分辩率环境扫描电子显微镜) 照片
SC-22 SEM图
SC-22 SEM图(局部放大)
四、原料油情况介绍
原料油情况介绍
一催化装置原料油主要为常压四 线和减压1、2、3线的馏分油,还 有焦化蜡油、焦化汽油,掺炼部分 含酸油(酸值≯2.0mgKOH/g,含 硫≯ 2%)。
五、催化裂化产品特点
催化裂化产品特点
主要产品:汽油、柴油、液化石油气(LPG)、 瓦斯、油浆。
汽油:占商品汽油的80%,辛烷值高,一 催化RON约为90,烯烃高,硫含量较高。 随原料硫含量的变化而变化。
柴油:占商品柴油的30%,十六烷值低, 硫含量较高,芳烃含量高,需加氢处理。
催化裂化产品特点
催化裂化装置介绍
一、车间简介
一、车间简介
炼油分部联合五车间成立于2001年11月, 管辖一催化装置、二催化装置、干气提浓乙烯和 油品精制(洗涤)联合装置,是炼油主要二次加 工单位之一。其中一催化装置、二催化装置是中 石化集团公司A类达标装置,是重油轻质化的骨 干装置。车间现有职工206人,高级工程师5人, 中级职称9人,高级操作师1人,高级技师9人,技 师3人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
催化裂化装置简介
一、本装置为中国石油天然气华东勘察设计研究院上海分院设计,装置设计原料加工能力为100万吨/年,最大加工能力为120万吨/年。
装置于2006年11月动工,2008年7月中交,2008年9月份投料试车,于2010年3月进行120万吨/年催化裂解制烯烃增产芳烃扩能改造。
装置原料油以重质燃料油和轻裂解料为主,以碳九和石脑油为辅。
装置的主产品为轻燃油、混合芳烃、船燃油、丙烯、液化气,副产品为油浆、干气。
催化主装置主要划分为六个单元,见表1-1。
表 1-1 装置单元
序号单元名称
1 反应、再生、烟气能量回收单元
2 分馏单元、电脱盐单元
3 吸收稳定单元
4 产品精制、碱渣处理、烟气中和单元
5 气分单元
6 余热锅炉和开工锅炉单元
催化裂解制烯烃增产芳烃装置所产液化气经产品精制脱硫、脱硫醇后作为气分单元原料。
利用各组份之间相对挥发度的不同而将各组份分开获得高纯度精丙烯的精馏过程,
同时向MTBE装置提供碳四馏份原料。
本装置具有以下特点:
1.催化裂化装置采用京润石化工程有限公司的SFCC—Ⅲ专利技术和气控内循环外取热器,嫁接催化裂解技术、芳构化技术、MIP技术,开发出催化裂解制烯烃增产芳烃工业技术,生产富含丙烯的液化气、混合芳烃和重芳烃,生产船燃油和少量油浆,同时并尽量降低干气和焦炭的收率。
反再部分采用国内成熟的双提升管同轴式单沉降器再生催化裂化技术。
两个提升管均能实现高剂油比、短反应时间、高产品收率的目的;催化剂再生部分采用逆流再生技术,达到催化剂定碳<0.1%(wt)的目标。
2.采用钝化剂注入系统,以抑制催化剂上重金属的脱氢反应和生焦。
3.采用气控串联式外取热器,具有取热范围大、调节灵活、耗风量小等特点。
4.分馏单元有重油和芳烃两个分馏塔,重油分馏塔顶粗轻燃油直接进芳烃提升管反应器,芳烃分馏塔的粗芳烃送吸收稳定系统,互不接触,有利于降低油品的烯烃含量和硫含量;两个分馏塔均采用循环回流和低温热水回收系统回收过剩热量,更好地利用热量和维持全塔能量平衡,降低装置能耗。
5.采用国内首创的RPT原料预处理(原料脱盐和预分离
技术),以降低催化剂单耗。
6.吸收稳定部分的“吸收”和“脱吸”两个过程分别在两个塔内进行,避免相互干扰,使干气、液化气的产品质量得到保证。
7.提升管进料采用多段进料技术,提升管出口采用CAS 直联技术,可有效降低装置反应器结焦。
8.产品精制采用国内成熟可靠的技术,轻燃油精制部分采用预碱洗脱硫和固定床无碱脱臭Ⅱ型技术,液化气精制部分采用湿法脱硫、常规催化剂碱液脱臭技术,保证各类产品质量合格。
9.气分单元利用催化装置供给的大量低温热水作热源,从而大大减少蒸汽的消耗。
10.气分单元采用成熟的三塔工艺流程,工艺流程简单、投资省、占地少。
该工艺应用广泛,成熟可靠。
11.气分单元原料进塔前先与脱丙烷塔底碳四馏分换热,再由热水加热至泡点后进塔,充分利用能量,降低能耗。
12.装置的控制系统采用美国EMERSON公司DeltaV的DCS集散控制系统,实现全方位的监控、监测和现代化的管理,提高装置的可靠性,提高产品收率和质量。
二、催化裂化装置包括RPT原料预处理单元、反应一再
生单元、分馏和吸收稳定(含气压机) 单元、产品精制—碱渣处理—烟气中和单元、气分单元、主风机—烟机单元、余热锅炉单元和余热回收站、开工蒸汽锅炉单元等。
(一)、催化裂化装置主要指标
1.液化气产率≥25%(wt)
2.轻燃油:辛烷值(RONC)≥93,烯烃≤35%(v)。
3.再生催化剂定碳<0.1%(wt)
4.装置能耗<75kg标油/t原料。
5.丙烯(纯度≥99.65vol%)
6.丙烷(纯度≥92vol%
(二)、催化裂化装置主要工艺技术方案
针对原料性质和多产丙烯芳烃生产方案要求,采用SFCC双提升管双反应多产丙烯芳烃专利工艺技术,采用芳构化择型催化和MIP反应技术。
利用富含烯烃的重油裂解轻组分催化生产芳烃并联产丙烯是一种的新型组合工艺,该工艺在合适的工艺条件下通过催化剂裂解反应和芳构化反应,生产芳烃和丙烯。
其工艺特点为:
⑴以混合料为原料,在第一反应器内较高的反应温度、较深的反应深度,较低的油气分压,较高的剂油比,并在添加了择型分子筛的专用催化剂的作用下进行催化裂化反应和芳构化反应、异构化反应、歧化反应,生产较多的丙烯及
轻质芳烃。
⑵在第二反应器内,第一反应反应生成的轻组分在芳构化催化剂HZSM-5作用下,利用第一提升反应段和MIP反应段分别发生歧化反应、异构化反应、芳构化反应,进一步生产出混合芳烃和重芳烃,同时利用循环反应大剂油比和反应时间,进一步增产丙烯和芳烃。
⑶重油反应系统和芳烃反应系统分列。
重油反应系统包括重油提升管反应器、沉降器和分馏系统;轻油芳构化反应系统包括提升管反应器、MIP反应器、循环反应器、沉降器和芳烃分馏塔。
重油提升管生成的轻燃油在分馏塔馏出后送至轻油芳构化提升管反应器系统回炼。
两个系统串并联操作。
⑷再生催化剂降温,提高剂油比,降低干气产率。
⑸采用两台并联的串联式外取热器。
采用两台并联的串联式外取热器专利技术。
该取热器通过调节流化风量来达到调节取热量、控制再生温度的目的,具有结构简单、操作方便、调节灵活、运行可靠等特点。
外取热器取热管采用专利
技术的肋片管,具有传热系数高、设备结构紧凑、抗事故能力强(取热管断水不易破裂漏水)等优点。
外取热水系统采用自然循环方式,节省动力,运行可靠。
⑹采用兰化选择型催化裂解催化剂和ZSM-5选择型芳构化催化剂,并添加原位晶化和丙烯助剂最新技术。
⑺采用711所余热锅炉回收技术,降低装置能耗。
⑻采用嘉利特公司双壳体高温耐磨泵,提高装置安全性、可靠性。
⑼.灵活的工艺条件和操作方式。
可通过调整工艺操作条件灵活地实现生产各种产品方案的转化。
(三)、复合分子筛催化剂及多种助剂
为满足本装置多产液化气及芳烃的要求,设计考虑采用生产芳烃、多产液化气、重油裂化能力强的复合型分子筛催化剂,推荐采用丙烯增产催化助剂。
从稳定操作、保证装置长周期运转及环境保护角度出发,设计中考虑添加CO助燃剂、油浆阻垢剂等助剂。
其中CO助燃剂为实现完全再生提供了可靠的保证;油浆阻垢剂的应用对于避免或减轻油浆系统的结垢十分有效,为油浆系统长期高效运转创造了有利条件。
(四)、同轴式反应一再生器
本设计采用同轴式两器布置方案。
以减少设备投资、减少占地。
同时该类型装置具有工艺成熟、技术先进、操作简单、抗事故能力强、能耗低等特点。
(五)、再生工艺技术
该技术由以下几种单体技术组成:
1.采取加CO助燃剂的完全再生方案,可使再生催化剂含碳明显降低,再生剂定碳<0.1%(wt)。
2.采用较低的再生温度。
较低的再生温度有利于提高剂油比并保护催化剂活性,为反应进料提供更多的催化剂活性中心。
3.采用逆流再生。
通过加高待生套筒使待生催化剂进入密相床上部,并良好分配,然后向下流动与主风形成气固逆流接触,有利于提高总的烧焦强度并减轻催化剂的水热失活。
4.采用待生催化剂分配技术。
在待生套筒出口配置特殊设计的待生催化剂分配器,使待生剂均匀分布于再生密相床上部,为单段逆流高效再生提供基本的保证。
5.采用高床层再生。
设置较高的密相床层,不仅可提高气固相单程接触时间,而且有利于CO在密相床中燃烧,还可以提高催化剂输送的推动力。
6.采用改进的主风分布管。
主风分布的好坏直接影响再生器的流化质量,从而影响烧焦效果。
单段再生的再生器直径较大,为改善流化质量,采用改进的主风分布管满足长周期运行的要求。
(六)、反应工艺技术
吸收国内外同类生产装置积累的经验,并结合本装置具体特点,为进一步改善产品分布,提高丙烯和轻燃油产率、降低干气及焦碳产率。
在提升管反应系统设计中采用了以下技术:
1.芳烃反应部分采用SFCC反应提升管技术,芳烃提升管中部设催化剂分配器,利用芳烃提升管待生催化剂相对较低的温度和相对较高的剩余活性,分别返回重油提升管、芳烃提升管下部与再生催化剂混合,达到降低重油提升管、芳烃提升管的起始温度,实现大剂油比、油剂低温接触的条件,降低干气产率,生产较多的丙烯及高辛烷值轻燃油。
芳烃提升管出口和重油提升管出口共用一个反应沉降器,通过独立的气固分离设施,分别进入不同的分馏系统。
2.采用高效雾化喷嘴并采用较高的原料油预热温度(220℃),以降低原料进喷嘴的粘度,确保原料的雾化效果及油剂接触效果。
3.设置预提升器。
催化剂在与油滴接触前,以接近活塞流的形式向上运动,为催化剂和油滴均匀接触创造条件。
提。