FANUC_i系列主轴伺服驱动系统故障诊断与维修

FANUC_i系列主轴伺服驱动系统故障诊断与维修
FANUC_i系列主轴伺服驱动系统故障诊断与维修

中图分类号:TM38314+2 文献标识码:A 文章编号:100126848(2006)0620074203

FANUC αi

系列主轴伺服驱动系统故障诊断与维修

宋文学1,黄万长2,王玉琨2

(1.西安航空技术高等专科学校,西安 710077; 2.陕西法士特齿轮有限责任公司,西安 710077;

3.西安微电机研究所,西安 710077)

摘 要:通过对FANUC αi 系列主轴驱动系统的原理和特点的分析,结合主轴驱动系统维修中的具体实例,分析了产生故障的原因、诊断思路、维修方法及维修注意事项。关键词:FANUC ;数控系统;伺服电动机;故障诊断;维修

F ault Diagnose and Maintain of FANUC

αi Series Axis Servo and Drive System SON G Wen 2xue 1,HUAN G Wan 2chang 2,WAN G Yu 2kun 3

(1.Xi πan Aero Technical College ; 2.Shaanxi Fashite Gear Co.,Lt d.;

3.Xi πan Micromotor Research Instit ute ,Xi πan 710077,China )

ABSTRACT :Analyzed t he p rincipal and character of FANUC αi series Axis Servo and Drive Sys 2tem ,t he paper set some fault of principal axis cont rol apparat us of numerical cont rol system

“FANUC αi ”as examples for reference ,analyzed materially fault reason ,Diagnosis ,maintaining met hod and disposal course.

KE Y WOR DS :FANUC ;NC system ;Servo motor ;Fault diagno se ;Maintain

收稿日期:2006207221

0 引 言

数控机床是一种综合运用了计算机技术、自动控制技术、精密测量技术和机床设计技术等先进技术的典型机电一体化产品,其控制系统复杂,在运行中可能会产生各种各样的故障。通过科学的方法、行之有效的措施,迅速判别故障产生的原因,随时解决出现的问题,是保证数控机床安全,可靠运行,提高设备利用率的关键所在,也是当前数控机床使用过程中亟待解决的问题之一。数控机床的故障,既有主机故障,如机械、润滑、冷却、排屑、液压、气动与防护等部分的故障,也有电气控制故障,如CNC 、PL C 、MDI/CR T 、伺服驱动单元、输入/输出单元的故障,控制系统主回路或高压大功率回路中的继电器、接触器、开关、熔断器、电源变压器、电动机、电磁铁、行程开关等电气元件及其组成的控制电路的故障。笔者结合工作

实践,介绍了FANUC αi 系列主轴伺服驱动系统的故障诊断与维修的几个案例。

1 FANU C αi 系列主轴伺服驱动系统

的原理及特点

FANUC αi 系列主轴伺服驱动系统控制电路如

图1所示。该驱动系统为电流、速度、位置三环闭环控制,使用最新的智能型功率控制器件(IPM ),放大器体积小,采用能量再生控制,节省能源。电动机采用永磁交流同步伺服电机,具有高速、大功率、响应快、速度稳,高速主轴定向及可高速高精度刚性攻丝等特点和功能。电网提供的220V 恒压恒频(CVCF )交流电经变换器(PSM )转换为恒压直流电,再经过逆变器(SPM )转换为变压变频(VVV F )交流电,对主轴电动机实现无级调速。主轴伺服单元根据数控系统的指令及编码器返回的速度检测反馈信号,采用正弦波脉宽调制(PWM )方法调整主轴电机的转速和电压。

2 几个维修案例

211 驱动系统出现交流伺服电机过热报警的故障

维修

21111故障现象

47—微电机 2006年 第39卷 第6期(总第153期)

XH756B/1加工中心,主轴电机为FUNUCα18/7000i永磁交流同步伺服电机,在加工过程中出现9001#报警,电机过热,电机温度由22℃急剧上升到120℃。诊断号D GN408

图1 FUNUCα18/7000i主轴伺服单元控制原理图

显示电机温度120℃,温升太快且不正常。

21112分析判定

根据对主轴驱动系统原理的分析以及维修经

验,电机过热的原因,可能由以下原因引起:

1)电动机过载;

2)电动机冷却系统污染,影响散热;

3)电动机内部故障;

4)温度检测不良或连接故障;

21113维修过程

为了判定是否为机械负载的原因,将主轴与伺

服电机脱离,空载试电机,在MDI方式下输入

M03S300,然后执行。出现9021#报警,原因是

主轴位置编码器通过齿轮与主轴相连,主轴脱离,

编码器就没有了。此时必须采取修改参数的方法,

5

7

FANUCαi系列主轴伺服驱动系统故障诊断与维修 宋文学 黄万长 王玉琨

将编码器屏蔽掉。400211由“1”改为“0”,4394.5由“0”改为“1”,9021#报警消失。执

行M03S300,主轴转动起来,25分钟后,温度由22℃上升到56℃,检测三相电流基本平衡,18A

左右,指正偏摆幅度大,空载电流高,不正常,将电机拆下检查,发现定子和转子的空隙中充满了冷却油,原因是密封圈损坏,油位过高所致。从理论上分析,气隙中充满油后,磁阻变大,电机电流变大。

将油清理干净,用压缩空气吹干净,并用灯泡烤干定子绕阻,将电机装上,开机出现9031#报

警(温度传感器故障)。经检查,J Y2插头未插在主轴模块上,将脉冲发生器内置插头和电动机C3插头连接在接口上,故障排除。

212 驱动系统出现过电流报警的故障诊断与维修21211故障现象

一台配有FANUC 系统和αi 主轴驱动系统的卧式加工中心,在加工时主轴运行突然停止,驱动器显示过电流报警。21212分析判定

检查交流主轴驱动器主回路,发现再生制动回路、主回路的熔断器均熔断,经更换后机床恢复正常。但机床正常运行一段时间后,再次出现同样故障。

由于故障重复出现,证明该机床主轴系统存在问题。根据报警信息,分析可能存在的主要原因如下:

1)主轴驱动板控制不良;2)电动机连续过载;

3)电动机绕组存在局部短路;21213维修过程

根据实际加工情况,电动机过载的原因可以排除。由于更换熔断器后可以正常工作一段时间,故主轴驱动器控制板不良的可能性不大。因此,故障可能性最大的是电动机绕组存在局部短路。

维修时仔细测量电动机的绕组的各相电阻,发现u 相对地绝缘电阻较小,证明该相存在局部对地短路。拆开电动机检查发现,电动机内部绕组与引出线的绝缘套已经老化,更换绝缘套,重新连接后对地电阻恢复正常。再次更换熔断器后,机床恢复正常,故障不再出现。

213 驱动系统出现传感器报警的故障诊断与维修

案例中数控机床为大宇HM630数控加工中心,主轴电机为FUNUC α18/7000i 永磁交流同步伺服电机,主轴伺服板为AL 273。21311故障现象

机床正常运转,切削加工过程中,忽然断电

(供电系统出现短路),恢复供电后,重新开机,当程序执行到铣加工Φ260面时,产生9073#报警,提示报警信息为电机传感器的反馈信号断线。21312分析判定

正常工作的机床,为何出现9073#报警?调出报警履历表,发现断电时出现过9002#报警。报警内容为:电机负载扭矩大,它是产生9073#报警的直接原因。由于扭矩大,主轴震动剧烈,有可能造成电机传感器的反馈信号故障。21313维修过程

依据FANUC 公司提供的维修手册,重点检查信号电缆连线、插头,最后,在主轴电机的接线盒中发现电缆插头振松,重新插好插头,故障排除。

3 结 论

数控机床的自诊断功能很强,FANUC 公司提供了丰富的诊断信息,从硬件和软件控制上设计了几十种保护和报警,从而为数控机床的正常使用和维护维修提供了很大方便。在深入理解的基础上,依据FANUC 公司提供的手册,注意分析,顺藤摸瓜。熟悉并掌握主轴伺服的控制原理及各信号的连接、传输,是快速诊断,及时排除故障的关键。

参考文献

[1] 罗学科,谢富春.数控原理与数控机床[M ].北京:化学

工业出版社,2004.

[2] 白恩远.现代数控机床伺服及检测技术[M ].北京:国防

工业出版社,2005.

[3] 舒志兵等.交流伺服运动控制系统[M ].北京:清华大学

出版社,2006.

[4] 龚仲华.数控机床故障诊断与维修500例[M ].北京:机

械工业出版社,2006.

作者简介:宋文学(1966—

),男,副教授,工学硕士,在读博士研究生,研究方向为制造信息化技术。

6

7—微电机 2006年 第39卷 第6期(总第153期)

伺服系统概要

衡量伺服系统性能的主要指标有频带宽度和精度。 频带宽度简称带宽,由系统频率响应特性来规定,反映伺服系统的跟踪的快速性。带宽越大,快速性越好。伺服系统的带宽主要受控制对象和执行机构的惯性的限制。惯性越大,带宽越窄。一般伺服系统的带宽小于15HZ,大型设备伺服系统的带宽则在1~2HZ以下。自20世纪70年代以来,由于发展了力矩电机及高灵敏度测速机,使伺服系统实现了直接驱动,革除或减小了齿隙和弹性变形等非线性因素,使带宽达到50HZ,并成功应用在远程导弹、人造卫星、精密指挥仪等场所。 伺服系统的精度主要决定于所用的测量元件的精度。因此,在伺服系统中必须采用高精度的测量元件,如精密电位器、自整角机、旋转变压器、光电编码器、光栅、磁栅和球栅等。此外,也可采取附加措施来提高系统的精度,例如将测量元件(如自整角机)的测量轴通过减速器与转轴相连,使转轴的转角得到放大,来提高相对测量精度。采用这种方案的伺服系统称为精测粗测系统或双通道系统。通过减速器与转轴啮合的测角线路称精读数通道,直接取自转轴的测角线路称粗读数通道。 伺服系统按所用驱动元件的类型可分为机电伺服系统、液压伺服系统和气动伺服系统。 最基本的伺服系统包括伺服执行元件(电机、液压缸等)、反馈元件和伺服驱动器,但是要让这个系统运转起来还需要一个上位机构:PLC、专门的运动控制卡、工控机+PCI卡、以便于给伺服驱动器发送指令。 在一个运动控制系统中“上位控制”和“执行机构”是系统中举足轻重的两个组成部分。“执行机构”部分一般不外乎:步进电机,伺服电机,以及直流电机等。它们作为执行机构,带动刀具或工件动作,我们称之为“四肢”;“上位控制”单元的方案主要有四种:单片机系统,专业运动控制PLC,PC+运动控制卡,专用控制系统。“上位控制”是“指挥”执行机构动作的,我们也称之为“大脑”。随着PC(Personal Computer)的发展和普及,采用PC+运动控制卡作为上位控制将是运动控制系统的一个主要发展趋势。这种方案可充分利用计算机资源,用于运动过程、运动轨迹都比较复杂,且柔性比较强的机器和设备。从用户使用的角度来看,基于PC机的运动控制卡主要是功能上的差别:硬件接口(输入/输出信号的种类、性能)和软件接口(运动控制函数库的功能函数)。按信号类型一般分为:数字卡和模拟卡。数字卡一般用于控制步进电机和伺服电机,模拟卡用于控制模拟式的伺服电机;数字卡可分为步进卡和伺服卡,步进卡的脉冲输出频率一般较低(几百K左右的频率),适用于控制步进电机;伺服卡的脉冲输出频率较高(可达几兆的频率),能够满足对伺服电机的控制。目前随着数字式伺服电机的发展和普及,数字卡逐渐成为运动控制卡的主流。 伺服驱动器是用来控制伺服电机的一种控制器,属于伺服系统的一部分,其作用类似于变频器作用于普通交流马达。目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法、数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。功率驱动单元首先通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。经过整流好的三相电或市电,再通过三相正弦PWM电压型逆变器变频来驱动三相永磁式同步交流伺服电机。功率驱动单元的整个过程可以简单的说就是AC-DC-AC 的过程。整流单元(AC-DC)主要的拓扑电路是三相全桥不控整流电路。伺服驱动器一般可以采用位置、速度和力矩三种控制方式,主要应用于高精度的定位系统,目前是传动技术的

伺服系统的发展及展望

伺服系统的发展及展望 摘要:本文主要介绍了伺服系统的三个发展阶段,包括步进电动机开环伺服系统阶段、直流伺服电动机闭环伺服系统阶段、无刷直流伺服电动机、交流伺服电动机伺服系统阶段,并分析了伺服系统的发展趋势:交流化、智能化、网络化、小型化。 关键词:伺服;智能化;小型化 伺服系统也叫位置随动系统,它的根本任务是实现执行机械对位置指令(给定量)的准确跟踪,当给定量随机变化时,系统能使被控制量准确无误地跟随并复现给定量,是一个位置反馈控制系统[1],主要包括电机和驱动器两部分,广泛用于航空、航天、国防及工业自动化等自动控制领域。随着电力电子、控制理论、计算机术等技术的快速发展以及电机制造工艺水平的不断提高,伺服系统近年来获得了迅速发展。 1伺服系统的发展阶段 伺服系统的发展与伺服电动机的不同发展阶段相联系,

由直流电机构成的伺服系统是直流伺服系统,由交流电机构成伺服系统是交流伺服系统。伺服电动机至今经历了三个主要发展阶段: 1.1 第一个发展阶段(20世纪60年代以前):步进电动机开环伺服系统 伺服系统的驱动电机为步进电动机或功率步进电动机,位置控制为开环系统。步进电机是一种将电脉冲转化为角位移的执行机构,两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72°、0.36°。 步进电机存在一些缺点:在低速时易出现低频振动现象;一般不具有过载能力;步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转现象,停止时转速过高易出现过冲现象。 1.2 第二个发展阶段(20世纪60-70年代):直流伺服电动机闭环伺服系统 由于直流电动机具有优良的调速性能,很多高性能驱动装置采用了直流电动机,伺服系统的位置控制也由开环系统发展成为闭环系统。在数控机床的应用领域,永磁式直流电动机占统治地位,其控制电路简单,无励磁损耗,低速性能好。 1.3 第三个发展阶段(80年代至今):无刷直流伺服电动机、交流伺服电动机伺服系统

主轴伺服系统的故障形式及诊断方法

主轴伺服系统的故障形式及诊断方法 当主轴伺服系统发生故障时,通常有三种表现形式:一是在CRT或操作面板上显示报警信息或报警内容;二是在主轴驱动装置上用警报灯数码管显示主轴驱动装置的故障;三是主轴工作不正常,但无任何报警信息,主轴伺服系统常见的故障有: 1、外界干扰 由于受电磁干扰,屏蔽和接地措施不良,主轴转速指令信号或反馈信号受到干扰,使主轴驱动出现随机和无规律性的波动。判别有无干扰的方法是:当主轴转速指令为零时,主轴仍往复转动,调整零速平衡和漂移补偿也不能消除故障。 2、过载 切削用量过大,频繁正、反转等均可引起过载报警。具体表现为主轴电动机过热、主轴驱动张制显示过电流报警等。 3、主轴定位抖动 主轴准停用于刀具交换,精镗退刀以及齿轮换档等场合,有三种实现方式: (1)机械准停控制 (2)磁性传感器的电气准停控制 (3)编码器型的准停控制 4、主轴转速与进给不匹配 当进行螺纹切削或用每转进给指令切削时,会出现停止进给,主轴仍继续运转的故障。要执行每转进给的指令,主轴必须有每转一个脉冲的反馈信号,一般情况下为主轴编码器有问题。可以用下列方法来确定:

1.CRT画面有报警显示。 2.通过CRT调用机床数据或I/O状态,观察编码器的信号状态, 3.用每分钟进给指令代替每转进给来执行程序,观察故障是否消失。 5、转速偏离指令值 当主轴转速超过技术要求所规定的范围时,要考虑:1.电动机过载。 https://www.360docs.net/doc/9d16991703.html,C系统输出的主轴转速模拟量(通常为0—+-10V)没有达到与转速指令对应的值。 3.测速装置有故障或速度反馈信号断线。 4.主轴驱动装置故障。 6、主轴异常噪声及振动 首先要区别异常噪声及振动发生在主轴机械部分还是在电气驱动部分。1.在减速过程中发生一般是又驱动装置造成的,如交流驱动中的再生回路故障。2.在恒转速时产生,可通过观察主轴电动机自由停车过程中是否有噪音和振动的来区别,如存在,则主轴机械部分有问题3.检查振动周期是否与转速有关。如无关,一般是主轴驱动装置未调整好;如有关,应检查主轴机械部分是否良好,测速装置是否不良。 7、主轴电动机不转 CNC系统至主轴驱动装置除了转速模拟量控制信号外,还有使能控制信号,一般为DC+24V继电器线圈电压。1.检查CNC系统是否有速度控制信号输出。2.检查能使信号是否接通。通过CRT观察I/O状态,分析机床PLC图形(或流程图),以确定主轴的启动条件,如润滑、冷却等是否满足。3.主轴驱动装置故障。4.主轴电动机故障。

课主轴驱动系统故障维修例[

第七章第四课主轴驱动系统故障维修50 例[1] 2009-05-15 05:55 例301.机床剧烈抖动、驱动器显示AL-04 报警 故障现象:一台配套FANUC 6系统地立式加工中心, 在加工过程中, 机床出现剧烈抖动、交流主轴驱动器显示AL-04 报警. 分析与处理过程:FANU(交流主轴驱动系统AL-04报警地含义为“交流输入电路中地P1、F2、F3熔断器熔断”,故障可能地原因有: 1>交流电源输出阻抗过高. 2>逆变晶体管模块不良. 3>整流二极管(或晶闸管>模块不良. 4>浪涌吸收器或电容器不良. 针对上述故障原因, 逐一进行检查. 检查交流输入电源, 在交流主轴驱动器地输入电源,测得R、S相输入电压为220V,但T相地交流输入电压仅为120V,表明驱动器地三相输入电源存在问题. 进一步检查主轴变压器地三相输出, 发现变压器输入、输出, 机床电源输入均同样存在不平衡, 从而说明故障原因不在机床本身. 检查车间开关柜上地三相熔断器,发现有一相阻抗为数百欧姆.将其拆开检查,发现该熔断器接线螺钉松动, 从而造成三相输入电源不平衡;重新连接后, 机床恢复正常. 例302?驱动器出现报警“ A”地故障维修 故障现象:一台配套FANUC 0■地数控车床,开机后,系统处在“急停”状态,显示“ NOTREADY,操作面板上地主轴报警指示灯亮. 分析与处理过程:根据故障现象, 检查机床交流主轴驱动器, 发现驱动器显示为“ A” . 根据驱动器地报警显示, 由本章前述可知, 驱动器报警地含义是“驱动器软件出错” , 这一报警在驱动器受到外部偶然干扰时较容易出现, 解决地方法通常是对驱动器进行初始化处理. 在本机床按如下步骤进行了参数地初始化操作: 1>切断驱动器电源, 将设定端S1 置TEST. 2>接通驱动器电源. 3>同时按住MOD E UP DOWNDATASET个键4>当显示器由全暗变为“ FFFFF后,松

FANUC伺服驱动系统故障分析诊断

FANUC交流伺服驱动系统故障维修举例 例244~245.加工过程中出现过热报警的故障维修 例244.故障现象:某配套FANUC 0T MATE系统的数控车床,在加工过程中,经常出现伺服电动机过热报警。 分析与处理过程:本机床伺服驱动器采用的是FANUC S系列伺服驱动器,当报警时,触摸伺服电动机温度在正常的围,实际电动机无过熟现象。所以引起故障的原因应是伺服驱动器的温度检测电路故障或是过热检测热敏电阻的不良。 通过短接伺服电动机的过热检测热敏电阻触点,再次开机进行加工试验,经长时间运行,故障消失,证明电动机过热是由于过热检测热敏电阻不良引起的,在无替换元件的条件下,可以暂时将其触点短接,使其系统正常工作。 例245.故障现象:某配套FANUC 0T MATE系统的数控车床,在加工过程中,经常出现X轴伺服电动机过热报警。 分析与处理过程:故障分析过程同上例,经检查X轴伺服电动机外表温度过高,事实上存在过热现象。 测量伺服电动机空载工作电流,发现其值超过了正常的围。测量各电枢绕组的电阻,发现A相对地局部短路;拆开电动机检查发现,由于电动机的防护不当,在加工时冷却液进入了电动机,使电动机绕阻对地短路。修理电动机后,机床恢复正常。 例246.驱动器出现OVC报警的故障维修 故障现象:某配套FANUC 0T-C系统、采用FANUC S系列伺服驱动的数控车床,手动运动X轴时,伺服电动机不转,系统显示ALM414报警。 分析与处理过程:FANUC 0T-C出现ALM 414报警的含义是“X轴数字伺服报警”,通过检查系统诊断参数DGN720~723,发现其中DGN720 bit5=l,故可以确定本机床故障原因是X轴OVC(过电流)报警。 分析造成故障的原因很多,但维修时最常见的是伺服电动机的制动器未松开。 在本机床上,由于采用斜床身布局,所以X轴伺服电动机上带有制动器,以防止停电时的下滑。经检查,本机床故障的原因确是制动器未松开:根据原理图和系统信号的状态诊断分析,故障是由于中间继电器的触点不良造成的,更换继电器后机床恢复正常。 例247~例248.参数设定错误引起的故障维修 例247.故障现象:某配套FANUC 0TD系统的二手数控车床,配套FANUC子α系列数字伺服,开机后,系统显示ALM417、427报警。 分析与处理过程:FANUC 0TD出现ALM 417、427报警的含义是“数字伺服参数设定错误”。 由于机床为二手设备,调试时发现系统的电池已经遗失,因此,系统的参数都在不同程度上存在错误。进一步检查系统主板,发现主板上的报警指示灯L1、L2亮,驱动器显示“-”,表明驱动器未准备好。 根据系统报警ALM417、427可以确定,引起报警可能的原因有: 1)电动机型号参数8*20设定错误。 2)电动机的转向参数8*22设定错误。 3)速度反馈脉冲参数8*23设定错误。 4)位置反馈脉冲参数8*24设定错误。

主轴驱动系统常见故障及处理

第5章主轴驱动系统常见故障及处理 数控机床的主轴驱动系统也就是主传动系统,它的性能直接决定了加工工件的表面质量,因此,在数控机床的维修和维护中,主轴驱动系统显得很重要。 ——; ——。 ——。 5.1主轴驱动系统概述 主轴驱动系统也叫主传动系统,是在系统中完成主运动的动力装置部分。主轴驱动系统通过该传动机构转变成主轴上安装的刀具或工件的切削力矩和 切削速度,配合进给运动,加工出理想的零件。它是零件加工的成型运动之一,它的精度对零件的加工精度有较大的影响。 5.1.1数控机床对主轴驱动系统的要求 机床的主轴驱动和进给驱动有较大的差别。机床主轴的工作运动通常是旋转运动,不像进给驱动需要丝杠或其它直线运动装置作往复运动。数控机床通常通过主轴的回转与进给轴的进给实现刀具与工件的快速的相对切削运动。在20纪60-70年代,数控机床的主轴一般采用三相感应电动机配上多级齿轮变速箱实现有级变速的驱动方式。随着刀具技术、生产技术、加工工艺以及生产效率的不断发展,上述传统的主轴驱动已不能满足生产的需要。现代数控机床对主轴传动提出了更高的要求: (1)调速范围宽并实现无极调速 为保证加工时选用合适的切削用量,以获得最佳的生产率、加工精度和表面质量。特别对于具有自动换刀功能的数控加工中心,为适应各种刀具、工序和各种材料的加工要求,对主轴的调速范围要求更高,要求主轴能在较宽的转速范围内根据数控系统的指令自动实现无级调速,并减少中间传动环节,简化主轴箱。 目前主轴驱动装置的恒转矩调速范围已可达1∶100,恒功率调速范围也可达1∶30,一般过载1.5倍时可持续工作达到30min。 主轴变速分为有级变速、无级变速和分段无级变速三种形式,其中有级变速仅用于经济型数控机床,大多数数控机床均采用无级变速或分段无级变速。在无级变速中,变频调速主轴一般用于普及型数控机床,交流伺服主轴则用于中、高档数控机床。

交流伺服系统发展现状及其趋势

交流伺服系统发展现状及其趋势运动控制系统作为电气自动化的一个重要的应用领域,已经被广泛应用于国民经济各个部门。运动控制系统主要研究电动机拖动及机械设备的位移控制问题。交流伺服系统是运动控制系统所研究的重要的一部分,而纵观电力拖动的发展过程,交、直流两种拖动方式并存与各个生产领域,随着工业技术的发展,两者相互竞争,相互促进。 1990年以前,由于技术成本等原因,国内伺服电机以直流永磁有刷电机和步进电机为主,而且主要集中在机床和国防军工行业。1990年以后,进口永磁交流伺服电机系统逐步进入中国,此期间得益于稀土永磁材料的发展、电力电子及微电子技术日新月异的进步,交流伺服电机的驱动技术也得以很快发展。如今约占整个电力拖动容量80%的不变速拖动系统都采用交流电动机,而只占20%的高精度、宽广调速范围的拖动系统采用直流电动机。自20世纪80年代以来,随着现代电机技术、现代电力电子技术、微电子技术、控制技术及计算机技术等支撑技术的快速发展,交流伺服控制技术的发展得以极大的迈进,使得先前困扰着交流伺服系统的电机控制复杂、调速性能差等问题取得了突破性的进展,交流伺服系统的性能日渐提高,价格趋于合理,使得交流伺服系统取代直流伺服系统尤其是在高精度、高性能要求的伺服驱动领域成了现代电伺服驱动系统的一个发展趋势。 一、交流伺服系统的概述 伺服来自英文单词Servo,指系统跟随外部指令进行人们所期望的运动,运动要素包括位置、速度和力矩。伺服系统的发展经历了从液压、气动到电气的过程,而电气伺服系统包括伺服电机、反馈装置和控制器。在20世纪60年代,最早是直流电机作为主要执行部件,在70年代以后,交流伺服电机的性价比不断提高,逐渐取代直流电机成为伺服系统的主导执行电机。控制器的功能是完成伺服系统的闭环控制,包括力矩、速度和位置等。我们通常说的伺服驱动器已经包括了控制器的基本功能和功率放大部分。虽然采用功率步进电机直接驱动的开环伺服系统曾经在90年代的所谓经济型数控领域获得广泛使用,但是迅速被交流伺服所取代。进入21世纪,交流伺服系统越来越成熟,市场呈现

数控机床用主轴伺服系统

数控机床用主轴伺服系统 数控机床的主轴系统和进给系统有很大的差别。根据机床主传动的工作特点,早期的机床主轴传动全部采用三相异步电动机加上多级变速箱的结构。随着技术的不断发展,机床结构有了很大的改进,从而对主轴系统提出了新的要求,而且因用途而异。在数控机床中,数控车床占42%,数控钻镗铣床占33%,数控磨床、冲床占23%,其他只占2%。为了满足量大面广的前两类数控机床的需要,对主轴传动提出了下述要求:主传动电动机应有2.2~250kW的功率范围;要有大的无级调速范围,如能在1:100~1000范围内进行恒转矩调速和1:10的恒功率调速;要求主传动有四象限的驱动能力;为了满足螺纹车削,要求主轴能与进给实行同步控制;在加工中心上为了自动换刀,要求主轴能进行高精度定向停位控制,甚至要求主轴具有角度分度控制功能等等。 主轴传动和进给传动一样,经历了从普通三相异步电动机传动到直流主轴传动,而随着微处理器技术和大功率晶体管技术的进展,现在又进入了交流主轴伺服系统的时代,目前已很少见到在数控机床上有使用直流主轴伺服系统了。但是国内生产的交流主轴伺服系统的产品尚很少见,大多采用进口产品。 交流伺服电动机有永磁式同步电动机和笼型异步电动机两种结 构形式,而且绝大多数采用永磁式同步电动机的结构形式。而交流主轴电动机的情况则不同,交流主轴电动机均采用异步电动机的结构形式,这是因为,一方面受永磁体的限制,当电动机容量做得很大时,

电动机成本会很高,对数控机床来讲无法接受采用;另一方面,数控机床的主轴传动系统不必像进给伺服系统那样要求如此高的性能,采用成本低的异步电动机进行矢量闭环控制,完全可满足数控机床主轴的要求。但对交流主轴电动机性能要求又与普通异步电动机不同,要求交流主轴电动机的输出特性曲线(输出功率与转速关系)是在基本速度以下时为恒转矩区域,而在基本速度以上时为恒功率区域。 交流主轴控制单元与进给系统一样,也有模拟式和数字式两种,现在所见到的国外交流主轴控制单元大多都是数字式的。 它们的工作过程简述如下:由数控系统来的速度指令(如10V时相当于6000r/min或4500r/min)在比较器中与检测器的信号相与之后,经比例积分回路3将速度误差信号放大作为转矩指令电压输出,再经绝对值回路4使转矩指令电压永远为正。然后经函数发生器6(它的作用是当电动机低速时提高转矩指令电压),送到V/F变换器7,变成误差脉冲(如10V相当于200kHz)。该误差脉冲送到微处理器8并与四倍回路17送来的速度反馈脉冲进行运算。在此同时,交预先写在微处理器部件中的ROM中的信息读出,分别送出振幅和相位信号,送到DA强励磁9和DA振幅器10。DA强励磁回路用于控制增加定子电流的振幅,而DA振幅器用于产生与转矩指令相对应的电动机定子电流的振幅。它们的输出值经乘法器11之后形成定子电流的振幅,送给U相和V相的电流指令回路12。另一方面,从微处理器输出的U、V两相的相位(即sinθ和sin(θ-120°))也被送到U相和V相的电流指令回路12,它实际上也是一个乘法器,通过它形成

伺服驱动系统的原理与种类

机电一体化系统设计基础课程教学辅导 第四章:伺服驱动系统的原理与种类 一、教学建议 ●通过文字教材掌握伺服驱动的基本原理,了解机电一体化伺服驱动系统的种类及其 特性。 ●流媒体课件第15讲介绍了机电一体化系统伺服驱动的基本原理、种类及其特性; ●在学习的过程中,如果有学习的心得和体会,请在课程论坛上和大家分享;如果有 什么疑惑,也可以在课程论坛寻找帮助。 二、教学要求 1.掌握伺服驱动的基本原理 一般来说,伺服系统组成框图如图1所示。 图1 伺服系统组成框图 (1)控制器:伺服系统中控制器的主要任务是根据输入信号和反馈信号决定控制策略,控制器通常由电子线路或计算机组成。 (2)功率放大器:伺服系统中功率放大器的作用是将信号进行放大,并用来驱动执行机构完成某种操作,功率放大装置主要由各种电力电子器件组成。 (3)执行机构:执行机构主要由伺服电动机或液压伺服机构和机械传动装置等组成。 (4)检测装置:检测装置的任务是测量被控制量,实现反馈控制。无论采用何种控制方案,系统的控制精度总是低于检测装置的精度,因此要求检测装置精度高、线性度好、可靠性高、响应快。 2.了解机电一体化伺服驱动系统的种类及其特性 (1)根据使用能量的不同,可以分为电气式、液压式和气压式等几种类型,特性如表1所示。 表1 伺服驱动系统的特点及优缺点 种类特点优点缺点 电 气 式 可使用普通电源;信号与动力 的传送方向相同;有交流和直 流之别,须注意电压之大小 操作简便;编程容易;能实现定 位伺服;响应快、易与CPU接 口;体积小,动力较大;无污染 瞬时输出功率大,但过载能力差,由于某 种原因而卡住时,会引起烧毁事故,易受 外部噪声影响 气 压 式 空气压力源的压力为(5~7) ×105Pa;要求操作人员技术 熟练 气源方便、成本低;无泄漏污染; 速度快、操作比较简单 功率小,体积大,动作不够平稳;不易小 型化;远距离传输困难;工作噪声大、难 于伺服 液 压 式 要求操作人员技术熟练;液压 源的压力为(20~80)×105Pa 输出功率大,速度快,动作平 稳,可实现定位伺服 设备难于小型化;液压源或液压油要求(杂 质、温度、测量、质量)严格;易泄漏且 有污染

数控机床伺服系统中常见故障形式及诊断

数控机床伺服系统中常见故障形式及诊断 摘要: 针对数控机床中伺服系统的故障形式、诊断及维护的简单阐述。 关键词: 数控机床;伺服系统;故障;诊断 Abstract:The article will indicates the opinions of form of failure 、diagnose and maintenance about servo system in numerical control machine。 Keywords: Numerical control machine ; Servo system ; Failure ; Diagnose 1.伺服系统的组成及工作原理 1.1伺服系统的概念 在自动控制系统中输出量以一定规律跟随输入量的变化而变化的系统称之为随动系统, 亦称伺服系统(伺服是英文“SERVO”的谐音)。数控机床的伺服系统是指以机床移动部件的 位移和速度作为控制量的自动控制系统。它主要是控制机床的进给运动,一般有X、Y、Z三 个坐标方向和主轴转速。 1.2伺服系统的作用 接受来自数控装置(CNC)的速度和位置指令信号,经过伺服驱动电路作一定的转换和 放大后,通过伺服驱动装置和机械传动机构驱动机床执行元件跟随指令脉冲运动,实现预期 的快速﹑准确的运动和进给。 1.3伺服系统的组成 数控机床的伺服系统一般由驱动控制单元、驱动元件、机械传动部件、执行元件和检测 反馈环节等组成。驱动控制单元和驱动元件组成伺服驱动系统,机械传动部件和执行元件组 成机械传动系统,检测元件和反馈电路组成检测系统。 1.4伺服系统的工作原理 伺服系统是一种反馈控制系统。按照反馈控制理论,伺服系统需不断检测在各种扰动作 用下被控对象输出量的变化,并用其与指令值之间的偏差值对系统进行自动调节,以消除偏差,使被控对象输出量始终跟踪输入的指令值。因此,伺服系统的运动来源于偏差信号,其 工作过程是一个偏差不断产生又不断消除的动态过渡过程。 伺服系统的性能,在很大程度上决定了数控机床的性能和加工精度。数控机床的最大移 动速度、跟踪精度、定位精度及重复定位精度等重要技术指标均直接取决于伺服系统的动、 静态性能。因而,保障伺服系统的正常运行是数控机床维护中的关键。 2.主轴伺服系统的故障形式及诊断方法 数控机床对主轴要求在很宽的范围内转速连续可调,恒功率范围宽。如日立公司的 H.MARK-20D数控钻床,要求主轴转速的调节范围为20KRPM~120KRPM,以满足加工不同孔 径的PCB的需求。 主轴伺服系统发生故障的表现形式有:一是在CRT或操作面板上显示报警内容或报警信息;二是在主轴驱动装置上用LED或数码管显示驱动装置的故障代码;三是主轴工作不正常,但无任何报警信息。主轴伺服系统常见故障及诊断: 2.1环境干扰 当屏蔽或接地不良,主轴转速指令信号或反馈信号受外部环境的电磁干扰,使主轴驱动 出现无规律性的波动。判别方法:设定主轴转速指令为零,若主轴仍有转速,而调零速平衡 和飘移补偿无效。 2.2过载 切削用量过大,负载转矩超过最大值都可能引起主轴伺服过载报警。一般表现为主轴电 动机过热﹑变频器(对交流主轴驱动而言)显示过流报警﹑保险丝熔断等。如一台日立 H.MARK-10D数控钻床,由于一支钻头其柄直径偏差较大,在工作过程中,钻头下落,直至 刀柄切入PCB中无切削刃切削,导致主轴负载陡然上升,继而CRT显示主轴伺服过载信息, 检查发现该轴保险丝已熔断。 2.3主轴转速与进给不匹配 主轴转速与进给不匹配时,在切削过程中很容易折断刀具。判定故障点的方法:

主轴驱动系统和主轴电机发展趋势

主轴驱动系统和主轴电机发展趋势 050810133 李阳阳数控机床主轴驱动系统作为机床的最核心的关键部件之一,其输出性能对数控机床的整体水平是至关重要的。主轴驱动远不同于一般工业驱动,它不但要求较高的速度精度,动态刚度,而且要求连续输出的高转矩能力和非常宽的恒功率运行范围。目前,各主要机床生产厂家和研究单位纷纷把目光投向交流主轴驱动系统。随着功率电子,计算机技术,控制理论,新材料和电机设计的进一步发展和完善,矢量控制交流电机主轴驱动系统的性能已经达到甚至超过了直流主轴驱动系统。交流主轴驱动系统正在逐步取代直流系统。 1交流主轴驱动系统发展趋势 交流主轴驱动系统的逆变器一般基于矢量控制原理,采用正弦波宽调制方式,功率器件采用ICBT。根据电机类型可分为感应电机主轴驱动系统,永磁同步电机主轴驱动系统,开头磁阻电机主轴驱动系统。 1.1 感应电机交流主轴驱动系统 感应电机交流主轴驱动系统是当前商用主轴驱动系统的主流,其功率范围为从零点几个千瓦到几百千瓦,广泛应用于各种数控机床上。 感应主轴电机基速以上的放展运动范围可以通过弱磁控制实现。其恒功率运动范围可达1:5.如果采用最新的绕组切换技术,其恒功率运动范围可达1:14.甚至更宽。目前,感应主轴电机最高转速可达100000r/min以上。尽管感应主轴电机结构相对简单,但其变频控制器价格却较高。而采用了磁场定向控制技术的变频器能提供连续的转矩/速度调节能力,较高的精度,运行可行性和较低的运行费用,因而在一定程度上抵消了整个系统的初始高价格。 感应式主轴电机的控制无一例外地采用磁场定向技术。该技术又分为间接磁场定向和直接磁场定向两种实现方式,其中间接转子磁场定向控制技术由于较容易实现而被广为应用。它能提供较高的控制品质,但这种技术过分依赖于电机的参数,当参数变化时,控制性能将严重下降,遗憾的是,在电机运行过程中,转子时间常数可以在400%的范围以内变化,因此现代主轴控制器均采用辨识,估算和自整定技术对参数变化在线补偿。这项技术另一个难题是随着电机速度要求越来越高,在恒功率弱磁运行时,当转子磁场发生变化,而滑查增益无法动态补偿时,将引起磁通和转矩的振荡。近年来,随着自适应观测器和微处理器性能的提高,直接磁场定向控制技术在主轴驱动中有取代间接磁场定向之势。 1.2 永磁交流主轴驱动系统 永磁交流主轴电机分为正弦波驱动主轴电机和方波驱动直流主轴电机。此类主轴电机以转子无功耗,高效率和高功率/转矩密度著称。其低速运行时可获得更大的功率和转矩,因此在同步攻丝时的伺服锁定运行和快速定向方面有较大的优势。一般永磁主轴电机功率在10千瓦以下,速度低于8000r/min。但目前转速在20000-30000r/min之间,功率超过10千瓦的主轴电机已经在制造。永磁主轴电机在转子上不存在发热元件,显著提高了电机效率,同时高效铁硼材料的应用,使得永磁主轴电机在所有形式的交流主轴电机中具有最高的效率和最小的体积。PMSM和BDCM电机均可运行于高速范围。但调磁范围受到一定的限制,使得速度不能很高。在控制策略方面,PMSM电机的定子绕组经特殊绕制后将产生正弦反电势,当绕组通入正弦电流后,便可以获得恒定的转矩。但是磁场定

伺服驱动系统方案设计

伺服驱动系统设计方案 伺服电机的原理: 伺服的基本概念是准确、精确、快速定位。与普通电机一样,交流伺服电机也由定子和转子构成。定子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间相差90°电角度。伺服电机内部的转子是永磁铁,驱动控制的u/V/W三相电形成电磁场转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度{线数)。 伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降作用:伺服电机,可使控制速度,位置精度非常准确。 交流伺服电机的工作原理和单相感应电动机无本质上的差异。但是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓“自转”现象,即无控制信号时,它不应转动,特别是当它已在转动时,如果控制信号消失,它应能立即停止转动。而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 图3 伺服电动机的转矩特性

伺服系统的故障分析与维修

第 3 章伺服系统的故障分析与维修3.1 伺服系统概述 数控机床的伺服驱动系统主要有两种:进给驱动系统和主轴驱动系统。 前者控制机床各坐标轴的切削进给运动,后者控制机床主轴的旋转运动。 它们的职能是提供切削过程中所需要的转矩和功率,可以任意调节运转速度和准确的位置控制。 数控机床的伺服驱动系统分直流与交流两类不同的装置。 1、伺服系统的概念 伺服系统是以机械位置或角度作为控制量的自动控制系统。 在数控机床中,CNC 控制器经过插补运算生成的进给脉冲或进给位移量指令输入到伺服系统,由伺服系统经变换和功率放大转化为机床机械部件的高精度运动。 伺服系统既是数控机床控制器与刀具、主轴间的信息传递环节,又是能量放大与传递的环节,它的性能在很大程度上决定了数控机床的性能。 数控机床的最高移动速度、运动精度和定位精度等重要指标均取决于伺服系统的动、静态性能。 研究与开发高性能的伺服系统是现代数控机床的关键技术之一。 早期的数控机床,尤其是大中型数控机床常采用电液伺服系统驱动。 从八十年代起全电气伺服系统成为数控机床的主要驱动器。 2、伺服系统的基本技术要求 (1)精度高 伺服系统的精度是指输出量能复现输入量的精确程度。 在速度控制中,要求高的调速精度,比较强的抗负载扰动能力。即对静、动态精度要求都比较高。 (2)稳定性好 稳定性是指系统在给定输入或外界干扰作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。 随伺服系统要求有较强的抗干扰能力,保证进给速度均匀、平稳。 稳定性直接影响数控价格的精度和表面粗糙度。 (3)快速响应 快速响应是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。 为了保证轮廓切削形状精度和低的加工表面粗糙度,要求伺服系统跟踪指令信号的响应要快。 这一方面要求过渡过程时间要短,一般在200 ms 以内,甚至小于几十毫秒;另一方面要求超调要小。 (4)调速范围宽 调速范围Rn 指生产机械要求电机能提供的最高转速nmax 和最低转速nmin之比:Rn=nmax/nmin 。 通常,nmax和nmin一般对指额定负载时的转速,对于少数负载很轻的机械,也可以是实际负载的转速。 1)进给伺服系统的调速要求

2020年伺服驱动器行业市场研究分析报告【调研】

2020年伺服驱动器行业市场研究分析报告【调研】 2020年2月

目录 1. 伺服驱动器行业概况及市场分析 (6) 1.1 伺服驱动器行业发展现状分析 (6) 1.2 伺服驱动器行业结构分析 (7) 1.3 伺服驱动器行业PEST分析 (8) 1.4 伺服驱动器行业市场规模分析 (10) 1.5 伺服驱动器行业市场运行状况分析 (10) 1.6 伺服驱动器行业特征分析 (12) 2. 伺服驱动器行业驱动政策环境 (12) 2.1 市场驱动分析 (13) 2.2 政策将会持续利好行业发展 (14) 2.3 行业政策体系趋于完善 (15) 2.4 一级市场火热,国内专利不断攀升 (15) 2.5 宏观环境下伺服驱动器行业的定位 (16) 2.6 “十三五”期间伺服驱动器建设取得显著业绩 (16) 3. 伺服驱动器产业发展前景 (17) 3.1 中国伺服驱动器行业市场规模前景预测 (18) 3.2 伺服驱动器进入大面积推广应用阶段 (19) 3.3 中国伺服驱动器行业市场增长点 (19) 3.4 细分化产品将会最具优势 (20) 3.5 伺服驱动器产业与互联网等产业融合发展机遇 (20) 3.6 伺服驱动器人才培养市场大、国际合作前景广阔 (21)

3.7 巨头合纵连横,行业集中趋势将更加显著 (22) 3.8 建设上升空间较大,需不断注入活力 (23) 3.9 行业发展需突破创新瓶颈 (23) 4. 伺服驱动器行业竞争分析 (25) 4.1 伺服驱动器行业国内外对比分析 (25) 4.2 中国伺服驱动器行业品牌竞争格局分析 (27) 4.3 中国伺服驱动器行业竞争强度分析 (27) 4.4 初创公司大独角兽领衔 (28) 4.5 上市公司双雄深耕多年 (29) 4.6 互联网巨头综合优势明显 (30) 5. 伺服驱动器行业存在的问题分析 (31) 5.1 政策体系不健全 (31) 5.2 基础工作薄弱 (31) 5.3 地方认识不足,激励作用有限 (31) 5.4 产业结构调整进展缓慢 (31) 5.5 技术相对落后 (32) 5.6 隐私安全问题 (32) 5.7 与用户的互动需不断增强 (33) 5.8 管理效率低 (34) 5.9 盈利点单一 (34) 5.10 过于依赖政府,缺乏主观能动性 (35) 5.11 法律风险 (35)

FANUC伺服系统维修技术经验总结及FANUC伺服电机维修方法

FANUC伺服系统维修技术经验总结及FANUC伺服电机维修方法2 2.数字式交流伺服驱动单元的故障检测与维修 (1)驱动器上的状态指示灯报警 FANUC S系列数字式交流伺服驱动器,设有11个状态及报警指示灯,指示灯的状态以及含义见表5-8。 以上状态指示灯中,HC、HV、OVC、TG、DC、LV的含义与模拟式交流速度控制单元相同,主回路结构与原理亦与模拟式速度控制单元相同,不再赘述。表5-8中,OH、OFAL、FBL为S系列伺服增添的报警指示灯,其含义如下。 ①印制电路板上S1设定不正确。 ②伺服单元过热。散热片上热动开关动作,在驱动器无硬件损坏或不良时,可通过改变切削条件或负载,排除报警。 ③再生放电单元过热。可能是Q1不良,当驱动器无硬件不良时,可通过改变加减速频率,减轻负荷,排除报警。 ④电源变压器过热。当变压器及温度检测开关正常时,可通过改变切削条件,减轻负荷,排除报警,或更换变压器。 ⑤电柜散热器的过热开关动作,原因是电柜过热。若在室温下开关仍动作,则需要更换温度检测开关。 2)OFAL报警。数字伺服参数设定错误,这时需改变数字伺服的有关参数的设定。对于FANUC 0系统,相关参数是8100,8101,8121,8122,8123以及8153~8157等;对于10/11/12/15系统,相关参数为1804,1806,1875,1876,1879,1891以及1865~1869等。 3)FBAL报警。FBAL是脉冲编码器连接出错报警,出现报警的原因通常有以下几种: ①编码器电缆连接不良或脉冲编码器本身不良。 ②外部位置检测器信号出错。 ③速度控制单元的检测回路不良。 ④电动机与机械间的间隙太大。

简述交流主轴驱动系统的特点

1、简述交流伺服主轴驱动系统? 交流伺服主轴驱动系统通常采用感应电动机作为驱动电机,由伺服驱动器实施控制,有速度开环或闭环控制方式。也有采用永磁同步电动机作为驱动电机,由伺服驱动器实现速度环的矢量控制。 2、交流主轴驱动系统与直流主轴驱动系统相比有哪些特点? 1)由于驱动系统必须采用微处理器和现代控制理论进行控制,因此其运行平稳、振动和噪声小。 2)驱动系统一般都具有再生制动功能,在制动时,即可将能量反馈回电网,起到节能的效果,又可以加快起制动速度。 3)特别是对于全数字式主轴驱动系统,驱动器可直接使用CNC的数字量输出信号进行控制,不要经过A/D转换,转速控制精度得到了提高。 4)与数字式交流伺服驱动一样,在数字式主轴驱动系统中,还可采用参数设定方法对系统进行静态调整与动态优化,系统设定灵活、调整准确。 5)由于交流主轴无换向器,主轴通常不需要进行维修。 6)主轴转速的提高不受换向器的限制,最高转速通常比直流主轴更高,可达到数万转。 3、主轴准停有哪三种实现方式? ①机械准停控制:由带V型槽的定位盘和定位用的液压缸配合动作。 ②磁性传感器的电器准停控制发磁体安装在主轴后端,磁传感器安装 在主轴箱上,其安装位置决定了主轴的准停点。 ③编码器型的准停控制通过主轴内置安装或在机床主轴上直接安装一 个光电编码器来实现准停控制,准停角度可任意设定。 4、当主轴伺服系统发生故障时,通常有哪三种表现形式? 1. CRT或操作面板上显示报警内容或报警信息 2. 是在主轴驱动装置上用报警灯或数码管显示主轴驱 动装置的故障; 3. 主轴工作不正常,但无任何报警信息。 5、什么是数控机床的开环控制、半闭环控制和闭环控制? 1) 开环数控控制: 其数控装置发出的指令信号是单向的,没有检测反馈装置对运动部件的实际位移量进行检测,不能进行运动误差的校正。 2) 半闭环数控机床 这类机床的检测元件装在驱动电机或传动丝杠的端部,可间接测量执行部件的实际位置或位移。这种系统的闭环环路内不包括机械传动环节,控制系统的调试十分方便,因此可以获得稳定的控制特性。 3)全闭环数控机床 这类机床的位置检测装置安装在进给系统末段端的执行部件上,该位置检测装置可实测进给系统的位移量或位置。数控装置将位移指令与工作台端测得的实际位置反馈信号进行比较,根据其差值不断控制运动,使运动部件严格按照实际需要的位移量运动。

我国伺服驱动产业现状及发展建议

我国伺服驱动产业现状及发展建议 一、伺服驱动技术发展概况 伺服控制是指采用自动控制技术,控制各种设备按预定方式运动。伺服驱动系统是机电一体化产品的“手和脚”,对机电一体化产品的精度、刚度、动态特性等有极为重要的影响,是工厂自动化、数控机床、机器人等机电一体化产品中的重要驱动部件。一套完整的伺服驱动系统包括伺服驱动器和伺服电机、连接电缆等。 伺服系统的发展经历了从液压、气动到电气的过程。电气伺服系统的发展则经历了从直流有刷伺服驱动、直流无刷伺服驱动到永磁同步交流无刷伺服驱动三个阶段。伺服驱动器的控制方案从早期的模拟控制系统发展到现代的基于DSP 控制的全数字控制系统。由于交流伺服驱动系统具有高能量密度、高性能、免维护(无炭刷、换向器等磨损元部件)、高可靠性等特点,目前随着微处理器技术、大功率高性能半导体功率器件技术、电机永磁材料制造工艺的成熟与完善,其功率日益提升,性价比也越来越高,已经逐渐成为主流,特别是随着我国制造业的转型,升级,对加工设备提出了高速度、高精度、高效率的要求,交流伺服驱动系统的应用范围日益广泛,越来越多地取代机械传动、液压和气动传动系统;交流伺服不断取代直流伺服的市场份额,导致直流伺服在整个伺服市场的占有率从目前的15%左右,每年大约下降0.5%;同时交流伺服成本和尺寸不断缩小,逐步取代步进驱动系统,成为工业领域实现自动化的基础技术之一。 二、现代伺服驱动的主要应用领域 现代交流伺服系统最早被应用到宇航和军事领域,比如火炮、雷达控制。上世纪70年代逐渐进入到工业领域和民用领域。工业应用主要包括数控机床、机器人和其他广义的数控机械,比如纺织机械、印刷机械、包装机械、医疗设备、半导体设备、邮政机械、冶金机械、自动化流水线、各种专用设备等。其中伺服用量最大的行业依次是:机床、食品包装、纺织、电子半导体、塑料、印刷和橡胶机械,这些行业对伺服驱动器的需求旺盛。 2006年伺服系统在中国市场收入约36160万美元,增长26.8%,预计在2011年将达到95380万美元,年增长率及预计增长率都超过20%。 目前,我国已成为世界第一机床消费大国和生产大国,就国内外的市场现状看,普及型和高档数控机床使用交流永磁无刷伺服系统代替步进驱动系统已经成为标准配置,其年需求量在20万套以上,部分高档数控机床开始采用交流永磁直线伺服系统如力矩电机、直线电机等。 在工业机器人领域,交流永磁伺服系统得到大量应用。工业机器人拥有多个自由度,每台工业机器人需要的伺服驱动系统数量在6套以上。目前世界范围内工业机器人拥有量超过150万台,机器人的需求量年增长在30%以上。国际上工业机器人采用的伺服系统属专用系统,多轴合一,模块化,特殊的散热结构,特殊的控制方式,对可靠性要求极高。 在注塑机领域,我国的注塑机年产量已达10万台,占世界注塑机总产量的2/3以上。注塑机的发展趋势是从油电式向全电式方向发展,预计在3-5年内可能会形成油压、全电、油电“三分天下”的局面。若电动注塑机占总产量的20%计,注塑机用伺服驱动器一年的需求量达24万台。

伺服驱动系统设计方案

?、伸缩缝损坏现状 伺服驱动系统设计方案 伺服电机的原理: 伺服的基本概念是准确、精确.快速定位。与普通电机一样,交流伺服电机也由定子和转子构成。;^^子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间柑差90°电角度。 伺服电机内部的转子是永磁铁,驱动控制的U/V/W三相电形成电磁场转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反惯值与目标值进行比较,调整转子转动的角度0伺服电机的精度决世于编码器的精度{线数)。 伺服电动机又称执行电动机?在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出.其主要特点是,当信号电压为零时无自转现彖.转速随着转矩的增加而匀速下降作用:伺服电机/可使控制速度,位置精度非常准确。 交流伺服电机的工作原理和单相感应电动机无本质上的差异。但是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓“自转"现象,即无控制信号时,它不应转动,特别是当它已在转动时.如果控制信号消失,它应能立即停止转动。而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: lx起动转矩大 由于转子电阻大,苴转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2 相比,有明显的区别。它可使临界转差率so>r这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩0因此,当;^子一有控制电压,转子立即转动,即具有起动快、灵敏度髙的特点。

相关文档
最新文档