中央空调节能技术改造方案 PPT
中央空调节能改造方案(最新版本)
一、中央空調系統的構成及工作原理 (2)二、中央空調運行現狀 (3)三、耗電高的原因 (3)四、變流量系統的節流調節 (3)五、節能原理 (4)六、變頻器用於中央空調節能方案 (5)①冷凍泵的變頻改造 (5)②冷卻泵的變頻改造 (7)中央空調變頻節能改造方案一 (8)中央空調變頻節能改造方案二 (10)節能效益評估 (11)中央空調變頻器改造系統配置表 (12)DT6中央空調變頻節能改造方案一、中央空調系統的構成及工作原理通常的中央空調系統主要由製冷機組、冷卻水組循環系統、冷凍水循環系統、風機盤管系統和冷卻塔組成,如圖一所示。
圖一中央空調系統原理圖製冷機組通過壓縮機將製冷劑壓縮成液態後送蒸發器中與冷凍水進行熱交換,將冷凍水製冷;冷凍水泵將冷凍水送到各房間風機風口的冷卻盤管中,和空氣進行熱交換,再由風機將冷空氣吹送到房間中達到降溫的目的。
而在製冷過程中製冷劑蒸發後會釋放出大量熱量,通過冷凝器與冷卻迴圈水進行熱交換,再由冷卻泵將帶走熱量的冷卻水送到冷卻塔上,進行噴淋冷卻,由冷卻塔風扇加快其與大氣之間的熱交換,最終將熱量散發到大氣中去。
可以看出,中央空調系統的工作過程是一個不斷地進行熱交換的能量轉換過程,在這裏,冷凍水和冷卻水循環系統是能量的主要傳遞者。
二、中央空調運行現狀DT6事業處中央空調系統,主機選用武漢麥克維爾公司生產的冰水機組,冷凍水採用閉式循環系統、冷卻水迴圈採用開式循環系統。
正式投入運行以來,系統運轉正常,總體性能良好。
但是,由於該系統總功率達364kW,耗電多,運行費用高。
三、耗電高的原因中央空調系統在設計時是按現場最大冷量需求量來考慮的,其冷卻泵,冷凍泵按單台設備的最大工況來考慮的,在實際使用中有90%多的時間,冷卻泵、冷凍泵都工作在非滿載狀態下。
而用閥門、自動閥調節不僅增大了系統節流損失,而且由於對空調的調節是階段性的,造成整個空調系統工作在波動狀態。
四、變流量系統的節流調節我們的中央空調水系統採用離心水泵,下面結合離心水泵的特性曲線對各種調節方法作說明:通過調節水泵出口閥門開度,增減管道阻力,改變管道特性曲線的方法,即節流調節。
酒店中央空调节能改造方案
舒适度指标
包括温度、湿度、风速、噪音等 ,用于评估室内环境的舒适度。
可靠性指标
包括设备故障率、维修频率、使 用寿命等,用于评估空调系统的
可靠性和稳定性。
数据采集与处理方法
数据采集
通过安装智能仪表、传感器等设备,实时监测空 调系统的运行数据。
数据处理
对采集到的数据进行清洗、整理、分析,提取出 有用的信息,为评估提供依据。
数据存储
建立数据库或数据仓库,对数据进行存储和管理 ,方便后续分析和查询。
评估结果分析与报告编写
评估结果分析
根据评估指标体系,对采集到的数据进行分析,找出存在的问题 和改进空间。
报告编写
根据分析结果,编写评估报告,包括评估结果、改进建议、实施方 案等内容。
报告提交
将评估报告提交给相关部门或领导,为决策提供参考依据。
运行管理不善
缺乏有效的运行管理,导 致设备运行不稳定,能耗 增加。
负荷不足
部分区域负荷不足,导致 设备长时间处于低负荷运 行状态,能耗增加。
存在的问题与挑战
能源浪费严重
由于设备老化、维护不足 等原因,导致能源浪费严 重。
运营成本高
由于能耗高、维护费用高 等原因,导致运营成本高 。
环保压力大
随着环保意识的提高,对 酒店中央空调系统的节能 改造提出了更高的要求。
02
中央空调系统现状分析
现有系统运行状况
设备老化
能耗高
部分设备使用年限较长,性能下降, 故障率增加。
由于设备老化、维护不足等原因,导 致能耗较高。
维护不足
日常维护和保养工作不到位,导致设 备性能下降。
能耗问题及原因分析
01
02
中央空调节能管理.ppt
(一)中央空调五个循环系统
1.室内空气循环:人、设备、室外空气、太 阳等产生的热量传播到室内空气中,使室 内空气温度上升。由于风机的作用,室内 空气经风管送到冷却盘管作热交换(冷却 除湿),变成干冷的空气再回到空调区吸 收热能,完成循环。
2.冷冻水循环:空气中的热量经过盘管交换 使冷冻水温度上升,由于冷冻泵驱动,使 冷冻水回到中央空调主机蒸发器与低压冷 媒作热交换,变成低温冷冻水后再回到盘 管作热交换,完成循环。冷冻水系统示 意.swf
首先如果要省电当然就是不启动流体机械,只要
不运转当然就不用电。但这并不是要大家停止使用
空调系统,而是要当用则用,当省则省。如何降低 运转时数,端赖有效而合理的管理,避免设备做不 必要的运转。其次,减少输送的流体也是方法之一。 所以采用变流量设计,如VAV(variable air volume)、 VWV(variablewatervolume)及VRV(variable refrigerant volume),分别使风量、冰水量及冷媒流量依负载需 求调整,都是减少系统在部分负载(Partial Load)时之 耗能量的方法之一。第三项参数是扬程,降低管路 系统压损则可在设计时加大一号管径及采用测试、 调整、平衡(test, adjusting a特性选配适 当的流体机械。
4
1-3
2020/5/16
5
1-4电系统的分配
2020/5/16
6
1-5
2020/5/16
7
概念
1.COP性能系数(COP)=冷却能力(W)÷冷却消耗 电功率(W)=1.163EER。1RT(冷冻 吨)=3,024kcal/h。
2.主机效率的评估计其KW/RT值。定义:公制 单位EER=供应的冷能(Kcal/h)/输入功率W
中央空调节能改造设计方案课件
冷库压缩机组余热回收
冷库制冷压缩机组在运行过程中,释放一定的热量, 传统做法是将热量排出室外,我们在压缩机组排风管 道安装一个三通阀,冬季将热量放入室内,提高室内 温度,夏季则排出室外,同样达到冷却机组的作用。
(4)变频技术及其应用
变频技术已在现代建筑中得到广泛的应用, 并得到广泛的认可,我们认为实际应用中 视设备的情况不同,分别对待、不能生搬 硬套,更不能以不良的管理数据为依据. 变频技术必须满足特定的使用条件,它适 用于设备的负荷率小于70%的工况设备上, 最好是单一设备,因单一设备容易评估它 的效率。如果用在系统设备上一定要小心, 因系统设备的关联性复杂,难以评估它的 效率。
例如冷冻水泵变频,该技术已被很多用户 采纳,由于变频可以调整流量方式提供冷 量的需求,负荷小时减少流量,降低了水 泵的功率,从而减少能耗。但是水泵运行 偏离工况是设备匹配不合理的普遍问题。 针对这一问题我们采取更换水泵的方式解 决大流量问题,这是由于更换水泵的费用 仅为购买变频设备装置的30%~40%,重要 的是更换新的水泵效率高,没有变频装置 的多余损耗,运行管理更方便。
动态变流量控制的核心是变流量控制器,在 控制器中建立了知识库、模糊控制模型和模 糊运算规则,形成智能模糊控制。通过采集 影响冷水机组运行的各种参数,经模糊运算, 得出相应的控制参数,这些控制参数被送到 冷水机组、冷冻(温)水控制子系统、冷却水 控制子系统、冷却塔风机控制子系统。这些 子系统根据控制参数的 变化,利用现代变频 控制技术,改变空调系统循环水的流量和温 度,以保证整个系统在满负荷和部分负荷情 况下,均处于最佳工作状态,从而最终达到 综合节能的目的。
4.充分利用闲置的冷却塔降低冷凝温度。 当冷却水系统为总管制时,取消冷却塔的 进回水电磁阀,通过改进冷却方塔的布水 装置,在部分制冷机开启时,可以实现一 机对两塔,两机对三塔,此时冷却塔采用 电机变频装置或是变级电机降低风扇的功 率。
中央空调系统节能改造63981
浅谈中央空调系统节能改造摘要:中央空调的节能改造有很大的降耗空间,本文论述利用变频器和PLC的逻辑控制功能及通讯功能,对重要空调各个系统分析后,提出了系统控制方案及实现方法,完成了整套节能改造的方案,对中央空调减少能耗、提高效率具有重要意义。
关键词:中央空调变频技术PLC逻辑控制通讯能力1前言中央空调是大厦里的耗电大户,正常供暖或供冷季节每年的电费中空调耗电占60 %左右,因此中央空调的节能改造显得尤为重要。
由于中央空调系统按最大负荷设计,并且留10-20 %设计余量,而实际上绝大部分时间空调是不会运行在满负荷状态下,存在较大的冗余,所以节能的潜力很大。
另外冷冻水泵和冷却水泵不能随负载变化作出相应调节运行速度和合理数量,只能靠门和旁通来调节系统的流量与压差,因此不可避免地存在较大截流损失和大流量、高压力、低温差的现象,从而致使大量电能浪费<冷冻水泵额外负载增多间接造成冷水机组负荷变大)和造成中央空调最末端达不到合理效果的情况。
本文针对某酒店改造工程的自身特点,利用变频器和PLC的控制系统对原工程的中央空调系统进行节能改造,使其更加合理利用能量,对于减少能耗、提高效率具有重要意义。
2工程介绍广东某酒店改造工程节能改造点如下:1 •东楼/西楼的中央空调之冷冻水泵控制,改造原因:人工通过调整管阻调整供应冷量,虽然满足使用但造成巨大的能量浪费。
2•东楼/西楼中央空调之冷却水泵控制,改造原因:人工通过调整管阻调整冷却水流量<热交换量),虽然满足使用但造成巨大的能量浪费。
3•东楼/西楼的中央空调之冷却塔风机控制,改造原因:一是频繁启动,冲击电流大,接触器和电机寿命受影响;二是风量不能根据送回水温度自动调整而造成能量浪费。
4•风机盘管冷量交换控制,主要分布点为东楼5号会议厅、天波府和大堂及西楼的保龄球馆、宴会厅、西餐厅、一楼大堂、天堂吧、潮洲城、二楼大堂、东大堂和会议室等地方,改造原因:目前热交换和新风供给不能根据人流的多寡作快速调整,并且温控不精确<采样点在回风口,冬天供暖,热气上升,人员活动区温度较设定温度低;反之,夏天供冷气,冷气下降,人员活动区温度较设定温度低。
中央空调节能PPT
1 # 2 # 3 #
曲线一
曲线二
冷冻水系统——基于负荷变化的冷冻水变流量控制动态控制
G=QxΔT
通过全面的系统参数检测在线系统辨识建立空调系统负荷预测模型,预测“未来时刻”系统的负荷 根据系统的实时时滞时间τ,对冷冻水系统提前进行控制 消除冷量供需之间的数量差与时间差,实现能量输出与需求的匹配,实现水泵节能40%——70%和实
管 理 节 能
重点
基础
02
节能技术
中央空调节能工艺
水蓄冷 改造、
能效高、
蓄能中央空调系统: 应用对象:
优劣对比:
1.2 1 0.8 0.6 0.4 0.2 0
冰蓄冷 新建
体积小
谷期电价 平期电价 峰期电价
02
节能技术
中央空调自控节能技术
中央空调系统温度准确、合理控制:
27.9 27.6 27.3 27 26.7 26.4 26.1 25.8 25.5 25.2 24.9 24.6 24.3 24
空调制冷系统功耗与冷却水温度的关系
冷水机组——基于负荷预测和主机效率曲线的冷水机组的群控
通过全面的系统参数检测在线系统辨识建立空调系统负荷预测模型,预测“未来时刻”系统的负荷 不同制冷机组的最高效率值不一致,每种工况制冷机组最高效率点处于变化。 根据负荷预测模型计算的负荷情况,选择最佳的机组运行台数组合。合理分配机组的不同负荷按需供 冷,使得整体冷水机组工作在最高的综合主机COP状态下运行。
9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00
26℃基准线 有自控温度变化 无自控温度变化 长时间低于基准温度
中央空调节能改造技术方案PPT学习课件
27
28
6000
5000
建筑负荷
变供水温度控制
建筑逐时负荷曲线 KW
4000
时段补偿控制
3000
气候补偿控制
2000
设备联动控制
1000
0 0 2 4 6 8 10 12 14 16 18 20 22 24 时刻
目标一:不同季节,不同时段采用最佳供回水温度运行,确保舒适性的前提下节能。
目标二:空调系统输出冷热量随建筑实际需求而自动调节。
不同季节和不同时段建筑供冷供热负荷有较大变化,全年以 最大负荷运行的时间不足2%,部分负荷系统能耗较高。
缺少真正的楼宇自动化节能控制系统,设备运营和管理不合 理造成能源浪费。
用户的维护意识淡薄也是造成各系统运行效率降低的原因之 一。
4
5
C目 录 ONTENTS
一、节能设备 二、节能的系统设计 三、节能的系统运营
设定最小流量
旁通阀 100 m3/h 关闭
7°C 7°C
100 m3/h13
加一台冷冻机依据:
– 系统供水温度
• 当冷冻水系统供水温度TS1高于 系统设定温度TSS
• 当流量>机组最小允许流量,系 统设定温度TSS=机组设定温度 TCS
– 压缩机运行电流RLA%
• 运行机组的工作电流相对额定 电流的百分率>90%
470 m3/h 2
off
主机控制 器
7°C
3 off
DP
DDC
旁通阀
设定最小流量
关闭
压缩机运行电流
7°C
RLA%>90%
7°C
470 m3/1h6
减机原理
以运行电流为依据
2024.9.13 超高效中央空调机房系统解决方案,设备选型+水力计算!38页PPT可下载!
电能分析仪
万用钳形表
校核前
校核后:修改变比
精细化调试
动态一体控制阀
➢ 通过水泵频率调节,改变阀门前后压差 ➢ 测试每个压差在不同开度下的流量数据 ➢ 确定控制阀是否满足压差无关控制 ➢ 确定控制阀的最小使用压差
精细化调试
系统高能效指标调试
温度℃
COP
温度℃
精细化调试
本项目包含空调冷源、末端、新排风、隧道风机等设备监控,总监控点数12000多点,冷源机房能效超6.0.
超高效中央空调机房系统
地铁空调系统能耗现状及痛点 ➢ 能耗现状&痛点 ➢ 公建项目能效现状
地铁环控能耗现状
能耗现状
给排水, 3% 照明, 8%
其他, 1%
电扶梯, 8%
通风空调, 35%
牵引供电, 45%
牵引供电 通风空调 电扶梯 照明 给排水 其他
设备多
能耗高
维护难
乘客 体验差
痛点
冷源设备、水泵、塔、组空、风盘、新风 机、回排风机、隧道风机等等
智慧地铁运营管理平台框架
智慧车站 运营平台
多维监控
安全管控
高效运营
深度节能
智慧运维
智慧管理
智慧服务
智慧 核心
数据 驱动
智慧 联动
智慧 诊断
深度 节能
视频 展示
工作流
管道温度自记仪
冷却水温度测试
冷冻水温度测试
精细化调试
流量计校核
➢ 用超声波流量计现场测试总管流量 ➢ 分别测试冷却塔支管流量 ➢ 对比流量数值差异,校核流量计数值。
超声波流量计
总管流量
支管流量1
支管流量2
精细化调试
智能电表参数校核 ➢ 用电能分析仪测主机电流,钳形表测主机电流,校核主机电表
空调系统节能技术完整版PPT
1)负荷在 100 %~ 40 %时,随着负荷的下降,每产生 1kw 冷量的耗电比满负荷时少;
下部工作区进行空调, ❖恒温器控制后,节省38%的冷量和26%的热量。
❖带PCM 的冷吊顶 / 冷却单元
❖而1)正对确选上用空部气处较理设大备 空间不
回风口风速1.5-2.5 m/s, 风口底边距地0.2-0.3m
腰部水平送风分层空调气流组织基本形式(1)
❖ 空调区单(双)侧送风,同侧下回风;非空调区有热源,屋 顶排风,高侧墙上进风。
腰部水平送风分层空调气流组织基本形式(2)
❖ 空调区单(双)侧送风,同侧下回风;非空调区无主要热源, 屋顶排风,进风在屋面下形成贴附气流。
空调系统节能技术
主要内容
空气调节基本知识 家用空调节能
户式中央空调节能 大型中央空调节能
1. 空调基本知识
❖ 空气调节:在某一特定空间,对空气温度、湿度、空 气流动速度及清洁度进行人工调节,以满足人体舒适 和工艺生产过程的要求。
空调系统分类
1
舒适性空调 工艺空调
2
集中系统 半集中系统 全分散系统
家用空调器节能技术
❖ 压缩机节能
Phase 1
Phase 2
Phase 3
活塞式
旋转式
涡旋式
❖AIP电离净化技术,创造A级洁净度
家用空调器节能技术 ❖严寒地区、寒冷地区和夏热冬冷地区,大部分运行时间集中在负荷率在30%~50%区域;
❖实现用电“削峰填谷”。
❖我国区域供冷项目,由于沿用传统空调设计方法,将通过单体建筑负荷指标得出的各建筑的空调负荷简单叠加,又不考虑同时系数
❖海水:我国四大海域50~100m范围内全年维持在20℃左右
中央空调的节能技术PPT精选文档
可见,W与流体流量G、流体扬程H、运行时间h成正比,而与 流体机械的效率η成反比。因此,降低空调系统能耗的途径有:
◇ 通过有效的管理,实现 “精细化使用”,减少设备不必要 的
运行时间h;
◇ 采用动态调速技术,减小部分负荷时所输送流体的流量G 和扬程H;
◇ 采用先进的智能控制技术,提高流体机械的效率η,保证
第②种情况,负荷集中在管网近端,接近水泵,系统供回水间 的总阻抗小,管路系统可变扬程损失小于① 。
16
冷冻水系统的节能控制
第③种情况,负荷集中在管网远端,远离水泵,系统供回水间的 总阻抗大,管路系统可变扬程损失大于①。
在不同的负荷分布和不同控制方式下, 水泵所需的扬程是不一样的。
Ⅰ为水泵特性曲线;
◇ 允许的流量变化率 先进的冷水机组允许的每分钟最大流量变化率,如表所示。
空调类型 工艺性空调 舒适性空调
离心式冷水机组
25% 50%
螺杆式冷水机组
10% 30%
对于最大流量变化率每分钟为30%的冷水机组,其流量从0%增 大到100%或从100%减小到0%时,大约需要2分钟时间;
对于最大流量变化率每分钟为10%的冷水机组,其流量从0%增 大到100%或从100%减小到0%时,大约需要6分钟时间;
18
ห้องสมุดไป่ตู้
冷冻水系统的节能控制
(2)恒温差变频控制
控制原理:在冷冻水的供、回水干管上分别装 设温度传感器,检测供、回水温度并传送至PLC, PLC作为控制器,将实测的温差值与设定的温差 值相比较,根据偏差大小采用PID(或PI)算法 控制变频器的输出频率,驱动水泵变速运行, 从而实现流量调节的目的。
冷冻水是传递冷量的介质,它所传递的冷量一
《中央空调节能改造》课件
中央空调节能改造的意义和效果
中央空调节能改造可以降低能源消耗,减少温室气体排放,从而保护环境;同时提高能源利用效率,降 低运营成本,提升室内舒适度。
中央空调节能改造的方式
中央空调节能改造可以通过传统改造方式或新型改造方式来实现。传统改造 方式包括更换空调设备和改变供电方式;而新型改造方式则包括智能控制系 统的应用、换新型制冷剂以及换高效加热制冷技术。
中央空调节能改造的具体步骤
中央空调节能改造一般包括规划和方案设计、设备选型和布局设计,以及施工维护和监测管理等步骤。 每个步骤都需要详细的计划和执行。
中央空调节能改造的注意事项
在进行中央空调节能改造时,需要制定合理的改造计划和方案,考虑改造的 适用性和实用性,并确定适合的技术和设备,以确保改造工作的顺利进行。
中央空调节能改造的经济效益
中央空调节能改造除了节能减排、降低运营成本外,还能增强企业形象,提 高社会认可度,并推动环保发展,提高生可以实现重要的环保和节能行动,同时获得广 泛的应用前景和经济效益,助于创造更加美好的未来。
《中央空调节能改造》 PPT课件
中央空调节能改造是重要的环保和节能行动,具有广泛的应用前景和经济效 益,有助于创造更加美好的未来。
什么是中央空调节能改造
中央空调节能改造是指对现有中央空调系统进行技术、设备等方面的优化和改进,以减少能源消耗、提 高能源利用效率,从而达到节能减排的目的。
为什么需要中央空调节能改造
中央空调系统节能PPT课件
1,中央空调系统的典型运行过程
中央空调系统运行的过程实质上是热量转移的过程。 中央空调制冷时,典型的热量转移过程如下:
⑴空调室内热空气经风机盘管中的冷水吸收,热量被转移到冷水中; ⑵制冷机耗能做功,把冷水中的热量转移到冷却水中; ⑶冷却水的热量经冷却塔喷淋、气化被转移到环境大气中。 空调在营造舒适小环境的同时,消耗大量能源和淡水,向大气排放的 热量和CO2气体污染了环境。
6,中央空调系统变流量节能运行
⑴ 温度传感器实时检测冷水供回水温度和冷却水进出水 温度,控制器按内建算法输出各变频器的工作频率, 变 频器控制各水泵和风机调速运行,水泵和风机变流量运行 使各设置温度与实际温度之差达到或接近设定值; ⑵ 水泵和风机消耗功率与转速(工作频率)的三次方成 正比,频率45Hz工作时,理论上节电率可达27.1%,频率 30Hz工作时节电率可达78.4%。 ⑶ 冷却塔风机变频运行,除大幅度减少电能 消耗,还 大量减少水资源 蒸发.。 ⑷ 变频调速的优势:高效节能,自动化程度高,软启动 软停机,机械磨损和机械噪声大幅度减小。
5,中央空调变流量节能方法
中央空调系统节能的技术原理是将水系统定流量运行,改 变为变流量运行,使空调负荷自动跟踪并满足用户的需要。
目前常用的节能方法: ① 台数控制变流量:控制设备投入台数,步进式运行, 设备频繁启/停,影响设备寿命。节能不能获得最佳; ② 变频调速变流量:实现设备连续无极调速,节能效率 高。有利于改善工作环境,有利于设备长期安全运行。 国家发改委《节能中长期专项规划》十大重点节能工程实 施意见:推广电机变频调速技术,逐步淘汰阀板、阀门等节流 调节方式;推广软启动装置、无功补偿装置、计算机自动控制 系统等,实现电机系统经济运行。(电机效率提高2个百分点, 全国形成年节电能力200亿kWh。)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 空调区域功能多样性决定了冷冻水流量的相应变化规律,根据空调系统 的负荷率、空调系统各用户负荷率变化特征以及末端设备的传热除湿性 能,采用变频器对冷冻水进行变频控制,一般有基于定压差控制、定温 差和变温差控制技术等控制来实现节能控制;
• 可采用EMC 007实现。
能量=比热容r×流量Q×温差ΔT
转速n% 100 90 80 70 60 50
其动力能源为电能和热能(溴化锂机型),按照其额定制冷量和制冷
效率,一般的额定输入功率从100kw到1000kw。冷水机组的目的是
生产低温(7℃)的冷冻水,所以供(出)水温度的高低直接影响机
组的负荷。而末端空气处理机启动的多少也会影响冷冻水的回水温度,
回水温度高,机组负荷大。
机组输出功率
回水与供水温差
统负荷变化; • 机组启停时间顺序优化控制; • 智能化管理计算机以提高机组运行管理水平,避免不必要的能量浪费; • 采用环保节能新风处理系统,减少能量损耗;
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
• 溶入了中央空调系统运行特性物理数学模型、人工智能和实际运行经 验修正等思想;
• 由计算机工作站后台程序实时运行物理数学模型自动寻优,以获取不 同负荷、不同室外环境等条件下空调系统最优运行工况;
流量Q% 100 90 80 70 60 50
温差T% 100 111 125 143 167 200
扬程H% 100 81 64 49 36 25
频率f(Hz) 轴功率P%
50
100
45
72.9
40
51.2
35
34.3
30
21.6
25
12.5
节电率% 0
27.1 48.8 65.7 78.4 87.5
• 根据现场调试结果和实际运行经验对计算结果进行修订以提高控制准 确性,人工智能在对空调区域的负荷预测以及控制系统寻优求解中起 到关键性作用。
(EMC 007)由制冷空调、工业控制和智能楼宇等专业领域集成,依据分布 式控制理论(DCS)组成了控 制网络
冷却水泵冷却塔
变频控制
冷水机组运行监控
冷冻水泵变频控制
• 中央空调的设计往往是按照当地的气象资料(最高/低气温)和建筑 物的特点而设计的,并考虑到最大能量(冷/热量)需求,还要预留 10%至20%的设计余量,所以主机、水泵、风机都有很大的余量。
• 由于季节的轮转和时间的变化,中央空调全年以最大功率运行的时间 很短,一般不足1% ,所以大量恒速电机存在很大的节能潜力。
送风系统控制
• 风系统主要是有风柜、空气处理机组、风机盘管等设备构成,依据空 调区域负荷变化时间序列,远程控制风柜各个风机的启停实现有级调 节送风量,也可变频调节空气处理机组实现送风量的无级调节,根据 室内CO2浓度控制系统新风量;
• 可采用EMC 007实现。
数据采集和控制
• 控制系统的所有监控参数,都是由数据采集模块或数据 采集卡来实现,通过中间继电器或固态继电器实现计算 机工作站弱电控制向空调系统强电控制的承接;
送风系统控制
数据采集和控制
通信网路系统
冷水机组群控
操作员工作站
工程师工作站
冷水机组运行监控
• 主要包括冷冻水进出水温度、冷却水进出水温度、蒸发压力、冷凝压 力、主机电流、主机负荷率等主要参数的监控。
• 具有PC接口的机组,可通过其数据通讯协议直接获取机组运行各参数, 并实现远程控制;
• 没有PC接口或未知设备数据通讯协议,则通过温度传感器、压力传感 器、电量传感器等变送元件实现各监测参数的模拟量化,并由数据采 集卡或数据采集模块将其转换为数字信号,通过数据网络与工作站计 算机实现数据通讯。
• 没有安装中央集中监控系统的中央空调,因使用管理问题,往往会造 成更大的能源浪费。
• 用户的维护意识淡薄也是造成中央空调效率降低的原因之一。
目前技术上比较成熟的中央空调节能方案有: • 水泵、风机等动力设备变频运行以适应系统负荷变化; • 在满足工业要求或舒适性的前提下,采用变冷冻水温调节方式以适应系
• 空气处理机(风机盘管、水冷风柜)是进行室内空气温度调节的末端 设备,其中风机提供了室内空气循环所需要的动力,通常采用恒速定 风量风机,额定功率从0.5kw到15kw ,但数量较多。
• 新风机、回风机、排风机提供了新风供应、回风和排风的动力,额定 功率一般从2kw到55kw 。
冷水机组 冷冻泵冷却泵冷却塔 空气处理机 新风机回风机排风机
• 主要功能由EMC 007主控制柜实现。
冷水机组群控
• 根据空调系统的负荷率,以及该空调系统用户负荷率变化 特征,智能控制冷水机组的台数和冷冻水出水温度,冷水 机组在低负荷运行时可以充分利用蒸发器和冷凝器的换热 能力,减小换热温差,提高冷水机组的运行效率。
• 冷冻水出水温度升高,可提高冷水机组的运行效率,冷冻 水平均温度每升高1℃,冷水机组的运行效率提高3%。
冷却水泵冷却塔 变频控制
• 根据设计工况(出水/回水温差、压力、流量等)调节冷却水泵工作 频率,通常从35Hz到49Hz;
• 维持冷却塔的出水温度在32~37℃之间可以保证空调系统较高的运行 效率,同时也能节约冷却塔风机能耗,通常可以采用变频或者通断控 制来实现;
• 可采用EMC 007实现。
冷冻水泵变频控制
中央空调节能技术改造方案
电 柴油/煤/天然气 其它
ห้องสมุดไป่ตู้60
50
40
30
20
10
0 中央空调 电梯
水泵
风机
照明
中央空调系统包括 • 冷水机组 • 冷冻水循环系统 • 空气处理系统 • 冷却水循环系统 • 冷却塔系统 • 新风处理系统
• 中央空调系统中能耗最大的设备属冷水机组,冷水机组按照压缩机的
类型分为:往复式(也称活塞式)机组、螺杆式机组和离心式机组,
• 冷冻水循环泵(简称:冷冻泵)主要提供冷冻水循环的动力,其输入 功率一般从11kw到132kw,传统的设计冷冻泵为定流量泵,输出功率 恒定不变。
• 冷却水循环泵(简称:冷却泵)主要提供冷却水循环的动力,其输入 输入功率一般从11kw到132kw,传统的设计冷却泵为定流量泵,输出 功率恒定不变。
• 冷却塔风机主要为冷却水降温提供风力,其输入输入功率一般从3kw 到15kw,传统的设计冷却塔风机为恒速风机,输出功率恒定不变。