高效液相色谱法
高效液相色谱简介.pptx
第11页/共16页
高效液相色谱法的特点
高压:一般可以达到150~300kg/cm2高速:一般可以达到1~10mL/min高效:一般可以达到60000理论塔板/页
分类: 选择:
第13页/共16页
高效液相色谱的应用
第14页/共16页
THE END
THANK YOU
第15页/共16页
感谢您的观看!
第16页/共16页
第5页/共16页
色谱流出曲线示意图
第6页/共16页
有关术语 1)色谱流出曲线和色谱峰 2)基线 3)峰高 4)保留值(死时间、保留时间、调整保留时 间、死体积、保留体积、调整保留体积、相对保留值) 5)区域宽度(标准偏差σ,半峰宽W1/2,峰底宽度W)
第7页/共16页
样品所含组分的最少个数; 定性分析(保留值); 定量分析(峰高或面积); 分离效能(保留值及区域宽度); 两相选择的依据(峰间距离)论文内容
从色谱流出曲线中可以得出许多重要信息:
第8页/共16页
高效液相色谱(HPLC)流程示意图
第9页/共16页
HPLC组成图
第10页/共16页
第2页/共16页
第3页/共16页
第4页/共16页
分配系数 K和分配比k K=(溶质在固定相中的浓度)/(溶质在流动相中的浓度) =Cs / Cm K为每一溶质的特征值,仅为固定相和温度有关,与两相体积论文内容、柱管特性及仪器无关。 k=(组分在固定相中的质量)/(组分在流动相中的质量) =Ms / Mm两峰间的距离由组分在两相间的分配系数决定;峰宽由组分在色谱柱中传质和扩散行为决定。 两个理论(塔板理论和 速率理论)论文内容
1903年 Tswett创立色谱法(在碳酸钙上分离了叶绿素) 20世纪四五十年代 出现了纸色谱(PC)和薄层色谱法(TLC)1952年 James和Martin提出了气相色谱法(GC)20世纪60年代后期 液相色谱法得到了快速发展 论文内容
高效液相色谱法
2.高效液相色谱法与气相色谱法的比较
(l)气相色谱法:分析对象仅占有机物总数的20%。 高效液相色谱法:分离和分析占有机物总数近80%的那些 高沸点、热稳定性差、离子型化合物及摩尔质量大的物质。
(2)气相色谱:流动相与组分不产生相互作用力,仅起运 载作用。 高效液相色谱法:流动相对组分可产生一定亲和力,并参与 固定相对组分作用的剧烈竞争,流动相对分离起很大作用, 相当于增加了一个控制和改进分离条件的参数;
高压输液泵应符合下列要求:密封性好,输出 流量恒定,压力平稳,可调范围宽,便于迅速 更换溶剂及耐腐蚀。
高压输液泵
常用的输液泵分为恒流泵和恒压泵两种。 恒流泵特点是在一定操作条件下,输出流量保持恒定而与色谱 柱引起阻力变化无关; 恒压泵是指能保持输出压力恒定,但其流量则随色谱系统阻力 而变化,故保留时间的重视性差。 目前主要使用恒流泵,又称机械泵,它又分机械注射泵和机械 往复泵两种,应用最多的是机械往复泵。
(四)检测系统
两种基本类型的检测器: 溶质型检测器:它仅对被分离组分的物理或化学特性有响应, 属于这类检测器的有紫外、荧光、安培检测器等。 总体检测器:它对试样和洗脱液总的物理或化学性质有响应, 属于这类检测器的有示差折光,电导检测器等。 (l)紫外检测器 (2)荧光检测器 (3)示差折光率检测器 (4)电化学检测器
高效液相色谱法
High Performance Liquid Chromatography,HPLC
§1
概 述
Introduction
一、高效液相色谱法概述
高效液相色谱法(HPLC)吸取了气相色谱与经典液相色谱优 点,并用现代化手段加以改进。
引入了气相色谱的理论;
在技术上采用了高压泵、高效固定相和高灵敏度检测器; 具备速度快、效率高、灵敏度高、操作自动化的特点;
高效液相色谱法
第八章高效液相色谱法(High Performance Liquid Chromatograph)第一节概述(Generalization)以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。
HPLC是20世纪70年代初发展起来的一种新的色谱分离分析技术。
具有分离效能高、选择性好、灵敏度高、分析速度快、适用范围广(样品不需气化,只需制成溶液即可)的特点,适用于高沸点、热不稳定有机及生化试样的分离分析。
HPLC基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、或数据处理系统记录色谱信号再进行数据处理而得到分析结果。
高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。
目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。
将固定液的官能团键合在载体上,形成的固定相称为化学键合相,具有固定液不易流失的特点,一般认为有分配与吸附两种功能,常以分配作用为主。
C18(ODS)是最常使用的化学键合相。
根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。
《中国药典》中有50种中成药的定量分析采用HPLC法,在中药制剂分析中,大多采用反相键合相色谱法。
一、高效液相色谱法的特点目前经典LC主要用于制备,若用于分析则采用脱机或非连续检测。
经典LC填料缺陷,通常是填料粒度大、范围宽、不规则,不易填充均匀,扩散和传质阻力大,谱带展宽加大。
它存在致命弱点:速度慢、效率低和灵敏度低。
HPLC填料(高效固定相)颗粒细、直径范围窄、能承受高压。
高效液相色谱法教学【全】精选全文
例: 流动相极性变化对组分k’的影响
②更换色谱柱(改变N)
措施: a.选择长柱子(N=L/H) b.填料颗粒尽量小 c.低流速(溶质传质阻力小,峰扩展小) d.低的溶剂粘度(提高柱效)
高效液相色谱法
High Performance Liquid
Chromatography (HPLC)
前言:
HPLC是70年代以后发展最 快的一个分析化学分支,现 已成为生化、医学、药物、 化学化工、食品卫生、环保 检测等领域最常用的分离分 析手段。
我国:
开始仅为少数研究实验室拥有, 现很多的生产、研究、质检部门都拥有。 广泛应用于: 质量控制、分析化验、制备分离。 讲课目的:入门 教材:《实用色谱法》(詹益兴 编著) 学习要求:记好笔记,
ⅰ大分子,扩散系数小 ⅱ小分子,扩散系数大
5. 影响分离的因素与提高柱效的途径
• 液体的扩散系数仅为气体的万分之一,在高效液
相色谱中,速率方程中的分子扩散项B/u较小,可忽略 不计,即 H = A + C u
• 降低传质阻力是提高 柱效主要途径。 •气相和液相H-u区别
§1-4 分离度 (Rs)
于世林编著)
第一章 高效液相色谱法基本原理 §1-1 概述 一、色谱法
混合物最有效的分离、分析方法。 是一种分离技术。 混合物分离过程:试样中各组分在 固液两相间不断进行着的分配。 一相固定不动,称为固定相。 另一相是携带试样混合物流过固定 相的液体,称为流动相。
液相色谱仪
高效液相色谱仪流程图
(1) 存在着浓度差,产生纵向扩散;
(2) 扩散导致色谱峰变宽,H↑(N↓),分离变差; (3) B/u与流速有关:流速↓→ 滞留时间↑→ 扩散↑
高效液相色谱法
(2)化学键合固定相 ) B. 极性键合相 极性键合相指键合有机分子 中含某些极性基团,与空白硅胶相比, 中含某些极性基团,与空白硅胶相比,其极性 键合相表面能量分布均匀,是一种改性的硅胶, 键合相表面能量分布均匀,是一种改性的硅胶, 常用的极性键合相有氨基、氰基等。 常用的极性键合相有氨基、氰基等。氨基键合 相是分离糖类最常用的固定相,常用乙腈-水 相是分离糖类最常用的固定相,常用乙腈 水
二、液相色谱的流动相
1. 流动相特性
(mobile phases of LC) )
(2)化学键合固定相 )
化学键合固定相是应用最广的色谱法。 化学键合固定相是应用最广的色谱法。将固定液的官能团键
合在载体上形成的固定相称为化学键合相,其特点是不流失, 合在载体上形成的固定相称为化学键合相,其特点是不流失, 一般认为有分配与吸附两种功能。 一般认为有分配与吸附两种功能。 a. 硅氧碳键型: 硅氧碳键型: ≡Si—O—C b. 硅氧硅碳键型:≡Si—O—Si — C 硅氧硅碳键型: 稳定,耐水、耐光、耐有机溶剂,应用最广 稳定,耐水、耐光、耐有机溶剂, c. 硅碳键型: 硅碳键型: d. 硅氮键型: 硅氮键型: ≡Si—C ≡Si—N
4.6
高效液相色谱法
高效液相色谱法(high pressure Liquid 高效液相色谱法 chromatography,HPLC)是利用物质在两 , 是利用物质在两 相之间吸附或分配的微小差异达到分离的目的。 相之间吸附或分配的微小差异达到分离的目的。 当两相作相对移动时, 当两相作相对移动时,被测物质在两相之间做 反复多次的分配, 反复多次的分配,这样使原来微小的差异产生 了很大的分离效果,达到分离、 了很大的分离效果,达到分离、分析和测定一 些理化常数的目的。 些理化常数的目的。
高效液相色谱HPLC简介.ppt
种连续多次交换过程。它借溶质在两相间分配系数、亲和力、吸附力或分子大小不
同而引起的排阻作用的差别使不同溶质得以分离。
2
操作过程图示
3
色谱分离的机理
分离是一个 物理的过程。
固定相(Stationary Phase) 流动相(Mobile Phase) 样品 (溶解于流动相中的溶质)
4
项目 进样方式 流动相 分离原理 检测器
14
液-液分配色谱
固定相与流动相均为液体(互不相溶); 基本原理:组分在固定相和流动相上的分配; 流动相:对于亲水性固定液,采用疏水性流动相,即流动相的极性小于固定 液的极性(正相 normal phase),反之,流动相的极性大于固定液的极性 (反相 reverse phase)。正相与反相的出峰顺序相反; 固定相:早期涂渍固定液,固定液流失,较少采用; 化学键合固定相:将各种不同基团通过化学反应键合到硅胶(担体)表面的 游离羟基上。反相键合相色谱柱最常用的就是ODS柱,也就是C18柱。
15
液相色谱类型
• 正相色谱:固定相为极性,流动相为非极性。 • 反相色谱:固定相为非极性,流动相为极性。用的最多,约占60~70%。
16
色谱柱简介
• 正相柱------固定相通常为硅胶以及其他具有极性官能团胺基团,如(NH2) 和氰基团(CN)的键合相填料。 由于硅胶表面的硅羟基(SiOH)或其他极性基团极性较强,因此,分离 的次序是依据样品中各组分的极性大小,即极性较弱的组份最先被冲洗出色 谱柱。正相色谱使用的流动相极性相对比固定相低,如正已烷,氯仿,二氯 甲烷等。
9
检测器简介(二)
◆ 电导检测器(ECD) 原理:监测溶液的电导率变化的检测器。 特点:选择性检测器、测量时要求恒温、对流动相的组成变化有明显响应、 灵敏度低(10-3g)。适用于离子型化合物。
高效液相色谱测定法
高效液相色谱测定法
高效液相色谱测定法(High Performance Liquid Chromatography,HPLC)是一种常用的分离和定量技术,可
以用于分离和测定复杂的混合物。
它基于物质在流动相(溶剂)和固定相(色谱柱上的填料)之间的相互作用的差异,利用流动相的流动将待测样品分离成不同的组分。
通过分析组分的保留时间和色谱峰的峰面积或峰高,可以定量不同组分的含量或浓度。
高效液相色谱测定法具有分离效率高、分析速度快、灵敏度高、重复性好等优点,因此在许多分析领域得到广泛应用。
它可以应用于生物医药、环境监测、食品安全等多个领域,用于分析和监测有机化合物、无机化合物、药物、天然产物、食品成分等。
高效液相色谱测定法的基本步骤包括:样品预处理、制备流动相、样品进样、流动相流动、色谱柱分离、检测器检测、结果处理等。
根据样品的性质和分析要求,可以选择不同的检测器,如紫外检测器(UV)、荧光检测器、质谱检测器等。
需要注意的是,高效液相色谱测定法在操作过程中需要注意样品制备和仪器条件的优化,以提高分离效果和分析结果的准确性。
此外,也需要注意流动相成分的选择、色谱柱的使用寿命等因素对分离效果的影响。
高效液相色谱法
31
特点: 特点: 氰基键合相选择性与硅胶类似 键合相选择性与硅胶类似, ① 氰基键合相选择性与硅胶类似, 但极性更小。相同流动相, 但极性更小。相同流动相,组分保留 时间小于硅胶。 时间小于硅胶。 氨基键合相 主要用于糖类分析, ② 氨基键合相 主要用于糖类分析, 糖类分析专用柱 分析专用柱。 是糖类分析敏度: 紫外、荧光、电化学、 紫外、荧光、电化学、质谱等高灵敏 度检测器使用。 度检测器使用。 最小检测量: 最小检测量: 10-9 ~10-11 g 4. 高度自动化: 高度自动化: 采用色谱专家系统为核心的色谱智 能化和仿真优化技术, 能化和仿真优化技术,使 HPLC不仅能 不仅能 自动处理数据,绘图和打印分析结果, 自动处理数据,绘图和打印分析结果, 而且还可以自动控制色谱条件。 而且还可以自动控制色谱条件。
32
2. 流动相极性与容量因子的关系 流动相极性大,洗脱能力增加, 流动相极性大,洗脱能力增加, k 减小,tR 减小;反之, k 与 tR 均 减小, 减小;反之, 增加。 增加。 极性小的组分先出柱
33
四、正、反相色谱法 正相HPLC(normal phase HPLC) ( 正相 ) 固定相: 固定相:极性 常用:改性硅胶 硅胶、 常用:改性硅胶、氰基柱 流动相: 非极性(或弱极性) 流动相 非极性(或弱极性) 常用: 正己烷 常用: 流动相极性小于固定相极性
11
第二节 分离机制 一、液-固吸附色谱法 固吸附色谱法
(Liquid-Solid Chromatography)
(一)吸附机理 根据吸附剂对样品中各组分的吸 根据吸附剂对样品中各组分的吸 附能力差异而分离 而分离。 附能力差异而分离。 吸附过程是被分离组分的分子 与流动相分子争夺吸附剂表面活性 中心(active center)的结果。 的结果。 中心 的结果
高效液相色谱法
60年代研制出气动放大泵、注射泵及低流量往复式 柱塞泵,但后者的脉冲信号很大,难以满足高效液 相色谱的要求。1970年代,往复式双柱塞恒流泵, 解决了这一问题1970年代后,科克兰制备出全多孔 球形硅胶,平均粒径只有7μm,具有极好的柱效, 并逐渐取代了无定形微粒硅胶。之后又制造出的键 合固定相使柱的稳定性大为提高,多次使用成为可 能。1970年后,适合分离生物大分子的填料又成为 研究的热点。1980年后,改善分离的选择性成为色 谱工作者的主要问题,人们越来越认识到改变流动 相的组成是提高选择性的关键
• 流程:如左图所示,流 动相贮器⑴中的流动相 被泵⑵吸入,经梯控制 器按一定的梯度进行混 合然后输出,测其压力 和流量,导入(3)进样 阀(器)经(4)色谱柱 后到(5)检测器检测, 由(7)记录仪记录色谱 图,(6)为废液。
特点(高效液相色谱法有“四高一广”的特点):
①高压:流动相为液体,流经色谱柱时,受 到的阻力较大,为了能迅速通过色谱柱,必 须对载液加高压。 ②高速:分析速度快、载液流速快, 较经典液体色谱法速度快得多,通常 分析一个样品在15~30分钟,有些样 品甚至在5分钟内即可完成,一般小于 1小时。
HPLC已在环境监测中得到广泛应用,特别 适用于分子量大、挥发性低、热稳定 性差的有机污染物的分离和分析如多 环芳烃、酚类、多环联苯、邻苯二甲 酸酯类、联苯胺类、阴离子表面活性 剂有机农药、除草剂等,其中多数属于 美国环保局(EPA)清洁水法案中颁布的 114项优先有机污染物范围。
5.在药品检验中的应用: 现在,在药品质量标准中,对有关物质检查的要 求越来越高,一个药物从合成原料到制备有 关的制剂,再经过贮备、运输、使用,要经过 一段较为复杂和漫长的过程,在此期间,每一 个过程都有可能产生有关的物质,如生产中 可能带入原料、试剂、中间体、副产物和 异构体等;在贮备和运输过程中,可能产生降 解产物,聚合物等。为了保证药物的安全有 效。同时也要考虑到生产的实际情况。因 此,对药物的研究,可以允许有一定量的无害 或低毒性的有关物质液相仪器各厂家的仪 器展。还有对药品的含量测定
高效液相色谱法HPLC
VS
报告结果
整理分析数据,撰写分析报告,提供各组 分的浓度、纯度等相关信息,为科研或生 产提供决策依据。
THANKS FOR WATCHING
感谢您的观看
实验操作步骤
流动相的准备与平衡
根据实验要求配制流动相,通过泵以适宜的流速 通过色谱柱进行平衡。
洗脱与检测
流动相带着样品经过色谱柱洗脱,各个组分依次 流出并进入检测器进行检测。
ABCD
进样
将样品注入进样器,通过压力将样品送入色谱柱 进行分离。
数据处理与结果分析
对检测器输出的信号进行处理,得到各组分的峰 形和峰面积,进行定性和定量分析。
01
02
03
04
进样
将样品注入色谱柱。
分离
在流动相的带动下,样品中的 组分在色谱柱中进行分离。
检测
检测器对分离后的组分进行检 测,并记录信号。
数据处理
对采集到的数据进行处理、分 析和存储。
高效液相色谱仪的维护和保养
定期清洗色谱柱
使用适当的溶剂清洗色谱柱, 以去除残留物和杂质。
维护和检查检测器
定期检查检测器的性能和准确 性,确保其正常运行。
数据处理系统
用于采集、处理、分析和存储色谱数据,通常采用色谱工 作站。
高效液相色谱仪的操作流程
01
02
03
样品准备
将样品进行适当处理,以 便注入色谱柱。
流动相制备
根据实验要求,选择合适 的流动相,并进行过滤和 脱气处理。
系统平衡
在进样之前,确保色谱系 统达到平衡状态,以提高 分离效果。
高效液相色谱仪的操作流程
样品的预处理
分离
对于复杂样品,需要进行分离操 作以去除杂质或提取目标成分。 常用的分离方法包括离心、过滤、
高效液相色谱方法及应用
高速、高效、高灵敏度、高自动化。
1.1.2 与气相色谱法比较
应用范围广、更利于选择最佳分离条件且可在常 温下操作。
1.1.3 高效液相色谱法的特点
(1)分离效能高 (2)选择性高 (3)检测灵敏度高 (4)分析速度快 适合于高沸点、热不稳定有机及生化试样的高效分离 分析方法。
1.2 高效液相色谱法的分类
按溶质在两相分离过程中的物理化学原理分类 1.2.1 吸附色谱(Adsorption
Chromatography) 1.2.2 分配色谱(Partition Chromatography) 1.2.3 离子色谱(Ion Chromatography) 1.2.4 体积排阻色谱(Size Exclusion
2.3.3 柱温箱的温度控制要求比较精确,因 为流体的粘度受温度的影响较大。
2.4 检测器
2.4.1 检测器的性能指标 (1)噪声 (2)基线漂移 (3)灵敏度 (4)线性范围 (5)检测器的池体积
2.4.2 检测器的种类
2.4.2.1 紫外吸收检测器
(ultraviolet-visible detector,UVD )
• 进样系统:进样器,进样阀。 • 分离系统:色谱柱,恒温箱。 • 检测系统记录系统:检测器、记录装置
2.1 高压输液系统
2.1.1 贮液罐 2.1.2 流动相脱气
(1)吹氦脱气法 (2)加热回流法 (3)抽真空脱气法 (4)超声波脱气法 (5)在线真空脱气法
2.1.3 高压输液泵
(1)恒流泵:输出恒定体积流量的流动相 (2)恒压泵:又称气动放大泵,输出恒定压力的泵。
Chromatography) 1.2.5 亲和色谱(Affinity Chromatography)
高效液相色谱
应用
由于HPLC分离分析的高灵敏度、定量的准确性、 适于非挥发性和热不稳定组分的分析,因此,在工 业、科学研究,尤其是在生物学和医学等方面应用 极为广泛。如氨基酸、蛋白质、核酸、烃、碳水化 合物、药品、多糖、高聚物、农药、抗生素、胆固 醇、金属有机物等分析,大多是通过HPLC来完成的。
液相色谱分离原理及分类
和气相色谱一样,液相色谱分离系统由 两相——固定相和流动相组成。液相色谱的 固定相可以是吸附剂、化学键合固定相(或 在惰性载体表面涂上一层液膜)、离子交换 树脂或多孔性凝胶;流动相是各种溶剂。
被分离混合物由流动相液体推动进 入色谱柱。根据各组分在固定相及流动 相中的吸附能力、分配系数、离子交换 作用或分子尺寸大小的差异进行分离。
它与经典液相色谱法的区别是填料颗粒小而均 匀,小颗粒具有高柱效,但会引起高阻力,需 用高压输送流动相,故又称高压液相色谱法 (High Pressure Liquid Chromatography,HPLC)。 又因分析速度快而称为高速液相色谱法(High Speed Liquid Chromatography,HSLP)。也称 现代液相色谱。
敏感,且不适于梯度淋洗。
平面镜
样品
透镜
遮光板
光源
参比
光学零
光电转换 调零
放大器
记录仪
荧光检测器
许多有机物具荧光活性, 尤其是芳香族化合物具有很 强的活性。荧光检测器是一 种选择性很强的检测器,其
灵敏度比UV检测器高2~个数
量级。
电导检测器
电导检测器主要用于离子色谱的检测。 原理:基于待测物在一些介质中电离后所产生的电导(电 阻的倒数)变化来测量电离物质的含量。
流程及主要部件
流程
高效液相色谱法
液相色谱法固定相
(三) 离子交换色谱法固定相
1. 薄膜型离子交换树脂: 即以薄壳玻璃珠为担体, 在它的表面涂约 1% 的离子交换树脂而成。
2. 离子交换键合固定相: 用化学反应将离子交换基 团键合在惰性担体表面。
液相色谱法固定相
(四) 亲和色谱固定相
亲和色谱是一种基于分离物与配体间特异
的生物亲合作用来分离生物大分子的技术,它
五 高效液相色谱分离类型的选择
要正确地选择色谱分离方法,首先必须尽可能多的 了解样品
的有关性质,其次必须熟悉各种色谱方法的主要特点及其应
用范围。选择色谱分离方法的主要根据 是样品的相对分子质 量的大小,在水中和有机溶剂中的溶解度,极性和稳定程度
以及化学结构等物理、化学性质。
1、相对分子质量 对于相对分子质量较低(一般在200以下),挥发性比
的作用越来越大,主要应用如下:
多环芳烃、农药、酚类、真菌毒素、异腈酸酯等
等。 特别是有机农药方面的检测。
1. 有机氯农药残留量分析
固定相:薄壳型硅胶(37 ~50m)
流动相:正己烷
流 速:1.5 mL/min 色谱柱:50cm2.5mm(内径)
检测器:差示折光检测器
可对水果、蔬菜中的农药残 留量进行分析。
极性小的组分先出柱,极性大的组分后出柱
适于分离极性组分
反相色谱——固定液极性 < 流动相极性(RLLC)
极性大的组分先出柱,极性小的组分后出柱 适于分离非极性组分
载体又称担体
(1) 全多孔型担体:
a.
HPLC早期使用的担体与GC类似,是颗粒均匀的多孔球 体,如有氧化铝、氧化硅、硅藻土等制成的 Φ 100μ m全多孔型担体。
高效液相色谱法(HPLC)简介
高效液相色谱法分离过程
主要在于固定相的性质、形状及粒度,其次 差别: 是检测手段和输液设备。
经典液相色谱 固定相: 粒度:60~600μm(多孔) 柱长:10~200cm(d=10~50mm) n 约为 2~50/m
流动相:靠重力输送
经典液相色谱无在线检测器
缺点:
①粒度范围宽、不规则,不易填充均匀,扩散和传质阻 力大。 ②无检测设备,分析速度慢、效率低。 只能作为分离手段
(3)不能完全替代气相色谱
(4)不适于分析受压分解、变性的具有生物活性的
Hale Waihona Puke 生化样品。高效液相色谱法与其他分析方法一样,
不是尽善尽美的。
第二节 高效液相色谱法的基本理论
一、高效液相色谱参数 1.定性参数 tR 、 t 0 、 t’ R t’R= tR- t0 2.柱效参数 σ、 W1/2 、W W=4 σ 或 w=1.699W1/2 n=( tR / σ)2 H=L/n
四、高效液相色谱法的应用范围和局限性
1.应用范围 高效液相色谱法适于分析高沸点、受热不稳定易 分解、分子量大、不同极性的有机化合物;生物活性 物质和多种天然产物;合成和天然高分子化合物。 涉及石油化工产品、食品、药品、生物化工产品 及环境污染物。约占全部有机物的80%。 2.方法的局限性
(1)使用多种溶剂为流动相,成本高,污染环境 (2)缺少通用检测器
美国药典委员会(USPC)成立于1820年,至今近200 年。出版发行了25版药典。 75年(19版)将HPLC载入药典 20版-62项;21版-363项;22版-871项;23版-1188项; 24版-含量测定法:1386项 鉴别:519项 杂质检查:206项
如今:在评价世界各国药典水平时,HPLC法成为 反映各国药典先进性的重要指标之一。
高效液相色谱法培训PPT课件
注意事项与常见问题解答
样品处理注意事项
01
避免样品污染、损失或变质,确保处理过程的准确性和可重复
性。
常见问题及解决方法
02
针对样品处理过程中可能出现的问题,如回收率低、干扰物质
多等,提供相应的解决方法。
安全与防护
03
注意有毒有害试剂的使用安全,做好个人防护和环境保护工作。
04 方法开发与优化策略
梯度洗脱程序设计思路
初始比例确定
根据待测组分的极性差异,选 择合适的初始流动相比例。
梯度斜率设置
根据组分的分离情况,调整梯 度斜率,使各组分在合适的保 留时间内洗脱出来。
梯度时间设置
确保梯度洗脱过程中,各组分 能够充分分离,同时避免过长 的分析时间。
梯度曲线类型
根据实际需求选择合适的梯度 曲线类型,如线性梯度、凹形
梯度或凸形梯度等。
方法验证内容及标准
精密度
准确度
通过添加回收率试验,验证方法 的准确度,确保测定结果可靠。
考察方法的重复性和中间精密度, 确保测定结果的稳定性。
线性范围
确定方法的线性范围,确保待测 组分浓度在该范围内时,测定结 果准确可靠。
专属性
考察方法对待测组分的选择性, 确保其他共存物质不干扰测定。
长期稳定性
考察样品在规定的储存条件下放置一定时间后的稳定性,以确定 样品的保质期和储存条件。
方法学考察
对分析方法本身进行稳定性考察,包括方法的耐用性、重复性和 中间精密度等指标的评估。
质量控制图绘制和应用
质量控制图绘制
根据长期稳定性考察数据,绘制质量控 制图,包括平均值、标准差和控制限等 指标。
VS
发展历程及应用领域
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
忽略固定相传质阻抗
HPLC:H A Cm u Csm u
Cm
Csm
dp 2 Dm
C dp2 Dm
Dm
T
dp C H ,n 柱效
Dm H ,n 柱效
T Dm C ,但易产生气泡
T Dm , ,柱阻
第二节 高效液相色谱仪
高压输液系统、进样系统、分离系统和检测系 统。此外还配有辅助装置:如梯度淋洗,自动进 样及数据处理等。
4.检测系统
(1)溶质性检测器 仅对被分离组分的物理或化学特性有响应,属 于这类检测器的有紫外、荧光、电化学检测器等。
光电二极管阵列检测器
(2)总体检测器 对试样和洗脱液总的物理或化学性质有响应,属 于这类检测器的有示差折光,电导检测器等。
5、附属系统
包括脱气、梯度淋洗、恒温、自动进样、馏分收 集以及数据处理等装置。其中梯度淋洗装置是高压 液相色谱仪中尤为重要的附属装置。
(5)操作、更换溶剂方便,易于清洗和维 修,容易实现梯度淋洗和流量程序控制等。
高压泵工作原理.swf
2.进样系统
高效液相色谱柱比气相色谱柱短得多(约5~ 30cm),柱外展宽(又称柱外效应)较突出。
柱外展宽是指色谱柱外的因素所引起的峰展宽, 主要包括进样系统、连接管道及检测器中存在死 体积。
柱外展宽可分柱前和柱后展宽。进样系统是引 起往前展宽的主要因素。
HPLC与GC差别
气相色谱
高效液相色谱
只能分析挥发性物质,只能分析20%的化 合物 不能用于热不稳定物质的分析 用毛细管色谱可得到很高的柱效 有很灵敏的检测器如ECD和较灵敏的通用 检测器(FID和TCD) 流动相为气体、无毒、易于处理 运行和操作容易 仪器制造难度较小
几乎可以分析各种物质
可以用于热不稳定物质的分析 色谱柱不能很长,柱效不会很高 没有较高灵敏的通用检测器
流动相有毒、费用较高 运行和操作比GC难一些 仪器制造难度大
流动相差别 ❖ GC:流动相为惰性气体 ➢ 组分与流动相无亲合作用力,只与固定相作用 ❖ HPLC:流动相为液体 ➢ 流动相与组分间有亲合作用力,为提高柱的选择性、
改善分离度增加了因素 ➢ 流动相种类较多,选择余地广 ➢ 流动相极性和pH值的选择也对分离起到重要作用
选用不同比例的两种或两种以上液体作为流动相 可以增大分离选择性
操作条件差别 GC:加温操作 HPLC:室温;高压(液体粘度大,峰展宽小)
第一节 液相色谱柱效
速率理论(与GC对比)
1. GC:H A B / u C u (填充柱)
或 H B / u C u (毛细管柱)
A 2 dp
梯度洗脱就是在分离过程中使两种或两种以上不 同极性的溶剂按一定程序连续改变它们之间的比例, 从而使流动相的强度、极性、pH值或离子强度相 应地变化,达到提高分离效果,缩短分析时间的目 的。
梯度洗脱的实质是通过不断地变化流动相的强度,
来调整混合样品中各组分的k值,使所有谱带都以最 佳平均k值通过色谱柱。
A dp
B 2 Dm 2 Dg
B tR ,B Dg
Dg
Hale Waihona Puke T或DgT M
C Cm Cs Cg Cl Cl
Cl
df 2 Dl
T
DL
2. HPLC:H A C u
B 2 Dm
Dm
T
柱温T 低,流动相 大 B相忽略
➢ 讨论: 1)流动相流速对HPLC板高的影响
它在液相色谱中所起的作用相当于气相色谱中的
程序升温,所不同的是,在梯度洗脱中溶质k值的变
化是通过溶质的极性、pH值和离子强度来实现的, 而不是借改变温度(温度程序)来达到。
梯度淋洗装置
外梯度:
利用两台高压输液泵, 将两种不同极性的溶剂 按一定的比例送入梯度 混合室,混合后进入色 谱柱。
内梯度:
一台高压泵, 通过比例 调节阀,将两种或多种 不同极性的溶剂按一 定的比例抽入高压泵 中混合。
当注入欲分离的样品时,高压泵将贮液器中流 动相经过进样器,将样品带入色谱柱进行分离, 然后依先后顺序进入检测器,记录仪将检测器送 出的信号记录下来,得到液相色谱图。
液相色谱.swf
1.高压输液系统
固定相颗粒极细,对流动相阻力很大,配备有高 压输液系统。一般由储液罐、高压输液泵、过滤器、 压力脉动阻力器等组成。
高效液相色谱法
高效液相色谱法是以气相色谱为基础,在经典 液相色谱实验和技术基础上,采用颗粒十分细的 固定相,并采用高压泵输送流动相而建立的一种 液相色谱法。
HPLC与经典LC区别
经典液相色谱
高效液相色谱
常压或减压 填料颗粒大 柱效低 分析速度慢 色谱柱只用一次 不能在线检测
高压,40~50Mpa 填料颗粒小,2~50μm 柱效高,40000~60000块/m 分析速度快 色谱柱可重复多次使用 能在线检测
u 1cm / s时,H u u H ,n 柱效 ,但tR
兼顾柱效和分析时间,选择u 1ml / min
2)涡流扩散项及其影响
A 2 dp
A dp
,dp A H ,n 柱效
3)传质阻力项及其影响
C Cm Csm Cs Cm Cs(m 忽略固定相传质阻抗 ) 注:只考虑流动相和静态流动相的传质阻抗
3、分离系统——色谱柱
色谱柱包括柱管与固定相两部分。 柱管材料有玻璃、不锈钢、铝、铜及内衬光滑 的聚合材料的其他金属。玻璃管耐压有限,故金 属管用得较多。 一般色谱柱长5~30cm,内径为4~5mm,凝 胶色谱柱内径3~12mm,制备往内径较大,可 达25 mm 以上。
柱子装填得好坏对柱效影响很大。对于细粒 度的填料(<20μm)一般采用匀浆填充法装 柱,先将填料调成匀浆,然后在高压泵作用下, 快速将其压入装有洗脱液的色谱柱内,经冲洗 后,即可备用。
第三节 分配色谱 (Partition Chromatography)
(1)流量稳定、无脉动,流量精度和重复性在 1~2%左右;
(2)流量范围宽,且连续可调,一般在0.01~10 mL min-1之间,制备型仪器能达到100 mL min-1;
(3)输出压力高、密封性好,要求最高压 力300~500 kg/cm2;
(4)耐腐蚀,能适用于各种有机溶剂、水 和缓冲溶液;