线性方程组解的判定与解的结构

合集下载

线性代数课件-4.4线性方程组的解的结构

线性代数课件-4.4线性方程组的解的结构

为该方程组的解,则
x11
x
x
21
x
n1
称为方程组的解向量.
齐次线性方程组的解的性质
性质1:若 x = x1, x = x2 是齐次线性方程组 Ax = 0 的解, 则 x = x1 + x2 还是 Ax = 0 的解.
证明: A(x1 + x2 ) = Ax1+ Ax2 = 0 + 0 = 0 .
性质2:若 x = x 是齐次线性方程组 Ax = 0 的解,k 为实数, 则 x = kx 还是 Ax = 0 的解.
证明: A( kx ) = k ( Ax ) = k 0 = 0 .
结论:若 x = x1, x = x2, ...,, x = xt 是齐次线性方程组 Ax = 0 的解, 则 x = k1x1 + k2x2 + … + ktxt 还是 Ax = 0 的解.
b22 xr+2
b1,nr xn , b2,nr xn ,
xr br1 xr+1 br 2 xr+2 br,nr xn .
令 xr+1 = c1, xr+2 = c2, …, xn = cn-r ,则
线性方程组 的通解
x1
x2
b11c1 b12c2 b21c1 b22c2
基础解系的概念
定义:齐次线性方程组 Ax = 0 的一组解向量:x1, x2, ..., xr
如果满足
① x1,x2,...,xr 线性无关; ② 方程组中任意一个解都可以表示x1, x2, ..., xr 的线性组合,
那么称这组解是齐次线性方程组的一个基础解系.
设 R(A) = r ,为叙述方便, 不妨设 A 行最简形矩阵为

线性代数第三章线性方程组第4节线性方程组解的结构

线性代数第三章线性方程组第4节线性方程组解的结构

c1
1 0
c2
0 1
k1
1 1
k2
2 2
1
0
0
1
得 c1 k2
cc12
k1 k1
2k2 2k2
c1 k2
即 c1 k2 0
cc12
k1 k1
2k2 2k2
0 0
c1 k2 0
解得 c1 k2,c2 k2,k1 k2.

k2 k 0,
则方程组(Ⅰ)、(Ⅱ)的公共解为
(kk21
(k1 k2 )
k2 k2
)0 0
解之得到
k1 k2.
当k1 k2 0时,向量
k1(0,1,1, 0)T k2 (1, 2, 2,1)T k2[(0,1,1, 0)T (1, 2, 2,1)T
满足方程组(Ⅰ).
k2 (1,1,1,1)T
并且它也是方程组(Ⅱ)的解,故它是方程组(Ⅰ)与(Ⅱ)的 公共解.
定理3.17 若0是非齐次线性方程组AX=b的一个解,则方程组 AX=b的任意一个解 都可以表示为 0 其中 是其导出组AX=0的某个解,0称为方程组
AX=b的一个特解.
例7 求线性方程组
x1 2x2 3x3 x4 3x5 5
3x1
2x1 4x2
x2 2x4 6x5 1 5x3 6x4 3x5
0 0
x1 5x2 6x3 8x4 6x5 0
的一个基础解系.并求方程组的通解.
解 方程组中方程个数小于未知量的个数,所以方程组有 无穷多解.
对方程组的系数矩阵施以初等行变换,化为简化的阶 梯形矩阵:
3 1 6 4 2
A 2
2
3 5
3
1 5 6 8 6

4.5 线性方程组解的结构

4.5 线性方程组解的结构

0 Ax 0
1
br1
br
,nr
0
0 0
0
0
xn
x1
b11 xr1 b1,nr xn
xr br1 xr1 br ,nr xn
为什么要取下列n-r组数?因为我们要得到线性无关的解
现对 xr1 , , xn 取下列 n r 组数:
xr1 1
B的列向量组只是解向量全体的部分向量组,故
R(B) R 1 2 L s n r
于是有 R(A) R(B) n
例6 设A为n阶方阵,证明(可当结论记住直接用)
n, 当 R A n,
R
A*
1,
当 R A n 1,
0, 当 R A n 1.
证(1)当 R A n时, A 0,
2020/5/6
三、应用-求通解
解:根据非齐次线性方程组的解的结构,可知本题 中 C、E是正确的
例5 证明 当 Amn Bns O时,R(A)+R(B) ≤n
(做题时可直接当结论用)
证明 AB=0,将B按列分块,有:
B 1 2 L s
则B的每一列均是线性方程组Ax=0的解。 若R(A)=r, 解向量的全体为S,则R(S)=n-r.
n R( A)=未知量的个数-系数矩阵的秩
(2)齐次线性方程组基础解系的几个重要特征 基础解系即Ax=0解向量全体的一个最大无关组。 基础解系中的向量共有__n_-_R_(_A_)_个; 基础解系中的向量一定线性_无____关; 基础解系的向量一定是_非__零___向量。 任意n-R(A)个线性无关的满足Ax=0的非零解向量, 都可以构成一个基础解系。
且当 c1, c2 ,L , ck 为任意常数时,

线性方程组解的结构及其判定

线性方程组解的结构及其判定
通解为 η 或
ξ = (5,3,1)T 所以 基础解系为
+ kξ
将其写成矩阵 方程形式为
x1 = 5c 3 x = 3c + 2 2 x3 = c
x1 5 3 x2 = 3 c + 2 x 1 0 3
~
A = (α1 , α 2 , , α n , β )称为方程组(1)的增广矩阵.
非齐次线性方程组的解法 1.非齐次线性方程组解的性质
性质1:非齐次方程组(1)的两个解的差是它的导出组的解.
Aη1 = B, Aη 2 = B A(η1 η 2 ) = O
性质2:非齐次方程组(1)的一个解与其导出组的一个解的和是 非齐次方程组(1)的解.
系数矩阵
(1)
a1n x1 b1 a2n x2 b2 X = B= x b a mn n m
方程组的 矩阵形式
AX = B
AX = O
非齐次 方程组的 导出组
引 a11 a12 进 a 21 a 22 向 α1 = α 2 = 量 a a
例1:求解方程组
1 1 0 → 0 2 0 1 0 5 3 1 → 0 1 3 2 → 0 0 0 0 0 0
同解方程组为
1 2 1 A = 2 3 1 4 7 1
x1 + 2 x2 x3 = 1 2 x1 + 3x2 + x3 = 0 4 x + 7 x x = 2 2 3 1
1 1 1 1 1 1 1 1 1 A = 1 1 1 3 → 0 0 2 4→ 0 1 1 2 3 0 0 1 2 0
x1 x2 x3 + x4 = 0 x1 x2 + x3 3x4 = 0 x x 2 x + 3x = 0 2 3 4 1

4_6非齐次线性方程组有解的条件及解的结构

4_6非齐次线性方程组有解的条件及解的结构

解证 对增广矩阵B进行初等变换,
方程组的增广矩阵为
Page 17
0 0 1 1 0 1 1 0 0 0 0 1 1 0 B 0 0 0 1 1 0 1 0 0 0 1
0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 ~ 0 1 1 0 0 0 0 0 0 0
例1 求下述方程组的解 x1 x 2 x 3 x 4 x 5 7 , 3 x x 2 x x 3 x 2, 1 2 3 4 5 2 x 2 x 3 2 x 4 6 x 5 23, 8 x1 3 x 2 4 x 3 3 x 4 x 5 12.
下面讨论非齐次线性方程组与其导出组的解的关 系.
Page 2
(1)如果u1是Ax=b的一个解,v1是Ax=0的一个解,则 u1+v1也是Ax=b的解. 证: ∵ Au1=b, Av1=0 故A(u1+v1) =Au1+Av1 =b+0 =b (2)如果u1,u2是Ax=b的两个解,则u1-u2是Ax=0的解.
显然,R( A) 2, R( B ) 3,
故方程组无解.
Page 16
x1 x2 x x 3 2 例3 证明方程组 x3 x4 x x 5 4 x5 x1 求出它的一切解.
a1 a2 a3 a4 a5 有解的充要条件
是a1 a2 a3 a4 a5 0.在有解的情况下,
由R A R B ,知方程组有解又R A 2, n r 3, .
所以方程组有无穷多解. 且原方程组等价于方程组
x1 x2 x3 x4 x5 7 2 x2 x3 2 x4 6 x5 23

线性方程组的解的结构与求解

线性方程组的解的结构与求解

线性方程组的解的结构与求解线性方程组是数学中常见的重要概念,它在各个领域的应用广泛。

本文将探讨线性方程组解的结构以及求解方法。

一、线性方程组的基本概念在进行线性方程组的解析之前,首先我们需要了解线性方程组的基本概念。

线性方程组由多个线性方程组成的方程组,每个方程都是一次项之和等于常数的形式。

一般来说,线性方程组的形式可以表示为:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙ其中,a₁₁, a₁₂, ..., aₙₙ为系数,x₁, x₂, ..., xₙ为未知数,b₁,b₂, ..., bₙ为常数。

二、线性方程组解的结构线性方程组的解的结构可以分为三种情况:有唯一解、无解和无穷多解。

1. 有唯一解的情况当线性方程组满足以下条件时,方程组有唯一解:- 方程组的系数矩阵的行列式不等于0(即系数矩阵可逆);- 方程组的系数矩阵的秩等于方程组的未知数个数。

在这种情况下,解可以通过矩阵运算得到,即将方程组写成矩阵的形式(AX=B),其中A为系数矩阵,X为未知数的列向量,B为常数列向量。

解可以表示为X=A⁻¹B。

2. 无解的情况当线性方程组满足以下条件时,方程组无解:- 方程组的系数矩阵的行列式等于0;- 方程组的增广矩阵的秩大于系数矩阵的秩。

无解的情况表示方程组的方程之间存在冲突,无法找到满足所有方程的解。

3. 无穷多解的情况当线性方程组满足以下条件时,方程组有无穷多解:- 方程组的系数矩阵的行列式等于0;- 方程组的增广矩阵的秩等于系数矩阵的秩,小于未知数的个数。

在这种情况下,方程组的解具有自由变量的形式,可以通过参数化表示。

通常,可以使用高斯消元法或矩阵的特殊解与齐次方程的通解相结合的方法求解。

三、线性方程组的求解方法求解线性方程组的方法有多种,包括高斯消元法、矩阵的逆和Cramer法则等。

线性方程组解的结构

线性方程组解的结构

§3.4 线性方程组解的结构线性方程组无解和有唯一解,无须研究其解的结构;所谓解的结构主要是对无穷多个解的情况.为了有利于研究和应用,常把方程组的解写成向量的形式.一、齐次线性方程组解的结构对含n 个未知数的齐次线性方程组0AX = (3.4.1)1.解的性质:X 1是(3.4.1)的解,X 2是(3.4.1)的解,k 1 和k 2为常数;则2211X X k k +也是(3.4.1)的解 [代入方程即可证明] .2.基本概念:① (3.4.1)的基础解系 —— (3.4.1)解向量集合的一个极大线性无关向量组.②(3.4.1)的通解 —— (3.4.1)基础解系的线性组合.3.定理:若(3.4.1)系数矩阵的秩n r R <=)(A ,则存在n - r 个线性无关的解向量α1,α2,…,α n – r ,它们构成(3.4.1)的基础解系,且(3.4.1)的全部解为,X = k 1 α1 + k 2 α2 + …+ k n – r α n – r ,其中k 1 ,k 2 ,… k n – r ,为任意常数.说明:① 齐次线性方程组的基础解系并不是唯一的,但所含线性无关向量的个数却是确定的.② 求齐次线性方程组的基础解系,在特征值和特征向量、实对称矩阵对角化、二次型化为标准形等问题中都有重要的应用.4.例题[P.113例1]:求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=−−+=++−−=−+=+++05920232042032432143214214321x x x x x x x x x x x x x x x 的一个基础解系及通解.解:对系数矩阵A 进行初等行变换:(注:最后两步与教材不同)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−−=00000000120001210000000012001321612003600360013215921232110421321A R(A ) = 2(可知基础解系有4-2 = 2个线性无关的解向量),对应同解方程组⎩⎨⎧=+=++020243321x x x x x ;即 ⎪⎩⎪⎨⎧−=+−=4342121212x x x x x , [初级写法: 令 4422~,~x x x x == ,其中2~x 和4~x 为任意常数; 则 444322421~,~21,~,~21~2x x x x x x x x x =−==+−= 即 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+−++−=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡121021~0012~~0~2100~~21~242442424321x x x x x x x x x x x 为原方程组的通解. ] [正常(高级)写法:]令⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡10,0142x x ,(注:二个向量肯定线性无关)则 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−⎥⎦⎤⎢⎣⎡−=⎥⎦⎤⎢⎣⎡2121,0231x x .于是,该方程组的一个基础解系为[]T 10012−=X ,T2121021⎥⎦⎤⎢⎣⎡−=X ;原齐次线性方程组的通解是 2211X X X k k += ,其中k 1,k 2为任意常数.二、非齐次线性方程组解的结构对含n 个未知数的非齐次线性方程组b AX = (3.4.2)1.基本概念:①(3.4.2)的导出组 —— 与(3.4.2)相应的齐次线性方程组0AX =.②(3.4.2)的通解 —— 其相应导出组的通解加本身的一个特解.2.解的性质:若X 1 和X 2都是(3.4.2)的解,X 0 是其导出组的解,则 ① X 1 - X 2是导出组的解;② X 1 + X 0 是(3.4.2)的解.3.定理:若含n 个未知数的非齐次线性方程组b AX =满足n r R R <==)()(A A ,X 1 ,X 2 ,…,X n – r 是其导出组0AX =的基础解系,X 0 是b AX =的一个特解,则,b AX =的全部解为 02211X X k X k X k X r n r n ++++=−−L 其中k 1 ,k 2 ,… k n – r ,为任意常数.3.例题[P.116例3]:已知T 1)0,1,0(=X ,T 2)2,2,3(−=X 是线性方程组⎪⎩⎪⎨⎧=++=++−=+−d cx bx ax x x x x x x 32132132114312的两个解,求此方程组的通解.解:线性方程组的系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=c b a 413211A 因方程组有两个解,即解不唯一,所以3)()(=<==n r R R A A .又因A 有二阶子式041311≠=−,即2)(≥A R ,所以2)()(==A A R R .故导出组0AX =的基础解系中只包含一个非零解向量.因0X X X ≠−−=−=T 213)2,1,3(,所以X 3就是0AX =的基础解系. 从而给定方程组的通解为:T T 13)0,1,0()2,1,3(+−−=+=k k X X X .k 为任意常数.本题注1:通解中的X 1换成X 2也可以.因X 1 = X 3 + X 2 ,换后的结果为:23)1(X X X ++=k .注2:原方程组因有两个解,可知0=A ,)()(A A R R =,以及2)(=A R ;即a 、b 、c 、d 不能都为任意常数,具体可求得 b = d = 3a - 2c .作业(P.117):3.(1)[ 提示:R(A ) = 2 ];5[ 提示:AB = 0,即B 的列向量都是AX = 0的解向量;注意 R(AB ) 的取值 ];附录:对齐次线性方程组的系数矩阵进行初等行变换,从而确定基础解系的简便方法1.理论根据:2.简化的方法:。

2.6线性方程组解的一般理论

2.6线性方程组解的一般理论

x4
0
,
1
,
0
x5 0 0 1
2 2 6
1
1
5
1
1
,2
0
,3
0
0
1
0
0
0
1
一般解 c11 c22 c33
(c1, c2, c3为任意常数.)
8
三、非齐次线性方程组解的结构
x11 x22 xnn (I) 0 (II)
第二章 线性方程组 §2.6 线性方程组解的一般理论
一、线性方程组有解的判定定理 二、齐次线性方程组解的结构 三、非齐次线性方程组解的结构
1
一、线性方程组有解的判定定理
定理1 线性方程组 x11 x22 xnn (I) 有解
r( A) r( A) 推论1 线性方程组(I)无解 r(A) r( A) 推论2 线性方程组(I)有唯一解 r(A) r(A) n 推论3 线性方程组(I)有无穷多解 r(A) r(A) n
方程组的三个解向量 1,2 ,3满足
1
0
1
1 2 2, 2 3 1, 3 1 0
3
1
1
求 非 齐 次 线 性 方 程 组 一 的 般 解.
19
解 A是m 3矩阵, r(A) 1,
导出组的基础解系中有 含3 1 2个线性无关的解向量.
令1 2 a, 2 3 b, 3 1 c,则
其中k1 , k 2为任意实数.
21
A
2 1
3 0
1 2
1 2
3 6
0 0
0 0
1 0
1 0
1 0
5 0
0
0
4
5
3

线性方程组解的结构

线性方程组解的结构

线性方程组解的结构在数学领域中,线性方程组是一个包含多个线性方程的集合。

解析线性方程组是解决实际问题和在数学中的基础问题之一。

线性代数作为数学分支的一个基石,研究线性方程组解的结构是至关重要的。

本文将探讨线性方程组解的结构及相关性质。

一、线性方程组的定义线性方程组是形如以下形式的方程组:$$ \\begin{cases} a_{11}x_1 + a_{12}x_2 + \\cdots + a_{1n}x_n = b_1 \\\\a_{21}x_1 + a_{22}x_2 + \\cdots + a_{2n}x_n = b_2 \\\\ \\vdots \\\\ a_{m1}x_1 +a_{m2}x_2 + \\cdots + a_{mn}x_n = b_m \\\\ \\end{cases} $$其中,a ij和b i是已知的常数,x i是未知数。

二、线性方程组解的结构1. 解的存在性和唯一性对于线性方程组而言,可能出现以下几种情况:•若线性方程组有解,则解的存在性表明至少存在一组解;•若线性方程组有唯一解,则意味着只存在一组满足所有方程的解;•若线性方程组有无穷多个解,则说明有无穷多组解。

2. 解的结构线性方程组的解可以表示成一个通解和一个特解之和的形式。

具体而言,设A 是线性方程组的系数矩阵,X是未知数的向量,B是常数项的向量,通解可以表示为:X=Xℎ+X p其中Xℎ是方程组的齐次解,而X p是方程组的特解。

3. 解的分类根据线性方程组的系数矩阵的行、列数以及特殊性质,线性方程组的解可以分为以下几种情况:•若系数矩阵的行数等于列数且满秩(行列式不为零),则方程组有唯一解;•若系数矩阵的行数大于列数或者系数矩阵的秩小于行数,方程组可能无解或者有无穷多组解;•若线性方程组有特殊结构(如三角形方程组、对角矩阵方程组等),可以通过特殊性质简化解的求解过程。

三、线性方程组解的应用线性方程组解的结构在数学和应用领域均具有重要意义。

线性方程组解的结构

线性方程组解的结构

线性方程组解的结构线性方程组是线性代数的基本内容,在数学的其他分支、自然科学、工程技术以及生产实际中都经常用到,是一个非常重要的理论基础和数学工具。

本课题主要利用向量知识和矩阵的初等变换以及矩阵的秩的相关知识,对线性方程组的解法以及线性方程组解的性质、结构进行较为全面的总结,以便更系统的理解线性方程组及其应用,从而更好地利用线性方程组解决实际问题。

一、基本概念(1) 齐次线性方程组:,形如⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++00221122221211212111n mn m m n n n n x a x a x a x a x a x a x a x a x a (1)的方程组称为数域上的n 元齐次线性方程组,它的系数矩阵是n m ij a A ⨯=)(,未知量可以表示为⎪⎪⎪⎪⎪⎭⎫⎝⎛=n x x x X 21,则0X A = (1)称为齐次线性方程组的矩阵形式。

(2)非齐次线性方程组:形如⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++.22112222212*********,,m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 的方程组成为数域上的n 元非齐次线性方程组,它的系数矩阵为mn ij a A )(=,增广矩阵为),,,,(),(~21βαααβn A A ==,未知量可以表示为⎪⎪⎪⎪⎪⎭⎫⎝⎛=n x x x X 21,则X=βA (2)称为齐次线性方程组的矩阵形式。

称齐次线性方程组0X A =是线性方程组的导出组。

二、 线性方程组有解的判定定理我们将线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++.22112222212*********,,m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a (2.1)写成向量形式:1122.n n x x x αααβ++⋅⋅⋅+= (2.2)其中()j 1,2,,j n α=⋅⋅⋅是系数矩阵A 的第j 个列向量,β是常数向量。

线性方程组解的判定与解的结构

线性方程组解的判定与解的结构

***学院数学分析课程论文线性方程组解的判定与解的结构院系数学与统计学院专业数学与应用数学(师范)姓名*******年级 2009级学号200906034***指导教师 ** 2011年6月线性方程组解的判定与解的结构姓名******(重庆三峡学院数学与计算机科学学院09级数本?班)摘 要:线性方程组是否有解,用系数矩阵和增广矩阵的秩来刻画.在方程组有解且有 多个解的情况下,解的结构就是了解解与解之间的关系. 关键词:矩阵; 秩; 线性方程组; 解引言通过系数矩阵和增广矩阵的秩是否相同来给出判定线性方程组的解的判别条件.在了解了线性方程组的判别条件之后,我们进一步讨论解的结构.对于齐次线性方程组,解的线性组合还是方程组的解.在线性方程组有无穷个解时可用有限多个解表示出来.另外以下还涉及到线性方程组通解的表达方式.1 基本性质下面我们分析一个线性方程组的问题,导出线性方程组有解的判别条件. 对于线性方程组11112211211222221122n n n n s s sn n sa x a x a xb a x a x a x b a x a x a x b ++⋅⋅⋅+=⎧⎪++⋅⋅⋅+=⎪⎨⋅⋅⋅⎪⎪++⋅⋅⋅+=⎩ (1)引入向量112111s αααα⎡⎤⎢⎥⎢⎥=⎢⎥⋅⋅⋅⎢⎥⎣⎦,122222s αααα⎡⎤⎢⎥⎢⎥=⎢⎥⋅⋅⋅⎢⎥⎣⎦,…12n n nsn αααα⎡⎤⎢⎥⎢⎥=⎢⎥⋅⋅⋅⎢⎥⎣⎦,12s b b b β⎡⎤⎢⎥⎢⎥=⎢⎥⋅⋅⋅⎢⎥⎣⎦ 方程(1)可以表示为1122n n x x x αααβ++⋅⋅⋅+=性质 线性方程组⑴有解的充分必要条件为向量β可以表成向量组α1,α2,…,αn 的线性组合.定理1 线性方程组⑴有解的充分必要条件为它的系数矩阵111212122212n n s s sn a a a a a a A a a a ⋅⋅⋅⎛⎫⎪⋅⋅⋅⎪= ⎪⋅⋅⋅ ⎪⋅⋅⋅⎝⎭与增广矩阵A =⎛⎝111212122212n ns s sna a a a a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 12s b b b ⎫⎪⎪⎪⎪⎭有相同的秩.证明 先证必要性,设线性方程组(1)有解,就说说,β可以经过向量组1α,2α,⋅⋅⋅nα线性表出.由此立即推出,向量组1α,2α,⋅⋅⋅n α与向量组1α,2α,⋅⋅⋅n α,β等价,因而有相同的秩,这两个向量组分别是矩阵A 与A 的列向量组.因此矩阵A 与A 有相同的秩. 再证充分性,设矩阵A 与A 有相同的秩,就是说,它们的列向量1α,2α,⋅⋅⋅n α与1α,2α,⋅⋅⋅n α,β有相同的秩,令它们的秩为r. 1α,2α,⋅⋅⋅n α中的极大线性无关组是由r个向量组成,无妨设1α,2α,⋅⋅⋅r α是它的一个极大线性无关组.显然1α,2α,⋅⋅⋅r α也是向量组1α,2α,⋅⋅⋅n α,β的一个极大线性无关组,因此向量β可以经1α,2α,⋅⋅⋅r α线性表出,既然β可以经1α,2α,⋅⋅⋅r α线性表出,当然它可以经1α,2α,⋅⋅⋅n α线性表出.因此,方程组(1)有解.证毕定理2 对于线性方程组⑴,若()()R A R A r ==,则当r= n 时,有唯一解;当r< n 时,有无穷多解.证明 设D 是矩阵A 的一个不为零的r 级子式(当然它也是A 的一个不为零的子式),为了方便起见,不妨设D 位于A 的左上角.显然, A 的前r 行就是一个极大线性无关组,第r +1,…,s 行都可以经它们线性表出.因此,方程组⑴与11112211211222221122n n n n r r rn n ra x a x a xb a x a x a x b a x a x a x b ++⋅⋅⋅+=⎧⎪++⋅⋅⋅+=⎪⎨⋅⋅⋅⎪⎪++⋅⋅⋅+=⎩ (2)同解.当r =n 时,由克兰姆法则,方程组(2)有唯一解,即方程组⑴有唯一解.当r ﹤n 时,将方程组(2)改写为111122111,111211222222,1121122,11r r r r n n r r r r n nr r rr r r r r r rn n a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a x a x ++++++++⋅⋅⋅+=--⋅⋅⋅-⎧⎪++⋅⋅⋅+=--⋅⋅⋅-⎪⎨⋅⋅⋅⎪⎪++⋅⋅⋅+=--⋅⋅⋅-⎩(3)(3)作为12,r x x x ⋅⋅⋅的一个方程组,它的系数行列式D≠0.由克兰姆法则,对于12,r x x x ⋅⋅⋅的任意一组值,方程组(3),也就是方程组⑴,都有唯一的解.由于自由未知量12,r x x x ⋅⋅⋅可任意取值,所以方程组(1)有无穷多个解. 证毕在解决了线性方程组有解的判别条件之后,我们进一步探讨线性方程组解的结构.所谓解的结构问题就是解与解之间的关系问题.上面我们提到,n 元线性方程组的解是n 维向量,在解不是唯一的情况下,作为方程组的解的这些问题之间有什么关系呢?我们先看齐次方程组的情形.设111122121122221122000n n n ns s sn n a x a x a x a x a x a x a x a x a x ++⋅⋅⋅+=⎧⎪++⋅⋅⋅+=⎪⎨⋅⋅⋅⎪⎪++⋅⋅⋅+=⎩ (4)是一齐次线性方程组,它的解所成的集合具有下面两个重要性质:性质1 两个解的和还是方程组的解.设()12,,,n k k k ⋅⋅⋅与()12,,,n l l l ⋅⋅⋅是方程组(4)的两个解.这就是说,把它们代入方程组,每个方程成恒等式,即10nij jj a k==∑ (i=1,2,...,s ), 10nij jj a l==∑ (i=1,2,...,s ), 把两个就解的和()1122,,,n n k l k l k l ++⋅⋅⋅+(5)代入方程组,得11()00n nijjijjj j a ck c a kc ====⋅=∑∑ (i=1,2,...,s )这说明(5)也是方程组的解. 证毕性质2 一个解的倍数还是方程组的解.设()12,,,n k k k ⋅⋅⋅是(4)的一个解,不难看出()12,,,n ck ck ck ⋅⋅⋅还是方程组的解,因为11()00n nijjijjj j a ck c a kc ====⋅=∑∑ (i=1,2,...,s )由性质1和性质2得:性质3 方程组(4)的解的任一线性组合还是(4)的解.2 基础解系定义 齐次线性方程组(4)的一组解,若满足 1) 12,,,r ηηη⋅⋅⋅线性无关;2)(4)的任一解可由12,,,r ηηη⋅⋅⋅线性表出. 则称12,,,r ηηη⋅⋅⋅为(4)的一个基础解系.3 基础解系的存在性定理1 在齐次线性方程组有非零解的情况下,它有基础解系,并且基础解系所含解向量的个数等于n r -,其中)(A R r =()r R A =.证:若()R A r n =<,不防设1112121222120r r r r rra a a a a a a a a ⋅⋅⋅⋅⋅⋅≠⋅⋅⋅⋅⋅⋅2,则方程组(4)与方程组11112211,11121122222,1121122,11r r r r n n r r r r n nr r rr r r r r rn n a x a x a x a x a x a x a x a x a x a x a x a x a x a x a x ++++++++⋅⋅⋅+=--⋅⋅⋅-⎧⎪++⋅⋅⋅+=--⋅⋅⋅-⎪⎨⋅⋅⋅⎪⎪++⋅⋅⋅+=--⋅⋅⋅-⎩(6) 同解,用n r -组数 (1,0,…,0), (0,1,…,0), …, (0,0,…,1)代入自由未知量11(,,,)r r n x x x ++⋯⋯,就得到(6)的解,也就是(4)的n r -个解()()()111121221222,1,2,,,,,1,0,,0,,,,0,1,,0,,,,0,0,,1r r n rn r n r n r r c c c c c c c cc ηηη----=⋅⋅⋅⋅⋅⋅⎧⎪=⋅⋅⋅⋅⋅⋅⎪⎨⋅⋅⋅⎪⎪=⋅⋅⋅⋅⋅⋅⎩则12,,,n r ηηη-⋅⋅⋅为方程组(4)的一个基础解系. ⅰ) 12,,,n r ηηη-⋅⋅⋅线性无关事实上,若11220n r n r k k k ηηη--+⋅⋅⋅+=,即1122n r n r k k k ηηη--+⋅⋅⋅+=()()12*,,*,,,,0,,0,0,0,,0n r k k k -⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅比较最后n r -个分量,得 120n r k k k -==⋅⋅⋅==. 因此, 12,,,n r ηηη-⋅⋅⋅线性无关.ⅱ) 任取方程组(4)的一个解()12,,,n c c c η=⋅⋅⋅,η可由12,,,n r ηηη-⋅⋅⋅线性表出. 事实上,由12,,,n r ηηη-⋅⋅⋅是方程组(4)的解知:1122r r n n r c c c ηηη++-+⋅⋅⋅+也为(4)的解,又1122r r n n r c c c ηηη++-+⋅⋅⋅+=(n r c c ,,,*,*,1 +)它与η的最后n r -个分量相同,即自由未知量的值相同,所以它们为 同一个解,即11r n n r c c ηηη+-=++…….由ⅰ) ⅱ)知,12,,,n r ηηη-⋅⋅⋅为(4)的一个基础解系. 证毕推论 任一与方程组(4)的某一基础解系等价的线性无关的向量组都是方程组(4)的基础解系.证明:12,,,t ηηη⋅⋅⋅为(4)的一个基础解系,12,,,s ααα⋅⋅⋅线性无关,且与12,,,t ηηη⋅⋅⋅等价,则s t =,且i α可由12,,,t ηηη⋅⋅⋅线性表出,即i α也为(4)的解向量.任取方程组(4)的一个解向量η,则η可由12,,,t ηηη⋅⋅⋅线性表出,从而η可由12,,,t ααα⋅⋅⋅线性表出.又12,,,t ααα⋅⋅⋅线性无关,所以12,,,t ααα⋅⋅⋅也是基础解系. 证毕4 基础解系的求法我们只要找到齐次线性方程组的n r -个自由未知量,就可以获得它的基础解系.具体地说,我们先通过初等行变换把系数矩阵化为阶梯形,那么阶梯形的非零行数就是系数矩阵的秩.把每一个非零行最左端的未知量保留在方程组的左端,其余n r -个未知量移到等式右端,再令右端n r -个未知量其中的一个为1,其余为零,这样可以得到n r -个解向量12,,,n r ηηη-⋅⋅⋅,这n r -个解向量12,,,n r ηηη-⋅⋅⋅构成了方程组的基础解系. 方程组(4)的任一解即通解可表为 1112,,,,t k k k k k P ηηη=+⋅⋅⋅+⋅⋅⋅∈例1 求齐次线性方程组1245123412345123453020426340242470x x x x x x x x x x x x x x x x x x +--=⎧⎪-+-=⎪⎨-++-=⎪⎪+-+-=⎩ 的一个基础解系.解 用初等行变换把系数矩阵化为阶梯形:1103111031112100222142634000312424700000----⎡⎤⎡⎤⎢⎥⎢⎥-----⎢⎥⎢⎥→⎢⎥⎢⎥---⎢⎥⎢⎥--⎣⎦⎣⎦, 于是r 3)(=A ,基础解系中有-n r=5-3=2个向量. "于是()3r A =,基础解系中有532n r -=-=个向量." 阶梯形矩阵所对应的方程组为124523454530222030x x x x x x x x x x +--=⎧⎪---=⎨⎪-=⎩ 移项,得1245245534532223x x x x x x x x x x x+-=⎧⎪-=+⎨⎪=⎩ 取351,0x x ==,得一个解向量 1(1,1,1,0,0)η=-; 取350,1x x ==,得另一解向量2751(,,0,,1)663η=.取351,0x x ==得一个解向量1(1,1,1,0,0)η=-; 取350,1x x ==得一个解向量1751(,,0,,1)663η=.12,ηη即为方程组的一个基础解系,方程组的全部解可表示为)(212221P k k k k ∈+ηη对于非齐次线性方程组解11112211211222221122n n n n r r rn n ra x a x a xb a x a x a x b a x a x a x b ++⋅⋅⋅+=⎧⎪++⋅⋅⋅+=⎪⎨⋅⋅⋅⎪⎪++⋅⋅⋅+=⎩ (7)令0,1,,i i s ==⋅⋅⋅,得111122121122221122000n n n ns s sn n a x a x a x a x a x a x a x a x a x ++⋅⋅⋅+=⎧⎪++⋅⋅⋅+=⎪⎨⋅⋅⋅⎪⎪++⋅⋅⋅+=⎩ (8) 称(8)为(7)的导出组.5 解的性质性质1 设12,ξξ为方程组(7)的两个解,则12ξξ-为其导出组(8) 的解.证明 ()112,,,n k k k ξ=⋅⋅⋅,()212,,,n l l l ξ=⋅⋅⋅是方程组(7)的两个 解,即11,, 1,2,...,nnij ji ij j i j j a kb a l b i s =====∑∑它们的差是12ξξ- =()1122,,,n n k l k l k l --⋅⋅⋅-, 显然有111()0, 1,2,...,nn nij jj ij j ij j i i j j j a kl a k a l b b i s ===-=-=-==∑∑∑即12ξξ-=()1122,,,n n k l k l k l --⋅⋅⋅-是导出组(8)的一个解. 证毕性质2 设ξ为方程组(7)的一个解,η为其导出组(8)的解,则ξη+仍为方程组(7)的解.证明 设ξ=()12,,,n k k k ⋅⋅⋅是方程组(7)的一个解,即1(1,2,)nij ji j a kb i s ===⋅⋅⋅∑又设η=()12,,,n l l l ⋅⋅⋅是导出组(8)的一个解, 即10(1,2,)nij jj a li s ===⋅⋅⋅∑显然111()0(1,2,)nnnij jj ij j ij j i i j j j a kl a k a l b b i s ===+=+=+==⋅⋅⋅∑∑∑.证毕6 解的结构定理 若0γ为(7)的一个特解,则方程组(7)的任一解γ皆可表成0γγη=+,其中η为其导出组(8)的一个解.从而有:方程组(7)的一般解为011n r n r k k γγηη--=++⋅⋅⋅+其中0γ为(7)的一个特解,12,,,n r ηηη-⋅⋅⋅为导出组(8)的一个基础解系.证明 显然00()γγγγ=+-,有性质1知,0γγ-是导出组(4)的一个解,令0γγη-=,则 0γγη=+.证毕推论 方程组(7)在有解的条件下,有唯一解⇔(7)的导出组(8)只有零解.7 求非齐次线性方程组(7)的一般解的步骤1)求出其导出组的基础解系12,,,t ηηη⋅⋅⋅ 2)求出其一个特解0γ3)方程组(7)的一般解为011t t k k γγηη=++⋅⋅⋅+. 例2 求解方程组1234123412340311232x x x x x x x x x x x x ⎧⎪--+=⎪-+-=⎨⎪⎪--+=-⎩ 解:221323112.0.5111101111011011/2111310024100021/211231/200121/200000r r r r r r r r r A -+-+------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--−−−→-−−−→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭可见()()R A R A =,方程组有解,并有1243412212x x x x x =++⎧⎨=+⎩取240x x ==,则131/2x x == ,即得原方程组的一个特解0(1/2,0,1/2,0)γ=0(12,0,12,0)γ=.下面求导出组的基础解系: 导出组与 124342x x x x x =+⎧⎨=⎩同解.取241,0x x ==,得1(1,1,0,0)η=; 取240,1x x ==,得2(1,0,2,1)η=. 于是原方程组的通解为0112212,(,)k k k k R γγηη=++∈.参考文献1 北京大学数学系几何与代数小组教研室.高等代数(第三版)[M]. 北京:高等教育出版社,19642 同济大学数学教研室编.线性代数[M].第三版,北京:高等教育出版社,19993 谢帮杰.线性代数[M].北京:人民教育出版社,1978.4 北京大学力学系.高等代数[M].北京:人民教育出版社,19795 邓建中,刘之行.计算方法[M].西安:西安交通大学出版社,20016 赵德修, 孙清华.线性代数题解精选[M].武汉:华中科技大学出版社,2001The Determinant and Structure of Solution ofLinear equationsXingming ****(Class one of Grand 2009, Mathematics and Application Mathematics, College of Maths and Computering Science, Chongqing Three Goreges University )Abstract:Making use of the rank of coefficient matrix and augmented matrix to judge the solution of linear equations. The equations have to solve and a number of cases, the solution of the structure is to understand the relationship between work and solutions.Keywords:matrix; rank ; linear equations; solvement10。

线性代数4-4—基础解系

线性代数4-4—基础解系
b1 n r x1 b rn r x 2 0 x 0 n 1 ,
b1 2 b1 1 x1 x1 br 2 br 1 x x 2 1 , 2 0 1 2 1 0 x x n n 0 0

x1 b1 1 x2 b21 xr br 1 c1 1 x r1 xr2 0 xn 0
1
2

nr
求出(2)的一个基础解系,写出其通解 A
x r 1 x r2 xn
1 0 0 1 , , 0 0
,
0 0 1

x1 x2 xr

1 , 2 , , n r 是 组 ( 2 ) 的 全 部 解 向 量 组 的 最 大 无 关 组 !
3、求解方法
方程组(2)的通解是其一个基础解系的线性组合
求出方程组(2)的通解, 可求出其一个基础解系 A
(r<n)行变换
行最简形
b1 2 b22 br 2 c2 0 1 0 cnr b1 n r b2 n r b rn r 0 0 1


(2)的通解
x1 b1 1 x2 b21 xr br 1 c1 1 x r1 xr2 0 xn 0 b1 2 b22 br 2 c2 0 1 0

线性方程组的解的判定

线性方程组的解的判定

线性方程组的解的判定线性方程组是数学中常见的一类方程组,它的解的判定对于求解方程组和解释方程组所代表的实际问题具有重要意义。

本文将介绍线性方程组的解的判定方法,帮助读者更好地理解和应用线性方程组的解。

一、线性方程组的定义和形式线性方程组由多个线性方程组成,每个线性方程的形式为:a₁x₁ + a₂x₂ + ... + aₙxₙ = b,其中a₁、a₂、...、aₙ和b都是已知的常数,x₁、x₂、...、xₙ分别表示未知数。

二、线性方程组的解的分类1. 无解的情况当线性方程组中存在矛盾的方程时,即使尝试任何的解法,也无法找到满足所有方程的解。

这种情况下,线性方程组被称为无解。

2. 唯一解的情况当线性方程组中的所有方程可以通过某种方法相互线性无关地表示出来时,存在唯一的解。

这种情况下,线性方程组被称为有唯一解。

3. 无穷多解的情况当线性方程组中的某些方程可以通过某种方法表示为其他方程的线性组合时,存在无穷多的解。

这种情况下,线性方程组被称为有无穷多解。

三、线性方程组解的判定方法1. 利用高斯消元法判定解的情况高斯消元法是一种常用的求解线性方程组的方法,通过将线性方程组化简为阶梯形矩阵,可以判定解的情况。

具体判定如下:- 如果阶梯形矩阵中存在行中全为0但右侧常数项不为0的情况,则线性方程组无解。

- 如果阶梯形矩阵中行的个数(非全0行)等于未知数的个数,则线性方程组有唯一解。

- 如果阶梯形矩阵中行的个数(非全0行)小于未知数的个数,则线性方程组有无穷多解。

2. 利用矩阵行列式判定解的情况根据线性代数的知识,矩阵行列式的值可以用来判定线性方程组的解的情况。

具体判定如下:- 如果线性方程组的系数矩阵的行列式不等于0,则线性方程组有唯一解。

- 如果线性方程组的系数矩阵的行列式等于0,且增广矩阵的行最简形式中,最后一列除了主元所在的行外,其他行均为全零行,则线性方程组有无穷多解。

- 如果线性方程组的系数矩阵的行列式等于0,但增广矩阵的行最简形式中,最后一列除了主元所在的行外,存在非全零行,则线性方程组无解。

线性方程组解的判别与解的结构

线性方程组解的判别与解的结构

线性⽅程组解的判别与解的结构⼀.线性⽅程组求解定理1.线性⽅程组有解判别定理线性⽅程组a11 x1 + a12 x2 + … + a1n x n = b1 ,a21 x1 + a22 x2 + … + a2n x n = b2 , ......................................................as1 x1 + as2 x2 + … + asn x n = bs有解的充分必要条件是 : 它的系数矩阵与增⼴矩阵有相同的秩 .2. 齐次线性⽅程组a11 x1 + a12 x2 + … + a1n x n = 0,a21 x1 + a22 x2 + … + a2n x n = 0, ......................................................as1 x1 + as2 x2 + … + asn x n = 0有⾮零解的充分必要条件是: 它的系数矩阵的秩r ⼩于未知量个数n .齐次线性⽅程组求解⼀般步骤: 1.把系数矩阵通过初等变换,变换成阶梯形矩阵. 2.判断阶梯形矩阵中⾮零⾏的个数秩(r),以及计算⾃由元个数m=n-r. 3.确定⾃由元位置,然后以次为它们赋值1,0... 4.求解出⽅程组的基础解系. 5.⽤基础解系表⽰出⽅程全解.⾮齐次线性⽅程组求解,与齐次线性⽅程组求解过程基本⼀致,只需要再求出⼀个特解。

⼆.如何⽤C语⾔计算线性⽅程组的解 那么如何⽤算法求出线性⽅程组的解呢? 就是根据上⾯⽅程组求解⼀般步骤来的, 1.矩阵的初等变换(在上次⾏列式计算的基础上,这个很好实现). 2.求出矩阵的秩/⾃由元个数,然后确定⾃由元的位置(我认为这是⼀个难点) 3.初始化⾃由元(1,0,..),计算变量,最终求出基础解系 4.⾮齐次线性⽅程 4.1.先求出齐次线性⽅程组的基础解系 4.2.再利⽤上⾯步骤求⼀个特解即可1.矩阵的初等变换//初等⾏变换void primaryRowChange(int s, int n, double **array){int i,j,k,ii,kk,flag;double temp;for(i=0,j=0;i<s-1;i++,j++)//s⾏,最外围只需要变换s-1{ii=i;//如果⾏的⾸元为0,向下查找⼀个不为0的,然后换⾏if(*(*(array+i)+j) == 0){{if(*(*(array+k)+j)!=0)//第k⾏与第i⾏交换{for(kk=j;kk<n;kk++){temp=*(*(array+k)+kk);*(*(array+k)+kk) = *(*(array+i)+kk);*(*(array+i)+kk) = temp;}flag =1;break;}}//判断是交换成功,如果没有成功,则i--if(!flag){i--;continue;}i--;j--;continue;}for(;ii<s-1;ii++){if(*(*(array+ii+1)+j)==0)continue;temp =-*(*(array+ii+1)+j) / *(*(array+i)+j);for(k=j;k<n;k++)*(*(array+ii+1)+k) += *(*(array+i)+k) * temp;}}}2.计算矩阵的秩//计算矩阵的秩int getRank(int s, int n, double **array){int flag;int i,j,r=s;//判断⾮零⾏个数for(i=0;i<s;i++){flag=0;for(j=0;j<n;j++){if(*(*(array+i)+j)!=0 && (*(*(array+i)+j)>0.01 || *(*(array+i)+j) <-0.01))//排除很⼩数, {flag=1;break;}}if(!flag)//当前⾏全为零,则r为i;{r=i;break;}}return r;}3.确定⾃由元位置 ⾃由元确定需要考虑两种情况: 1).系数梯形矩阵最后⼀⾏只有⼀个⾮零元素. 2) 系数梯形矩阵中某⾏的个数等于⾃由元的个数.//获取⾃由元信息int* getFreeElement(int r, int n, double **array, int **matrixPrimary, double **matrixCalc) {int i,j,k,o,p,q;int m=n-1-r;//n-1:int *freeElement =(int*)malloc(m*sizeof(int));j=-1;//判断是否有为0的变量q=0;//如果当前⾏⾮零个数与⾃由元个数相等,则标记为1,⾃由元选择起始位置左移⼀位if(*(*(matrixPrimary+i)+1)==1)//说明第i⾏只有⼀个变量,如果是齐次⽅程它的解⼀定为0 {j=*(*(matrixPrimary+i)+0);for(k=0;k<r;k++)*(*(matrixCalc+k)+j)=*(*(array+k)+n-1) / *(*(array+k)+j);}else if(n-1-matrixPrimary[i][0]==m){q=1;}else if(n-1-matrixPrimary[i][0]>m){o=matrixPrimary[i][0];//当前⾏的⾸元位置p=0;//次数for(k=n-2-q;k>=o;k--)//从后向前查找⾃由元位置{if(k==j)continue;freeElement[p++]=k;if(p==m)//说明已经找到 m个⾃由元return freeElement;}}}return freeElement;}求解⽰例图:1> p148-例42> 2.7(1)-13> 2.7(2)-1.14> 2.7(2)-1.25> 2.7(2)-1.36> 2.7(3)-1.17> 2.7(3)-1.28> 2.7(3)-1.39> 2.7(3)-1.410> p155-例6以下是C语⾔求解的全部源代码#include <stdio.h>#include <stdlib.h>double undefined=-999;//标志位void main(){int i,j,s,n;int res;double **array,*temp,**result;//tempdouble t1[6]={1,1,1,1,1,0};double t2[6]={3,2,1,0,-3,0};double t3[6]={0,1,2,3,6,0};double t4[6]={5,4,3,2,6,0};int homogeneous=1;//标识⽅程是否是齐次⽅程void primaryRowChange(int s, int n, double **array);void printfDouble1Dimension(int n, double *array);void printfDouble2Dimension(int s, int n, double **array);int homogeneousResolve(int s, int n, int homogeneous, double **array, double **result); int nonHomegeneousResolve(int s, int n, double **array, double **result,double *special); //void printfInt2Dimension(int s, int n, int ** array);//int* getPrimary(int n,double *temp);//输⼊说明printf("输⼊说明:⾏数代表S个线性⽅程,N代表未知数及常数项.\n");printf("例如⽅程如下:\n");printf("1x-2y+3z=4\n");printf("-2x-4y+5z=10\n");printf("如下输⼊2⾏,4列:\n");printf("1 -2 3 4\n");printf("-2 -4 5 10\n\n");//开始printf("输⼊⾏数:");scanf("%d",&s);printf("输⼊列数:");scanf("%d",&n);//s=4;//n=6;//动态分配内存空间array =(double**)malloc(s*sizeof(double*));result =(double**)malloc(s*sizeof(double*));special =(double*)malloc(n*sizeof(double));for(i=0;i<s;i++){temp=(double*)malloc(n*sizeof(double));printf("请输⼊第%d⾏数组:",i+1);for(j=0;j<n;j++)scanf("%lf",temp+j);/*switch(i){case 0:temp=t1;//{1,1,1,1,1,0};break;case 1:temp=t2;//{3,2,1,0,-3,0};break;case 2:temp=t3;//{0,1,2,3,6,0};break;case 3:temp=t4;//{5,4,3,2,6,0};break;}*/array[i]=temp;}//打印数组printf("初等⾏列变换之前:\n");printfDouble2Dimension(s,n,array);//判断⽅程是否是齐次⽅程for(i=0;i<s;i++){if(*(*(array+i)+n-1)!=0)//如果最后⼀列,有不为0的说明⽅程为⾮齐次⽅程{homogeneous=0;break;}}primaryRowChange(s,n,array);printf("初等⾏列变换之后:\n");printfDouble2Dimension(s,n,array);if(homogeneous)//齐次{switch (res){case -1:printf("⽅程⽆解.\n");break;case0:printf("⽅程只有零解.\n");break;default:printf("⽅程的基础解系如下:\n");printfDouble2Dimension(res,n-1,result);break;}}else//⾮齐次{res=nonHomegeneousResolve(s,n,array,result,special);if(res==-1)printf("⽅程⽆解.\n");else{printf("⽅程的基础解系如下:\n");printfDouble2Dimension(res,n-1,result);printf("⽅程的特解如下:\n");printfDouble1Dimension(n-1,special);}}system("pause");}//初等⾏变换void primaryRowChange(int s, int n, double **array){int i,j,k,ii,kk,flag;double temp;for(i=0,j=0;i<s-1;i++,j++)//s⾏,最外围只需要变换s-1{ii=i;//如果⾏的⾸元为0,向下查找⼀个不为0的,然后换⾏if(*(*(array+i)+j) == 0){flag=0;for(k=i+1;k<s;k++){if(*(*(array+k)+j)!=0)//第k⾏与第i⾏交换{for(kk=j;kk<n;kk++){temp=*(*(array+k)+kk);*(*(array+k)+kk) = *(*(array+i)+kk);*(*(array+i)+kk) = temp;}flag =1;break;}}//判断是交换成功,如果没有成功,则i--if(!flag){i--;continue;}i--;j--;continue;}for(;ii<s-1;ii++){if(*(*(array+ii+1)+j)==0)continue;temp =-*(*(array+ii+1)+j) / *(*(array+i)+j);for(k=j;k<n;k++)*(*(array+ii+1)+k) += *(*(array+i)+k) * temp;}}}//⾮齐次⽅程解的情况int nonHomegeneousResolve(int s, int n, double **array, double **result, double *special) {int i,j,k,l;int r1,r2;//系数矩阵/增⼴矩阵的秩int getRank(int s, int n, double **array);int homogeneousResolve(int s, int n, int homogeneous, double **array, double **result);r1=getRank(s,n-1,array);r2=getRank(s,n,array);if(r1!=r2)return -1;//⽆解//特解temp =(double**)malloc(r1*sizeof(double*));homogeneousResolve(r1,n,0,array,temp);for(i=0;i<n;i++)*(special+i)=*(*(temp)+i);return homogeneousResolve(r1,n,1,array,result);}//齐次⽅程解的情况int homogeneousResolve(int s, int n, int homogeneous, double **array, double **result){int i,j,k,l,o,p,flag;int r;//秩rankint m;//⾃由元个数int f;//最后⼀个⾮零⾏⾸元的位置double sum1=0,sum2=0;double *temp = (double*)malloc(n*sizeof(double));//临时⾏指针int **matrixPrimary;//存储矩阵⾸元位置及⾮零元个数double **matrixCalc;//计算基础解系int *freeElement;//⾃由元位置double **matrixTemp;//声明函数void printfDouble2Dimension(int s, int n, double **array);void printfInt2Dimension(int s, int n, int **array);int** getPrimary(int s, int n, double **array);int getRank(int s, int n, double **array);double** initMatrixCalc(int s, int n);int* getFreeElement(int r, int n,double **array, int **matrixPrimary, double **matrixCalc);void printfInt1Dimension(int n, int *array);void getPrimarySolution(int r, int n, int homogeneous, double **array, int **matrixPrimary, double **matrixCalc ,int *freeElement, double **result); //秩rankr = getRank(s,n,array);//判断解的情况m=n-1-r;if(m<0)return -1;//⽆解else if(m==0)return0;//只有零解else{//初始化计算矩阵matrixCalc = initMatrixCalc(r,n);//获取矩阵⾸元信息matrixPrimary = getPrimary(r,n,array);/*printf("打印计算矩阵:\n");printfDouble2Dimension(r,n,matrixCalc);printf("打印矩阵⾸元信息:\n");printfInt2Dimension(r,2,matrixPrimary);*/freeElement = getFreeElement(r, n, array, matrixPrimary,matrixCalc);//打印⾃由元位置//printf("打印⾃由元位置:\n");//printfInt1Dimension(m, freeElement);//计算基础解系getPrimarySolution(r, n, homogeneous, array, matrixPrimary, matrixCalc, freeElement ,result);//printfDouble2Dimension(m,n,result);return m;}}//init Matrix calcdouble** initMatrixCalc(int s, int n){int i,j;double **array=(double**)malloc(s*sizeof(double*));for(i=0;i<s;i++){array[i] =(double*)malloc(n*sizeof(double));*(*(array+i)+n-1)=1;{*(*(array+i)+j)=undefined;}}return array;}//计算矩阵的秩int getRank(int s, int n, double **array){int flag;int i,j,r=s;//判断⾮零⾏个数for(i=0;i<s;i++){flag=0;for(j=0;j<n;j++){if(*(*(array+i)+j)!=0 && (*(*(array+i)+j)>0.01 || *(*(array+i)+j) <-0.01))//排除很⼩数, {flag=1;break;}}if(!flag)//当前⾏全为零,则r为i;{r=i;break;}}return r;}//查找某⾏⾮零个数及⾸元位置int** getPrimary(int s, int n, double **array){int i,j;int num=0,index=0;int **result=(int**)malloc(s*sizeof(int*));int *temp;for(i=0;i<s;i++){temp =(int*)malloc(2*sizeof(int));num=0;index=0;for(j=0;j<n;j++){if(*(*(array+i)+j)!=0){if(num==0)index=j;num+=1;}}temp[0]=index;temp[1]=num;result[i]=temp;}return result;}//获取⾃由元信息int* getFreeElement(int r, int n, double **array, int **matrixPrimary, double **matrixCalc){int i,j,k,o,p,q;int m=n-1-r;//n-1:int *freeElement =(int*)malloc(m*sizeof(int));j=-1;//判断是否有为0的变量q=0;//如果当前⾏⾮零个数与⾃由元个数相等,则标记为1,⾃由元选择起始位置左移⼀位for(i=r-1;i>=0;i--)//查找⾃由元,及位置为0的{if(*(*(matrixPrimary+i)+1)==1)//说明第i⾏只有⼀个变量,如果是齐次⽅程它的解⼀定为0 {j=*(*(matrixPrimary+i)+0);for(k=0;k<r;k++)*(*(matrixCalc+k)+j)=*(*(array+k)+n-1) / *(*(array+k)+j);}else if(n-1-matrixPrimary[i][0]==m){q=1;}else if(n-1-matrixPrimary[i][0]>m)o=matrixPrimary[i][0];//当前⾏的⾸元位置p=0;//次数for(k=n-2-q;k>=o;k--)//从后向前查找⾃由元位置{if(k==j)continue;freeElement[p++]=k;if(p==m)//说明已经找到 m个⾃由元return freeElement;}}}return freeElement;}//计算基础解系void getPrimarySolution(int r, int n, int homogeneous, double **array, int **matrixPrimary, double **matrixCalc ,int *freeElement, double **result) {int i,j,k,l,p;int m=n-1-r;//⾃由元double sum1,sum2;double *temp,**matrixTemp;//计算基础解系for(i=0;i<m;i++){matrixTemp=(double**)malloc(r*sizeof(double*));//复制数组for(j=0;j<r;j++){temp =(double*)malloc(n*sizeof(double));for(k=0;k<n;k++)*(temp+k)=*(*(matrixCalc+j)+k);matrixTemp[j]=temp;}//设置⾃由元为0或1for(j=0;j<r;j++){*(*(matrixTemp+j)+freeElement[i])=1;//⾃由元为1for(k=0;k<m;k++){if(k!=i)*(*(matrixTemp+j)+freeElement[k])=0;//⾃由元为0}}//printfDouble2Dimension(r,n,matrixTemp);//计算for(j=r-1;j>=0;j--){p=*(*(matrixPrimary+j));//当前⾏起始位置for(k=p;k<n;k++){if(*(*(matrixTemp+j)+k)==undefined)//如果等于标志位,它可能是未知变量{sum1=sum2=0;for(l=p;l<n;l++){if(l==n-1){sum1=*(*(array+j)+l) * *(*(matrixTemp+j)+l);}else if(l!=k){sum2+=*(*(array+j)+l) * *(*(matrixTemp+j)+l);}}for(l=0;l<r;l++)*(*(matrixTemp+l)+k)=((homogeneous?0:sum1)-sum2)/ *(*(array+j)+k);//如果齐次sum1=0;//break;}}}result[i]=matrixTemp[0];//printfDouble2Dimension(r,n,matrixTemp);}}void printfDouble2Dimension(int s, int n, double **array) {//printf("%d,%d",s,n);int i,j;for(i=0;i<s;i++){for(j=0;j<n;j++){printf("%6.2lf",*(*(array+i)+j));}printf("\n");}}void printfDouble1Dimension(int n, double *array){int i;for(i=0;i<n;i++){printf("%6.2lf",*(array+i));}printf("\n");}//打印⼆维数组void printfInt2Dimension(int s, int n, int **array){int i,j;for(i=0;i<s;i++){for(j=0;j<n;j++){printf("%4d",*(*(array+i)+j));}printf("\n");}}//打印⼀维数组void printfInt1Dimension(int n, int *array){int i;for(i=0;i<n;i++){printf("%4d",*(array+i));}printf("\n");}View Code。

线性方程组与解的结构

线性方程组与解的结构

线性方程组与解的结构线性方程组是数学中最基础的概念之一,它在各个领域的应用广泛。

解决线性方程组问题不仅需要深厚的数学功底,还需要对其结构有深入的理解。

本文将介绍线性方程组以及解的结构,以帮助读者更好地掌握这一概念。

一、线性方程组的定义线性方程组是由一系列线性方程组成的方程组。

每个方程都具有以下形式:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙ其中,a₁₁,a₁₂,...,aₙₙ为已知常数,b₁,b₂,...,bₙ是方程右边的已知常数,x₁,x₂,...,xₙ是未知数。

二、解的存在性与唯一性解决线性方程组的第一个问题是判断其解的存在性与唯一性。

对于一个线性方程组,可以有以下几种情况:1. 无解:若线性方程组存在矛盾,即方程组的系数无法同时满足所有方程,那么该方程组无解。

2. 唯一解:若线性方程组的系数矩阵是一个满秩矩阵,且方程个数等于未知数个数,那么该方程组有唯一解。

3. 无穷解:若线性方程组的系数矩阵是一个非满秩矩阵,且方程个数小于未知数个数,那么该方程组有无穷多解。

三、解的结构线性方程组的解可以通过高斯消元法或矩阵运算等方法来求解。

一旦解找到,它们具备以下几个结构特点:1. 基础解系:对于一个有解的线性方程组,它的解可以由基础解系线性组合而成。

基础解系是解空间的基,它由方程组中的特殊解和齐次方程的基础解组成。

2. 齐次方程解的结构:齐次方程组是指方程组右边的常数项全为0的线性方程组。

它的解空间是一个子空间,被称为齐次方程组的解空间。

齐次方程组的解空间至少包含一个零解,如果齐次方程组有非零解,那么它的解空间是一个超平面。

3. 特解:对于一个非齐次线性方程组,如果它有解,那么其中一个解被称为特解。

特解加上齐次方程组的解可以构成非齐次线性方程组的全部解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

***学院数学分析课程论文线性方程组解的判定与解的结构院系数学与统计学院专业数学与应用数学(师范)姓名*******年级 2009级学号200906034***指导教师 ** 2011年6月线性方程组解的判定与解的结构姓名******(重庆三峡学院数学与计算机科学学院09级数本?班)摘 要:线性方程组是否有解,用系数矩阵和增广矩阵的秩来刻画.在方程组有解且有 多个解的情况下,解的结构就是了解解与解之间的关系. 关键词:矩阵; 秩; 线性方程组; 解引言通过系数矩阵和增广矩阵的秩是否相同来给出判定线性方程组的解的判别条件.在了解了线性方程组的判别条件之后,我们进一步讨论解的结构.对于齐次线性方程组,解的线性组合还是方程组的解.在线性方程组有无穷个解时可用有限多个解表示出来.另外以下还涉及到线性方程组通解的表达方式.1 基本性质下面我们分析一个线性方程组的问题,导出线性方程组有解的判别条件. 对于线性方程组11112211211222221122n n n n s s sn n sa x a x a xb a x a x a x b a x a x a x b ++⋅⋅⋅+=⎧⎪++⋅⋅⋅+=⎪⎨⋅⋅⋅⎪⎪++⋅⋅⋅+=⎩ (1)引入向量112111s αααα⎡⎤⎢⎥⎢⎥=⎢⎥⋅⋅⋅⎢⎥⎣⎦,122222s αααα⎡⎤⎢⎥⎢⎥=⎢⎥⋅⋅⋅⎢⎥⎣⎦,…12n n nsn αααα⎡⎤⎢⎥⎢⎥=⎢⎥⋅⋅⋅⎢⎥⎣⎦,12s b b b β⎡⎤⎢⎥⎢⎥=⎢⎥⋅⋅⋅⎢⎥⎣⎦ 方程(1)可以表示为1122n n x x x αααβ++⋅⋅⋅+=性质 线性方程组⑴有解的充分必要条件为向量β可以表成向量组α1,α2,…,αn 的线性组合.定理1 线性方程组⑴有解的充分必要条件为它的系数矩阵111212122212n n s s sn a a a a a a A a a a ⋅⋅⋅⎛⎫⎪⋅⋅⋅⎪= ⎪⋅⋅⋅ ⎪⋅⋅⋅⎝⎭与增广矩阵A =⎛⎝111212122212n ns s sna a a a a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 12s b b b ⎫⎪⎪⎪⎪⎭有相同的秩.证明 先证必要性,设线性方程组(1)有解,就说说,β可以经过向量组1α,2α,⋅⋅⋅nα线性表出.由此立即推出,向量组1α,2α,⋅⋅⋅n α与向量组1α,2α,⋅⋅⋅n α,β等价,因而有相同的秩,这两个向量组分别是矩阵A 与A 的列向量组.因此矩阵A 与A 有相同的秩. 再证充分性,设矩阵A 与A 有相同的秩,就是说,它们的列向量1α,2α,⋅⋅⋅n α与1α,2α,⋅⋅⋅n α,β有相同的秩,令它们的秩为r. 1α,2α,⋅⋅⋅n α中的极大线性无关组是由r个向量组成,无妨设1α,2α,⋅⋅⋅r α是它的一个极大线性无关组.显然1α,2α,⋅⋅⋅r α也是向量组1α,2α,⋅⋅⋅n α,β的一个极大线性无关组,因此向量β可以经1α,2α,⋅⋅⋅r α线性表出,既然β可以经1α,2α,⋅⋅⋅r α线性表出,当然它可以经1α,2α,⋅⋅⋅n α线性表出.因此,方程组(1)有解.证毕定理2 对于线性方程组⑴,若()()R A R A r ==,则当r= n 时,有唯一解;当r< n 时,有无穷多解.证明 设D 是矩阵A 的一个不为零的r 级子式(当然它也是A 的一个不为零的子式),为了方便起见,不妨设D 位于A 的左上角.显然, A 的前r 行就是一个极大线性无关组,第r +1,…,s 行都可以经它们线性表出.因此,方程组⑴与11112211211222221122n n n n r r rn n ra x a x a xb a x a x a x b a x a x a x b ++⋅⋅⋅+=⎧⎪++⋅⋅⋅+=⎪⎨⋅⋅⋅⎪⎪++⋅⋅⋅+=⎩ (2)同解.当r =n 时,由克兰姆法则,方程组(2)有唯一解,即方程组⑴有唯一解.当r ﹤n 时,将方程组(2)改写为111122111,111211222222,1121122,11r r r r n n r r r r n nr r rr r r r r r rn n a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a x a x ++++++++⋅⋅⋅+=--⋅⋅⋅-⎧⎪++⋅⋅⋅+=--⋅⋅⋅-⎪⎨⋅⋅⋅⎪⎪++⋅⋅⋅+=--⋅⋅⋅-⎩(3)(3)作为12,r x x x ⋅⋅⋅的一个方程组,它的系数行列式D≠0.由克兰姆法则,对于12,r x x x ⋅⋅⋅的任意一组值,方程组(3),也就是方程组⑴,都有唯一的解.由于自由未知量12,r x x x ⋅⋅⋅可任意取值,所以方程组(1)有无穷多个解. 证毕在解决了线性方程组有解的判别条件之后,我们进一步探讨线性方程组解的结构.所谓解的结构问题就是解与解之间的关系问题.上面我们提到,n 元线性方程组的解是n 维向量,在解不是唯一的情况下,作为方程组的解的这些问题之间有什么关系呢?我们先看齐次方程组的情形.设111122121122221122000n n n ns s sn n a x a x a x a x a x a x a x a x a x ++⋅⋅⋅+=⎧⎪++⋅⋅⋅+=⎪⎨⋅⋅⋅⎪⎪++⋅⋅⋅+=⎩ (4)是一齐次线性方程组,它的解所成的集合具有下面两个重要性质:性质1 两个解的和还是方程组的解.设()12,,,n k k k ⋅⋅⋅与()12,,,n l l l ⋅⋅⋅是方程组(4)的两个解.这就是说,把它们代入方程组,每个方程成恒等式,即10nij jj a k==∑ (i=1,2,...,s ), 10nij jj a l==∑ (i=1,2,...,s ), 把两个就解的和()1122,,,n n k l k l k l ++⋅⋅⋅+(5)代入方程组,得11()00n nijjijjj j a ck c a kc ====⋅=∑∑ (i=1,2,...,s )这说明(5)也是方程组的解. 证毕性质2 一个解的倍数还是方程组的解.设()12,,,n k k k ⋅⋅⋅是(4)的一个解,不难看出()12,,,n ck ck ck ⋅⋅⋅还是方程组的解,因为11()00n nijjijjj j a ck c a kc ====⋅=∑∑ (i=1,2,...,s )由性质1和性质2得:性质3 方程组(4)的解的任一线性组合还是(4)的解.2 基础解系定义 齐次线性方程组(4)的一组解,若满足 1) 12,,,r ηηη⋅⋅⋅线性无关;2)(4)的任一解可由12,,,r ηηη⋅⋅⋅线性表出. 则称12,,,r ηηη⋅⋅⋅为(4)的一个基础解系.3 基础解系的存在性定理1 在齐次线性方程组有非零解的情况下,它有基础解系,并且基础解系所含解向量的个数等于n r -,其中)(A R r =()r R A =.证:若()R A r n =<,不防设1112121222120r r r r rra a a a a a a a a ⋅⋅⋅⋅⋅⋅≠⋅⋅⋅⋅⋅⋅2,则方程组(4)与方程组11112211,11121122222,1121122,11r r r r n n r r r r n nr r rr r r r r rn n a x a x a x a x a x a x a x a x a x a x a x a x a x a x a x ++++++++⋅⋅⋅+=--⋅⋅⋅-⎧⎪++⋅⋅⋅+=--⋅⋅⋅-⎪⎨⋅⋅⋅⎪⎪++⋅⋅⋅+=--⋅⋅⋅-⎩(6) 同解,用n r -组数 (1,0,…,0), (0,1,…,0), …, (0,0,…,1)代入自由未知量11(,,,)r r n x x x ++⋯⋯,就得到(6)的解,也就是(4)的n r -个解()()()111121221222,1,2,,,,,1,0,,0,,,,0,1,,0,,,,0,0,,1r r n rn r n r n r r c c c c c c c cc ηηη----=⋅⋅⋅⋅⋅⋅⎧⎪=⋅⋅⋅⋅⋅⋅⎪⎨⋅⋅⋅⎪⎪=⋅⋅⋅⋅⋅⋅⎩则12,,,n r ηηη-⋅⋅⋅为方程组(4)的一个基础解系. ⅰ) 12,,,n r ηηη-⋅⋅⋅线性无关事实上,若11220n r n r k k k ηηη--+⋅⋅⋅+=,即1122n r n r k k k ηηη--+⋅⋅⋅+=()()12*,,*,,,,0,,0,0,0,,0n r k k k -⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅比较最后n r -个分量,得 120n r k k k -==⋅⋅⋅==. 因此, 12,,,n r ηηη-⋅⋅⋅线性无关.ⅱ) 任取方程组(4)的一个解()12,,,n c c c η=⋅⋅⋅,η可由12,,,n r ηηη-⋅⋅⋅线性表出. 事实上,由12,,,n r ηηη-⋅⋅⋅是方程组(4)的解知:1122r r n n r c c c ηηη++-+⋅⋅⋅+也为(4)的解,又1122r r n n r c c c ηηη++-+⋅⋅⋅+=(n r c c ,,,*,*,1 +)它与η的最后n r -个分量相同,即自由未知量的值相同,所以它们为 同一个解,即11r n n r c c ηηη+-=++…….由ⅰ) ⅱ)知,12,,,n r ηηη-⋅⋅⋅为(4)的一个基础解系. 证毕推论 任一与方程组(4)的某一基础解系等价的线性无关的向量组都是方程组(4)的基础解系.证明:12,,,t ηηη⋅⋅⋅为(4)的一个基础解系,12,,,s ααα⋅⋅⋅线性无关,且与12,,,t ηηη⋅⋅⋅等价,则s t =,且i α可由12,,,t ηηη⋅⋅⋅线性表出,即i α也为(4)的解向量.任取方程组(4)的一个解向量η,则η可由12,,,t ηηη⋅⋅⋅线性表出,从而η可由12,,,t ααα⋅⋅⋅线性表出.又12,,,t ααα⋅⋅⋅线性无关,所以12,,,t ααα⋅⋅⋅也是基础解系. 证毕4 基础解系的求法我们只要找到齐次线性方程组的n r -个自由未知量,就可以获得它的基础解系.具体地说,我们先通过初等行变换把系数矩阵化为阶梯形,那么阶梯形的非零行数就是系数矩阵的秩.把每一个非零行最左端的未知量保留在方程组的左端,其余n r -个未知量移到等式右端,再令右端n r -个未知量其中的一个为1,其余为零,这样可以得到n r -个解向量12,,,n r ηηη-⋅⋅⋅,这n r -个解向量12,,,n r ηηη-⋅⋅⋅构成了方程组的基础解系. 方程组(4)的任一解即通解可表为 1112,,,,t k k k k k P ηηη=+⋅⋅⋅+⋅⋅⋅∈例1 求齐次线性方程组1245123412345123453020426340242470x x x x x x x x x x x x x x x x x x +--=⎧⎪-+-=⎪⎨-++-=⎪⎪+-+-=⎩ 的一个基础解系.解 用初等行变换把系数矩阵化为阶梯形:1103111031112100222142634000312424700000----⎡⎤⎡⎤⎢⎥⎢⎥-----⎢⎥⎢⎥→⎢⎥⎢⎥---⎢⎥⎢⎥--⎣⎦⎣⎦, 于是r 3)(=A ,基础解系中有-n r=5-3=2个向量. "于是()3r A =,基础解系中有532n r -=-=个向量." 阶梯形矩阵所对应的方程组为124523454530222030x x x x x x x x x x +--=⎧⎪---=⎨⎪-=⎩ 移项,得1245245534532223x x x x x x x x x x x+-=⎧⎪-=+⎨⎪=⎩ 取351,0x x ==,得一个解向量 1(1,1,1,0,0)η=-; 取350,1x x ==,得另一解向量2751(,,0,,1)663η=.取351,0x x ==得一个解向量1(1,1,1,0,0)η=-; 取350,1x x ==得一个解向量1751(,,0,,1)663η=.12,ηη即为方程组的一个基础解系,方程组的全部解可表示为)(212221P k k k k ∈+ηη对于非齐次线性方程组解11112211211222221122n n n n r r rn n ra x a x a xb a x a x a x b a x a x a x b ++⋅⋅⋅+=⎧⎪++⋅⋅⋅+=⎪⎨⋅⋅⋅⎪⎪++⋅⋅⋅+=⎩ (7)令0,1,,i i s ==⋅⋅⋅,得111122121122221122000n n n ns s sn n a x a x a x a x a x a x a x a x a x ++⋅⋅⋅+=⎧⎪++⋅⋅⋅+=⎪⎨⋅⋅⋅⎪⎪++⋅⋅⋅+=⎩ (8) 称(8)为(7)的导出组.5 解的性质性质1 设12,ξξ为方程组(7)的两个解,则12ξξ-为其导出组(8) 的解.证明 ()112,,,n k k k ξ=⋅⋅⋅,()212,,,n l l l ξ=⋅⋅⋅是方程组(7)的两个 解,即11,, 1,2,...,nnij ji ij j i j j a kb a l b i s =====∑∑它们的差是12ξξ- =()1122,,,n n k l k l k l --⋅⋅⋅-, 显然有111()0, 1,2,...,nn nij jj ij j ij j i i j j j a kl a k a l b b i s ===-=-=-==∑∑∑即12ξξ-=()1122,,,n n k l k l k l --⋅⋅⋅-是导出组(8)的一个解. 证毕性质2 设ξ为方程组(7)的一个解,η为其导出组(8)的解,则ξη+仍为方程组(7)的解.证明 设ξ=()12,,,n k k k ⋅⋅⋅是方程组(7)的一个解,即1(1,2,)nij ji j a kb i s ===⋅⋅⋅∑又设η=()12,,,n l l l ⋅⋅⋅是导出组(8)的一个解, 即10(1,2,)nij jj a li s ===⋅⋅⋅∑显然111()0(1,2,)nnnij jj ij j ij j i i j j j a kl a k a l b b i s ===+=+=+==⋅⋅⋅∑∑∑.证毕6 解的结构定理 若0γ为(7)的一个特解,则方程组(7)的任一解γ皆可表成0γγη=+,其中η为其导出组(8)的一个解.从而有:方程组(7)的一般解为011n r n r k k γγηη--=++⋅⋅⋅+其中0γ为(7)的一个特解,12,,,n r ηηη-⋅⋅⋅为导出组(8)的一个基础解系.证明 显然00()γγγγ=+-,有性质1知,0γγ-是导出组(4)的一个解,令0γγη-=,则 0γγη=+.证毕推论 方程组(7)在有解的条件下,有唯一解⇔(7)的导出组(8)只有零解.7 求非齐次线性方程组(7)的一般解的步骤1)求出其导出组的基础解系12,,,t ηηη⋅⋅⋅ 2)求出其一个特解0γ3)方程组(7)的一般解为011t t k k γγηη=++⋅⋅⋅+. 例2 求解方程组1234123412340311232x x x x x x x x x x x x ⎧⎪--+=⎪-+-=⎨⎪⎪--+=-⎩ 解:221323112.0.5111101111011011/2111310024100021/211231/200121/200000r r r r r r r r r A -+-+------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--−−−→-−−−→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭可见()()R A R A =,方程组有解,并有1243412212x x x x x =++⎧⎨=+⎩取240x x ==,则131/2x x == ,即得原方程组的一个特解0(1/2,0,1/2,0)γ=0(12,0,12,0)γ=.下面求导出组的基础解系: 导出组与 124342x x x x x =+⎧⎨=⎩同解.取241,0x x ==,得1(1,1,0,0)η=; 取240,1x x ==,得2(1,0,2,1)η=. 于是原方程组的通解为0112212,(,)k k k k R γγηη=++∈.参考文献1 北京大学数学系几何与代数小组教研室.高等代数(第三版)[M]. 北京:高等教育出版社,19642 同济大学数学教研室编.线性代数[M].第三版,北京:高等教育出版社,19993 谢帮杰.线性代数[M].北京:人民教育出版社,1978.4 北京大学力学系.高等代数[M].北京:人民教育出版社,19795 邓建中,刘之行.计算方法[M].西安:西安交通大学出版社,20016 赵德修, 孙清华.线性代数题解精选[M].武汉:华中科技大学出版社,2001The Determinant and Structure of Solution ofLinear equationsXingming ****(Class one of Grand 2009, Mathematics and Application Mathematics, College of Maths and Computering Science, Chongqing Three Goreges University )Abstract:Making use of the rank of coefficient matrix and augmented matrix to judge the solution of linear equations. The equations have to solve and a number of cases, the solution of the structure is to understand the relationship between work and solutions.Keywords:matrix; rank ; linear equations; solvement10。

相关文档
最新文档