实验二数值方法计算积分
数值分析实验报告
实验2.1 多项式插值的振荡现象实验目的:在一个固定的区间上用插值逼近一个函数,显然Lagrange 插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时,Ln(x)是否也更加靠近被逼近的函数。
Runge 给出的一个例子是极著名并富有启发性的。
实验容:设区间[-1,1]上函数 f(x)=1/(1+25x 2)。
考虑区间[-1,1]的一个等距划分,分点为 x i = -1 + 2i/n ,i=0,1,2,…,n ,则拉格朗日插值多项式为201()()125nn i i i L x l x x ==+∑. 其中,l i (x),i=0,1,2,…,n 是n 次Lagrange 插值基函数。
实验步骤与结果分析:实验源程序function Chap2Interpolation% 数值实验二:“实验2.1:多项式插值的震荡现象”% 输入:函数式选择,插值结点数% 输出:拟合函数及原函数的图形promps = {'请选择实验函数,若选f(x),请输入f,若选h(x),请输入h,若选g(x),请输入g:'};titles = 'charpt_2';result = inputdlg(promps,'charpt 2',1,{'f'});Nb_f = char(result);if(Nb_f ~= 'f' & Nb_f ~= 'h' & Nb_f ~= 'g')errordlg('实验函数选择错误!');return;endresult = inputdlg({'请输入插值结点数N:'},'charpt_2',1,{'10'});Nd = str2num(char(result));if(Nd <1)errordlg('结点输入错误!');return;endswitch Nb_fcase 'f'f=inline('1./(1+25*x.^2)'); a = -1;b = 1;case 'h'f=inline('x./(1+x.^4)'); a = -5; b = 5;case 'g'f=inline('atan(x)'); a = -5; b= 5;endx0 = linspace(a, b, Nd+1); y0 = feval(f, x0);x = a:0.1:b; y = Lagrange(x0, y0, x);fplot(f, [a b], 'co');hold on;plot(x, y, 'b--');xlabel('x'); ylabel('y = f(x) o and y = Ln(x)--');%--------------------------------------------------------------------function y=Lagrange(x0, y0, x);n= length(x0); m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif(j ~= k)p = p*(z - x0(j))/(x0(k) - x0(j));endends = s + p*y0(k);endy(i) = s;end实验结果分析(1)增大分点n=2,3,…时,拉格朗日插值函数曲线如图所示。
(精选)实验二 数值方法计算积分
实验二数值方法计算积分学号:姓名:指导教师:实验目的1、了解并掌握matlab软件的基本编程、操作方法;2、初步了解matlab中的部分函数,熟悉循环语句的使用;3、通过上机进一步领悟用复合梯形、复合辛普森公式,以及用龙贝格求积方法计算积分的原理。
一、用不同数值方法计算积分 10x ln xdx=-94.(1)取不同的步长h.分别用复合梯形及辛普森求积计算积分,给出误差中关于h的函数,并与积分精确值比较两个公式的精度,是否存在一个最小的h,使得精度不能再被改善?(2)用龙贝格求积计算完成问题(1)。
二、实现实验1、流程图:下图是龙贝格算法框图:2、 算法:(1) 复合梯形公式:Tn=++)()([2b f a f h2∑-=11)](n k xk f ;(2) 复合辛普森公式:Sn=6h[f(a)+f(b)+2∑-=11)](n k xk f +4∑-=+1)2/1(n k x f ];以上两种算法都是将a-b 之间分成多个小区间(n ),则h=(b-a)/n,x k =a+kh, x k+1/2=a+(k+1/2)h,利用梯形求积根据两公式便可。
(3) 龙贝格算法:在指定区间内将步长依次二分的过程中运用如下公式1、Sn=34T2n-31Tn 2、 Cn=1516S2n-151Sn3、 Rn=6364C2n-631Cn 从而实现算法。
3、 程序设计(1)、复合梯形法:function t=natrapz(fname,a,b,n) h=(b-a)/n;fa=feval(fname,a);fb=feval(fname,b);f=feval(fname,a+h:h:b-h+0.001*h);t=h*(0.5*(fa+fb)+sum(f));(2)、复合辛普森法:function t=natrapz(fname,a,b,n)h=(b-a)/n;fa=feval(fname,a);fb=feval(fname,b);f1=feval(fname,a+h:h:b-h+0.001*h);f2=feval(fname,a+h/2:h:b-h+0.001*h); t=h/6*(fa+fb+2*sum(f1)+4*sum(f2));(3)龙贝格法:function [I,step]=Roberg(f,a,b,eps)if(nargin==3) eps=1.0e-4;end; M=1; tol=10; k=0;T=zeros(1,1); h=b-a;T(1,1)=(h/2)*(subs(sym(f),findsym(sym(f)),a)+subs(sym(f),findsym(sym(f)),b));while tol>epsk=k+1;h=h/2;Q=0;for i=1:Mx=a+h*(2*i-1);Q=Q+subs(sym(f),findsym(sym(f)),x);endT(k+1,1)=T(k,1)/2+h*Q;M=2*M;for j=1:kT(k+1,j+1)=T(k+1,j)+(T(k+1,j)-T(k,j))/(4^j-1); endtol=abs(T(k+1,j+1)-T(k,j));endI=T(k+1,k+1);step=k;4、实验结果;(1)复合梯形法(2)、复合辛普森法结果:(3)龙贝格法结果四.总结由结果(1)、(2)可知复合辛普森法求积分精度明显比复合梯形法求积的精度要高,且当步长取不同值时即n 越大、h 越小时,积分精度越高。
数值计算方法实验报告
数值计算方法实验报告一、实验介绍本次实验是关于数值计算方法的实验,旨在通过计算机模拟的方法,实现对于数值计算方法的掌握。
本次实验主要涉及到的内容包括数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等。
二、实验内容1. 数值微积分数值微积分是通过计算机模拟的方法,实现对于微积分中的积分运算的近似求解。
本次实验中,我们将会使用梯形公式和辛普森公式对于一定区间上的函数进行积分求解,并比较不同公式的计算误差。
2. 线性方程组的求解线性方程组求解是数值计算领域中的重要内容。
本次实验中,我们将会使用高斯消元法、LU分解法等方法对于给定的线性方程组进行求解,并通过比较不同方法的计算效率和精度,进一步了解不同方法的优缺点。
3. 插值与拟合插值与拟合是数值计算中的另一个重要内容。
本次实验中,我们将会使用拉格朗日插值法和牛顿插值法对于给定的数据进行插值求解,并使用最小二乘法对于给定的函数进行拟合求解。
4. 常微分方程的数值解常微分方程的数值解是数值计算中的难点之一。
本次实验中,我们将会使用欧拉法和龙格-库塔法等方法对于给定的常微分方程进行数值解的求解,并比较不同方法的计算精度和效率。
三、实验结果通过本次实验,我们进一步加深了对于数值计算方法的理解和掌握。
在数值微积分方面,我们发现梯形公式和辛普森公式都能够有效地求解积分,但是辛普森公式的计算精度更高。
在线性方程组求解方面,我们发现LU分解法相对于高斯消元法具有更高的计算效率和更好的数值精度。
在插值与拟合方面,我们发现拉格朗日插值法和牛顿插值法都能够有效地进行插值求解,而最小二乘法则可以更好地进行函数拟合求解。
在常微分方程的数值解方面,我们发现欧拉法和龙格-库塔法都能够有效地进行数值解的求解,但是龙格-库塔法的数值精度更高。
四、实验总结本次实验通过对于数值计算方法的模拟实现,进一步加深了我们对于数值计算方法的理解和掌握。
在实验过程中,我们了解了数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等多个方面的内容,在实践中进一步明确了不同方法的特点和优缺点,并可以通过比较不同方法的计算效率和数值精度来选择合适的数值计算方法。
数值分析2024上机实验报告
数值分析2024上机实验报告数值分析是计算数学的一个重要分支,它研究如何用数值方法来解决数学问题。
在数值分析的学习过程中,学生需要通过上机实验来巩固理论知识,并学会使用相应的数值方法来解决实际问题。
本篇报告将详细介绍2024年度数值分析上机实验的内容和结果。
一、实验内容2024年度数值分析上机实验分为四个部分,分别是:方程求根、插值与拟合、数值积分和常微分方程的数值解。
1.方程求根这部分实验要求使用数值方法求解给定的非线性方程的根。
常见的数值方法有二分法、牛顿法、割线法等。
在实验过程中,我们需要熟悉这些数值方法的原理和实现步骤,并对不同方法的收敛性进行分析和比较。
2.插值与拟合这部分实验要求使用插值和拟合方法对给定的一组数据进行拟合。
插值方法包括拉格朗日插值、牛顿插值等;拟合方法包括最小二乘拟合、多项式拟合等。
在实验中,我们需要熟悉插值和拟合方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。
3.数值积分这部分实验要求使用数值方法计算给定函数的积分。
常见的数值积分方法有梯形法则、辛普森法则、龙贝格积分等。
在实验过程中,我们需要熟悉这些数值积分方法的原理和实现步骤,并对不同方法的精度和效率进行比较。
4.常微分方程的数值解这部分实验要求使用数值方法求解给定的常微分方程初值问题。
常见的数值方法有欧拉法、改进的欧拉法、四阶龙格-库塔法等。
在实验中,我们需要熟悉这些数值解方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。
二、实验结果在完成2024年度数值分析上机实验后,我们得到了以下实验结果:1.方程求根我们实现了二分法、牛顿法和割线法,并对比了它们的收敛速度和稳定性。
结果表明,割线法的收敛速度最快,但在一些情况下可能会出现振荡;二分法和牛顿法的收敛速度相对较慢,但稳定性较好。
2.插值与拟合我们实现了拉格朗日插值和最小二乘拟合,并对比了它们的拟合效果和精度。
结果表明,拉格朗日插值在小区间上拟合效果较好,但在大区间上可能出现振荡;最小二乘拟合在整体上拟合效果较好,但可能出现过拟合。
数值分析积分实验报告(3篇)
第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。
通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。
二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。
实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。
2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。
实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。
3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。
实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。
4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。
它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。
实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。
三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。
2. 选取几个不同的函数,对积分区间进行划分。
3. 使用不同方法计算积分近似值,并与实际积分值进行比较。
4. 分析不同方法的精度和效率。
四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。
2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。
3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。
4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。
数值计算基础实验报告(3篇)
第1篇一、实验目的1. 理解数值计算的基本概念和常用算法;2. 掌握Python编程语言进行数值计算的基本操作;3. 熟悉科学计算库NumPy和SciPy的使用;4. 分析算法的数值稳定性和误差分析。
二、实验内容1. 实验环境操作系统:Windows 10编程语言:Python 3.8科学计算库:NumPy 1.19.2,SciPy 1.5.02. 实验步骤(1)Python编程基础1)变量与数据类型2)运算符与表达式3)控制流4)函数与模块(2)NumPy库1)数组的创建与操作2)数组运算3)矩阵运算(3)SciPy库1)求解线性方程组2)插值与拟合3)数值积分(4)误差分析1)舍入误差2)截断误差3)数值稳定性三、实验结果与分析1. 实验一:Python编程基础(1)变量与数据类型通过实验,掌握了Python中变量与数据类型的定义方法,包括整数、浮点数、字符串、列表、元组、字典和集合等。
(2)运算符与表达式实验验证了Python中的算术运算、关系运算、逻辑运算等运算符,并学习了如何使用表达式进行计算。
(3)控制流实验学习了if-else、for、while等控制流语句,掌握了条件判断、循环控制等编程技巧。
(4)函数与模块实验介绍了Python中函数的定义、调用、参数传递和返回值,并学习了如何使用模块进行代码复用。
2. 实验二:NumPy库(1)数组的创建与操作通过实验,掌握了NumPy数组的基本操作,包括创建数组、索引、切片、排序等。
(2)数组运算实验验证了NumPy数组在数学运算方面的优势,包括加、减、乘、除、幂运算等。
(3)矩阵运算实验学习了NumPy中矩阵的创建、操作和运算,包括矩阵乘法、求逆、行列式等。
3. 实验三:SciPy库(1)求解线性方程组实验使用了SciPy库中的线性代数模块,通过高斯消元法、LU分解等方法求解线性方程组。
(2)插值与拟合实验使用了SciPy库中的插值和拟合模块,实现了对数据的插值和拟合,并分析了拟合效果。
计算方法实验报告册
实验一——插值方法实验学时:4实验类型:设计 实验要求:必修一 实验目的通过本次上机实习,能够进一步加深对各种插值算法的理解;学会使用用三种类型的插值函数的数学模型、基本算法,结合相应软件(如VC/VB/Delphi/Matlab/JAVA/Turbo C )编程实现数值方法的求解。
并用该软件的绘图功能来显示插值函数,使其计算结果更加直观和形象化。
二 实验内容通过程序求出插值函数的表达式是比较麻烦的,常用的方法是描出插值曲线上尽量密集的有限个采样点,并用这有限个采样点的连线,即折线,近似插值曲线。
取点越密集,所得折线就越逼近理论上的插值曲线。
本实验中将所取的点的横坐标存放于动态数组[]X n 中,通过插值方法计算得到的对应纵坐标存放于动态数组[]Y n 中。
以Visual C++.Net 2005为例。
本实验将Lagrange 插值、Newton 插值和三次样条插值实现为一个C++类CInterpolation ,并在Button 单击事件中调用该类相应函数,得出插值结果并画出图像。
CInterpolation 类为 class CInterpolation { public :CInterpolation();//构造函数CInterpolation(float *x1, float *y1, int n1);//结点横坐标、纵坐标、下标上限 ~ CInterpolation();//析构函数 ………… …………int n, N;//结点下标上限,采样点下标上限float *x, *y, *X;//分别存放结点横坐标、结点纵坐标、采样点横坐标float *p_H,*p_Alpha,*p_Beta,*p_a,*p_b,*p_c,*p_d,*p_m;//样条插值用到的公有指针,分别存放i h ,i α,i β,i a ,i b ,i c ,i d 和i m};其中,有参数的构造函数为CInterpolation(float *x1, float *y1, int n1) {//动态数组x1,y1中存放结点的横、纵坐标,n1是结点下标上限(即n1+1个结点) n=n1;N=x1[n]-x1[0]; X=new float [N+1]; x=new float [n+1]; y=new float [n+1];for (int i=0;i<=n;i++) {x[i]=x1[i]; y[i]=y1[i]; }for (int i=0;i<=N;i++) X[i]=x[0]+i; }2.1 Lagrange 插值()()nn i i i P x y l x ==∑,其中0,()nj i j j ni jx x l x x x =≠-=-∏对于一个自变量x ,要求插值函数值()n P x ,首先需要计算对应的Lagrange 插值基函数值()i l x float l(float xv,int i) //求插值基函数()i l x 的值 {float t=1;for (int j=0;j<=n;j++) if (j!=i)t=t*(xv-x[j])/(x[i]-x[j]); return t; }调用函数l(float x,int i),可求出()n P xfloat p_l(float x) //求()n P x 在一个点的插值结果 {float t=0;for (int i=0;i<=n;i++) t+=y[i]*l(x,i); return t; }调用p_l(float x)可实现整个区间的插值float *Lagrange() //求整个插值区间上所有采样点的插值结果 {float *Y=new float [N+1]; for (int k=0;k<=N;k++) Y[k]=p_l(x[0]+k*h); return Y; } 2.2Newton 插值010()(,,)()nn i i i P x f x x x x ω==∑,其中101,0()(),0i i j j i x x x i ω-==⎧⎪=⎨-≠⎪⎩∏,0100,()(,,)()ik i nk k j j j kf x f x x x x x ==≠=-∑∏对于一个自变量x ,要求插值函数值()n P x ,首先需要计算出01(,,)i f x x x 和()i x ωfloat *f() {//该函数的返回值是一个长度为n +1的动态数组,存放各阶差商 }float w(float x, int i) {//该函数计算()i x ω }在求()n P x 的函数中调用*f()得到各阶差商,然后在循环中调用w(float x)可得出插值结果 float p_n(float x) {//该函数计算()n P x 在一点的值 }调用p_n(float x)可实现整个区间的插值 float *Newton() {//该函数计算出插值区间内所有点的值 }2.3 三次样条插值三次样条插值程序可分为以下四步编写: (1) 计算结点间的步长i hi 、i α、i β;(2) 利用i hi 、i α、i β产生三对角方程组的系数矩阵和常数向量; (3) 通过求解三对角方程组,得出中间结点的导数i m ; (4) 对自变量x ,在对应区间1[,]i i x x +上,使用Hermite 插值; (5)调用上述函数,实现样条插值。
编程实现数值积分的几种--方法 c语言
编程实现数值积分的几种--方法c语言数值计算2010-11-05 09:52:43 阅读385 评论1 字号:大中小订阅复化梯形公式在区间不大时, 用梯形公式、辛卜生公式计算定积分是简单实用的, 但当区间较大时, 用梯形公式、辛卜生公式计算定积分达不到精确度要求 . 为了提高计算的精确度,我们将[a,b] 区间n等分,在每个小区间上应用梯形公式、辛卜生公式计算定积分,然后将其结果相加,这样就得到了复化梯形公式和复化辛卜生公式。
1. 复化梯形公式将积分区间等分, 设, 则节点为对每个小区间上应用梯形公式, 然后将其结果相加,则得(3.14)称(3.14) 式为复化梯形公式 .当在[a,b] 上有连续的二阶导数时,则复化梯形公式(3.14) 的余项推导如下:因为所以在区间[a,b] 上公式(3.14) 的误差为又因为在区间[a,b] 上连续,由连续函数的性质知,在区间[a,b] 上存在一点,于是( 3.15 )复化梯形公式,复化抛物线公式和Romberg求积法的算法程序:以下程序均定义误差限为1*10^-5;1)复化梯形公式:#include <stdio.h>#include <math.h>#define e 1e-5#define a 0 //积分下限a#define b 1 //积分上限b#define f(x) (4/(1+(x*x))) //被积函数f(x)int main(){int i,n;double h,t0,t,g;n=1; //赋初值h=(double)(b-a)/2;t=h*(f(a)+f(b));do{t0=t;g=0;for (i=1;i<=n;i++)g+=f((a+(2*i-1)*h));t=(t0/2)+(h*g); //复化梯形公式n*=2;h/=2;}while (fabs(t-t0)>e); //自定义误差限e printf("%.8lf",t); //输出积分的近似值return 0;}2)复化抛物线公式:#include <stdio.h>#include <math.h>#define e 1e-5#define a 0 //积分下限a#define b 1 //积分上限b#define f(x) (4/(1+(x*x))) //被积函数f(x)int main(){int i,n;double f1,f2,f3,h,s0,s;f1=f(a)+f(b); //赋初值f2=f(((double)(b+a)/2));f3=0;s=((double)(b-a)/6)*(f1+4*f2);n=2;h=(double)(b-a)/4;do //复化抛物线算法{f2+=f3;s0=s;f3=0;for (i=1;i<=n;i++)f3+=f((a+(2*i-1)*h));s=(h/3)*(f1+2*f2+4*f3);n*=2;h/=2;}while (fabs(s-s0)>e); //自定义误差限printf("%.8lf",s);return 0;}3)Romberg求积法:#include <stdio.h>#include <math.h>#define e 1e-5#define a 0 //积分下限a#define b 1 //积分上限b#define f(x) (4/(1+(x*x))) //被积函数f(x)double t[100][100];int main(){int n,k,i,m;double h,g,p;h=(double)(b-a)/2;t[0][0]=h*(f(a)+f(b));k=1;n=1;do //Romberg算法{g=0;for (i=1;i<=n;i++)g+=f((a+((2*i-1)*h)));t[k][0]=(t[k-1][0]/2)+(h*g);for (m=1;m<=k;m++){p=pow(4,(double)(m));t[k-m][m]=(p*t[k-m+1][m-1]-t[k-m][m-1])/(p-1);}m-=1;h/=2;n*=2;k+=1;}while (fabs(t[0][m]-t[0][m-1])>e); //自定义误差限eprintf("%.8lf",t[0][m]);return 0;}给定精度,定义误差限为1*10^-5,分别求出步长的先验估计值:用复化梯形公式计算,要求h<0. 007746。
数值计算中的数值积分方法
数值计算中的数值积分方法数值计算是应用数学的一个分支,它主要涉及数值计算方法、算法和数值实验。
其中,数值积分作为数值计算中的一个重要环节,其作用在于将连续函数转化为离散的数据,从而方便计算机进行计算和处理。
本文将介绍数值积分的概念、方法和应用。
一、数值积分的概念数值积分是利用数值方法对定积分进行估计的过程。
在数值积分中,积分被近似为离散区间的和,从而可以被计算机进行处理。
数值积分中,被积函数的精确的积分值是无法计算的,而只能通过数值方法进行估计。
数值积分的目的是通过选取合适的算法和参数来尽可能减小误差,达到精度和效率的平衡。
二、数值积分的方法1. 矩形法矩形法是数学上最简单的数值积分方法之一。
矩形法的算法是将要积分的区间分为若干个小区间,然后计算每个小区间中矩形的面积,最后将所有小矩形的面积加起来得到近似的积分值。
矩形法的精度一般较低,适用于计算不需要高精度的函数积分。
2. 梯形法梯形法是数值积分中常用的一种方法,其原理是将区间分为若干个梯形,并计算每个梯形的面积,最后将所有梯形的面积加起来得到近似的积分值。
梯形法的计算精度较高,但其计算量较大。
3. 辛普森法辛普森法是数值积分中一种高精度的方法,它是利用二次多项式去估计原函数。
辛普森法的原理是将区间分为若干等分小区间,并计算每个小区间中的二次多项式的积分值,最后将所有小区间的积分值加起来得到近似的积分值。
辛普森法的优点是其精度高,计算量相对较小。
三、数值积分的应用数值积分方法在各个领域都有广泛的应用。
例如,它可以被用于工程学、物理学和金融学中的数值计算。
在工程学中,数值积分被用于数值模拟和计算机辅助设计中。
在物理学中,数值积分则被用于数值求解微分方程和计算机模拟等领域。
在金融学中,数值积分则被应用于计算复杂的金融模型和风险分析。
总之,数值积分方法是数学和计算机科学中非常重要的一部分。
通过不同的数值积分方法来近似计算定积分,我们能够利用计算机更加高效地进行数学计算和数据分析,从而使得数学和物理等学科的研究者能够更加快速地得出准确的结果。
实验二:定积分的近似计算
实验二:定积分的近似计算实验目标:1、 熟悉MATLAB 的程序设计方法;2、 熟悉MATLAB 下命令文件和函数文件的建立和使用;3、 学习定积分的三种近似计算方法:矩形法、梯形法、辛普生法;4、 理解数值计算的误差分析。
问题背景:求定积分的近似值的数值方法就是用被积函数的有限个抽样值的离散或加权平均近似值代替定积分的值。
求某函数的定积分时,在多数情况下,被积函数的原函数很难用初等函数表达出来, 因此能够借助牛顿-莱布尼兹公式计算定积分的机会是不多的。
另外,许多实际问题中的被积函数往往是列表函数或其他形式的非连续函数,对这类函数的定积分,也不能用不定积分方法求解。
由于以上原因,数值积分的理论与方法一直是计算数学研究的基本课题。
定积分的近似解的简单方法包括:矩形公式、梯形公式和辛普生公式。
根据定积分的定义,每个积分和都可以看做是定积分的近似值,即⎰∑=∆=ba ni i i x f dx x f 1)()(ζ在几何意义上,这是用一系列小块区域的面积近似小曲边梯形的面积。
当然,只有当积分区间被分割的很细时,计算结果才具有一定的精确度。
● 矩形法:设积分区间被等分为若干份,第i 份是由][1+i i x x 表示,则该小块区域面积为:)(*1i i i x f x x -+ 或)(*11++-i i i x f x x 或)(*211++-i i i x f x x● 梯形法:设积分区间被等分为若干份,第i 份是由][1+i i x x 表示,取)(i x f 和)(1+i x f 的加权平均值作为平均高度)(i f ζ,则该小块区域面积为:2)()(*11+++-i i i i x f x f x x ● 辛普生法:设积分区间被等分为若干份,第i 份是由][1+i i x x 表示,中点为21+i x ,取函数)(x f 在i x ,1+i x ,21+i x 这是三点的函数值的加权平均值作为平均高度的近似值,则该小块区域面积为:6)()(4)(*1211+++++-i i i i i x f x f x f x x实验内容:1、 试推导定积分的三种近似计算方法的迭代公式(矩形法、梯形法、辛普生法)。
数值分析实验报告2
实验报告一、实验名称复合梯形求积公式、复合辛普森求积公式、龙贝格求积公式及自适应辛普森积分。
二、实验目的及要求1. 掌握复合梯形求积计算积分、复合辛普森求积计算积分、龙贝格求积计算积分和自适应辛普森积分的基本思路和步骤.2. 培养Matlab 编程与上机调试能力. 三、实验环境计算机,MATLAB 软件 四、实验内容1.用不同数值方法计算积分94ln 10-=⎰xdx x 。
(1)取不同的步长h 。
分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h 的函数,并与积分精确指比较两个公式的精度,是否存在一个最小的h ,使得精度不能再被改善。
(2)用龙贝格求积计算完成问题(1)。
(3)用自适应辛普森积分,使其精度达到10-4。
五、算法描述及实验步骤1.复合梯形公式将区间[a,b]划分为n 等份,分点x k =a+ah,h=(b-a)/h,k=0,1,...,n ,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用梯形公式(1.1),得)]()([2)(b f a f ab dx x f b a+-≈⎰ (1.1) )]()(2)([2)]()([211110b f x f b f hx f x f h T n k k k n k k n ++=+=∑∑-=+-= (1.2)),(),(12)(''2b a f h a b f R n ∈--=ηη(1.3) 其中Tn 称为复合梯形公式,Rn 为复合梯形公式的余项。
2.复合辛普森求积公式将区间[a,b]划分为n 等份,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用辛普森公式(1.4),得)]()2(4)([6b f ba f a f ab S +++-=(1.4) )]()(2)(4)([6)]()()([611102/112/11b f x f x f b f hx f x f x f h S n k k n k k k k n k k n +++=++=∑∑∑-=-=+++-= (1.5) ),(),()2(180)()4(4b a f h a b f R n ∈-=ηη (1.6)其中Sn 称为复合辛普森求积公式,Rn 为复合辛普森求积公式的余项。
数值计算实验报告积分
一、实验目的1. 理解积分的概念和基本性质。
2. 掌握数值积分的方法,包括矩形法、梯形法、辛普森法等。
3. 通过实际计算,加深对积分概念的理解。
二、实验原理积分是微积分学中的一个基本概念,表示一个函数在某区间内的累积变化量。
数值积分是指利用数值方法求解积分,常见的方法有矩形法、梯形法、辛普森法等。
1. 矩形法:将积分区间分成若干等份,用每个小区间的宽度乘以函数在该区间的值,再将所有小区间的乘积相加,得到积分的近似值。
2. 梯形法:将积分区间分成若干等份,用每个小区间的宽度乘以函数在该区间的平均值,再将所有小区间的乘积相加,得到积分的近似值。
3. 辛普森法:将积分区间分成若干等份,用每个小区间的宽度乘以函数在该区间的二次多项式近似值,再将所有小区间的乘积相加,得到积分的近似值。
三、实验步骤1. 选择一个具体的积分问题,例如:计算函数f(x) = x^2在区间[0,1]上的积分。
2. 根据所选择的积分方法,设置相应的参数。
例如,对于矩形法,需要设置小区间的数量n;对于梯形法,需要设置小区间的数量n;对于辛普森法,需要设置小区间的数量n。
3. 计算每个小区间的宽度,例如,对于区间[0,1],小区间的宽度为h = (1-0)/n。
4. 根据所选的积分方法,计算积分的近似值。
5. 比较不同积分方法的近似值,分析误差来源。
四、实验结果与分析以函数f(x) = x^2在区间[0,1]上的积分为例,进行数值积分实验。
1. 矩形法:取n=4,计算得到积分的近似值为0.5625。
2. 梯形法:取n=4,计算得到积分的近似值为0.6667。
3. 辛普森法:取n=4,计算得到积分的近似值为0.6667。
通过比较不同积分方法的近似值,可以发现辛普森法的误差较小,且随着n的增大,误差逐渐减小。
这表明辛普森法在数值积分中具有较高的精度。
五、实验总结1. 本实验通过数值积分方法,计算了函数f(x) = x^2在区间[0,1]上的积分,加深了对积分概念的理解。
数值分析实验(4)
页脚内容1实验四 数值积分与数值微分专业班级:信计131班 姓名:段雨博 学号:2013014907 一、实验目的1、熟悉matlab 编程。
2、学习数值积分程序设计算法。
3、通过上机进一步领悟用复合梯形、复合辛普森公式,以及用龙贝格求积方法计算积分的原理。
二、实验题目 P1371、用不同数值方法计算积分049xdx =-⎰。
(1)取不同的步长h .分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h 的函数,并与积分精确值比较两个公式的精度,是否存在一个最小的h ,使得精度不能再被改善?(2)用龙贝格求积计算完成问题(1)。
三、实验原理与理论基础1.1复合梯形公式及其复合辛普森求解[]()()()11101()()222n n n k k k k k h h T f x f x f a f x f b --+==⎡⎤=+=++⎢⎥⎣⎦∑∑误差关于h 的函数:()()212n b a R fh f η-''=-页脚内容2复合辛普森公式:()()()()111/201426n n n k k k k h S f a f x f x f b --+==⎡⎤=+++⎢⎥⎣⎦∑∑误差关于h 的函数:()()441802n n b a h R f I S f η-⎛⎫=-=- ⎪⎝⎭1.2龙贝格求积算法:龙贝格求积公式是梯形法的递推化,也称为逐次分半加速法,它是在梯形公式、辛普森公式和柯特斯公式之间的关系的基础上,构造出一种计算积分的方法,同时它有在不断增加计算量的前提下提高误差的精度的特点。
计算过程如下:(1)取0,k h b a ==-,求:()()()[]()00.,.2hT f a f b k a b =+→⎡⎤⎣⎦令k 1记为区间的二分次数 (2)求梯形值02k b a T -⎛⎫⎪⎝⎭即按递推公式12102122n n n k k h T T f x -+=⎛⎫=+ ⎪⎝⎭∑计算0k T .(3)求加速值,按公式()()()111444141m m k k k mm m m m T T T +--=---逐个求出T 表的地k 行其余各元素()()1,2,,k j j T j k -=(4)若()()001k k T T ε--<(预先给定的精度),则终止计算,并取()()0;1k T I k k ≈+→否则令转(2)继续计算。
数值计算方法实验指导(Matlab版)
《数值计算方法》实验指导(Matlab版)学院数学与统计学学院计算方法课程组《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则验证(之相近数相减、大数吃小数和简化计算步骤) 2. 实验题目(1) 取1610=z ,计算z z -+1和)1/(1z z ++,验证两个相近的数相减会造成有效数字的损失.(2) 按不同顺序求一个较大的数(123)与1000个较小的数(15310-⨯)的和,验证大数吃小数的现象.(3) 分别用直接法和九韶算法计算多项式n n n n a x a x a x a x P ++++=--1110)(在x =1.00037处的值.验证简化计算步骤能减少运算时间.对于第(3)题中的多项式P (x ),直接逐项计算需要2112)1(+=+++-+n n n 次乘法和n 次加法,使用九韶算法n n a x a x a x a x a x P ++++=-)))((()(1210则只需要n 次乘法和n 次加法. 3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应避免两个相近的数相减、防止大数吃小数、简化计算步骤减少运算次数以减少运算时间并降低舍入误差的积累.两相近的数相减会损失有效数字的个数,用一个大数依次加小数,小数会被大数吃掉,乘法运算次数太多会增加运算时间. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程(1) 直接计算并比较;(2) 法1:大数逐个加1000个小数,法2:先把1000个小数相加再与大数加; (3) 将由高次项到低次项的系数保存到数组A[n]中,其中n 为多项式次数.7. 结果与分析 (1) 计算的z z -+1= ,)1/(1z z ++.分析:(2) 123逐次加1000个6310-⨯的和是 ,先将1000个6310-⨯相加,再用这个和与123相加得.分析:(3) 计算次的多项式:直接计算的结果是,用时;用九韶算法计算的结果是,用时.分析:8. 附录:程序清单(1) 两个相近的数相减.%*************************************************************%* 程序名:ex1_1.m *%* 程序功能:验证两个相近的数相减会损失有效数字个数 *%*************************************************************z=1e16;x,y======================================================================(2) 大数吃小数%*************************************************************%* 程序名:ex1_2.m *%* 程序功能:验证大数吃小数的现象. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数z=123; % 大数t=3e-15; % 小数x=z; % 大数依次加小数% 重复1000次给x中加上ty=0; % 先累加小数% 重复1000次给y中加上ty=z + y; % 再加到大数x,y======================================================================(3) 九韶算法%*************************************************************%* 程序名:ex1_3.m *%* 程序功能:验证九韶算法可节省运行时间. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数A=[8,4,-1,-3,6,5,3,2,1,3,2,-1,4,3,1,-2,4,6,8,9,50,-80,12,35,7,-6,42,5,6,23,74,6 5,55,80,78,77,98,56];A(10001)=0; % 扩展到10001项,后面的都是分量0% A为多项式系数,从高次项到低次项x=1.00037;n=9000; % n为多项式次数% 直接计算begintime=clock; % 开始执行的时间 % 求x的i次幂% 累加多项式的i次项endtime=clock; % 完毕执行的时间time1=etime(endtime,begintime); % 运行时间disp('直接计算');disp(['p(',num2str(x),')=',num2str(p)]);disp([' 运行时间: ',num2str(time1),'秒']);% 九韶算法计算begintime=clock; % 开始执行的时间% 累加九韶算法中的一项endtime=clock; % 完毕执行的时间time2=etime(endtime,begintime); % 运行时间disp(' ');disp('九韶算法计算');disp(['p(',num2str(x),')=',num2str(p)]);disp([' 运行时间: ',num2str(time2),'秒']);《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则验证(之数值稳定性) 2. 实验题目 计算定积分⎰==-1110,1,0,d n x e xI x nn ,分别用教材例1-7推导出的算法A 和B ,其中:算法A :⎩⎨⎧≈-=-6321.0101I nI I n n 算法B :⎪⎩⎪⎨⎧≈-=-0)1(1101I I nI n n 验证算法不稳定时误差会扩大.3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应采用数值稳定性好的算法.数值稳定的算法,误差不会放大,甚至会缩小;而数值不稳定的算法会放大误差. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程分别用数组IA[ ]和IB[ ]保存两种算法计算的结果. 7. 结果与分析 运行结果:(或拷屏)8. 附录:程序清单%*************************************************************%* 程序名:ex1_4.m *%* 程序功能:验证数值稳定性算法可控制误差. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数I=[0.856, 0.144, 0.712, 0.865, ...0.538, 0.308, 0.154, 0.938, ...0.492, 0.662, 0.843];% 保留14位小数的精确值, …是Matlab中的续行符% 算法AIA(1) = 0.6321; % Matlab下标从1开始,所以要用IA(n+1)表示原问题中的I(n)% 算法Bdisp('n 算法A 算法B 精确值');for n=1:11fprintf('%2d %14.6f %14.6f %14.6f\n',n-1,IA(n),IB(n),I(n));end% n显示为2位整数, 其它显示为14位其中小数点后显示6位的小数《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则(除数绝对值不能太小) 2. 实验题目将线性方程组增广矩阵利用初等行变换可化为⎪⎪⎭⎫⎝⎛→-⎪⎪⎭⎫ ⎝⎛→-⎪⎪⎭⎫ ⎝⎛''0'0''02221112'12221121112222211121122121121b a b a r r b a b a a r r b a a b a a a a a a由此可解得'/',/'22221111a b x a b x ==.分别解增广矩阵为161011212-⎛⎫ ⎪⎝⎭和162121011-⎛⎫⎪⎝⎭的方程组,验证除数绝对值远小于被除数绝对值的除法会导致结果失真. 3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应避免除数绝对值远小于被除数绝对值的除法,否则绝对误差会被放大,使结果失真. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程用二维数组A 和B 存放方程组的增广矩阵,利用题目所给初等行变换求解方程组. 7. 结果与分析第1种顺序的方程组的解为x =,y =;第2种顺序的方程组的解为x =,y =. 分析:8. 附录:程序清单%************************************************************* %* 程 序 名:ex1_5.m * %* 程序功能:验证除数的绝对值太小可能会放大误差. * %*************************************************************clc;A=[1e-16, 1, 1; 2, 1, 2];B=[2, 1, 2; 1e-16, 1, 1]; % 增广矩阵% 方程组A% m = - a_{21}/a_{11} 是第2行加第1行的倍数% 消去a_{21}% m = - a_{12}/a_{22} 是第1行加第2行的倍数% 消去a_{12}, 系数矩阵成对角线% 未知数x1的值% 未知数x2的值disp(['方程组A的解: x1=',num2str(A(1,3)),', x2=',num2str(A(2,3))]); disp(' ');% 方程组B% m = - b_{21}/b_{11} 是第2行加第1行的倍数% 消去b_{21}% m = - b_{12}/b_{22} 是第1行加第2行的倍数% 消去b_{12}, 系数矩阵成对角线% 未知数x1的值% 未知数x2的值disp(['方程组B的解: x1=',num2str(B(1,3)),', x2=',num2str(B(2,3))]);《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之简单迭代法) 2. 实验题目用简单迭代法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的掌握非线性方程的简单迭代法. 4. 基础理论简单迭代法:将方程0)(=x f 改写成等价形式)(x x ϕ=,从初值0x 开始,使用迭代公式)(1k k x x ϕ=+可以得到一个数列,若该数列收敛,则其极限即为原方程的解.取数列中适当的项可作为近似解. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Newton 迭代法) 2. 实验题目用Newton 迭代法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的掌握求解非线性方程的Newton 迭代法. 4. 基础理论Newton 迭代法:解方程0)(=x f 的Newton 迭代公式为)(')(1k k k k x f x f x x -=+.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之对分区间法) 2. 实验题目用对分区间法求方程310x x --=在区间[1, 1.5]的一个实根,取绝对误差限为410-. 3. 实验目的掌握求解非线性方程的对分区间法. 4. 基础理论对分区间法:取[a ,b ]的中点p ,若f (p ) ≈ 0或b – a < ε,则p 为方程0)(=x f 的近似解;若f (a ) f (p ) < 0,则说明根在区间取[a ,p ]中;否则,根在区间取[p ,b ]中.将新的有根区间记为 [a 1,b 1],对该区间不断重复上述步骤,即可得到方程的近似根. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程用宏定义函数f (x );为了循环方便,得到的新的有根区间始终用[a ,b ]表示;由于新的有根区间可能仍以a 为左端点,这样会反复使用函数值f (a ),为减少运算次数,将这个函数值保存在一个变量fa 中;同样在判断新的有根区间时用到函数值f (p ),若新的有根区间以p 为左端点,则下一次用到的f (a )实际上就是现在的f (p ),为减少运算次数,将这个函数值保存在一个变量fp 中.算法的伪代码描述:Input :区间端点a ,b ;精度要求(即误差限)ε;函数f (x );最大对分次数N Output :近似解或失败信息7. 结果与分析8. 附录:程序清单说明: 源程序中带有数字的空行,对应着算法描述中的行号%**********************************************************%* 程序名:Bisection.m *%* 程序功能:使用二分法求解非线性方程. *%**********************************************************f=inline('x^3-x-1'); % 定义函数f(x)a=input('有根区间左端点: a=');b=input('右端点:b=');epsilon=input('误差限:epsilona=');N=input('最大对分次数: N=');1 % 对分次数计数器n置12 % 左端点的函数值给变量fafprintf('\n k p f(p) a(k) f(a(k))'); fprintf(' b(k) b-a\n');% 显示表头fprintf('%2d%36.6f%12.6f%12.6f%12.6f\n',0,a,fa,b,b-a);% 占2位其中0位小数显示步数0, 共12位其中小数6位显示各值3% while n≤ N 4 % 取区间中点p5% 求p 点函数值给变量fpfprintf('%2d%12.6f%12.6f',n,p,fp); % 输出迭代过程中的中点信息p 和f(p)6 % 如果f(p)=0或b-a 的一半小于误差限εfprintf('\n\n 近似解为:%f\n',p);% 则输出近似根p (7)return;% 并完毕程序 (7)89 % 计数器加110% 若f(a)与f(p)同号11% 则取右半区间为新的求根区间, 即a 取作p 12 % 保存新区间左端点的函数值 13% 否则14 % 左半区间为新的求根区间, 即b 取作p 15fprintf('%12.6f%12.6f%12.6f%12.6f\n',a,fa,b,b-a); %显示新区间端点与左端函数值、区间长度 16fprintf('\n\n 经过%d 次迭代后未达到精度要求.\n',N); % 输出错误信息(行17)《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Aitken-Steffensen 加速法) 2. 实验题目用Aitken-Steffensen 加速法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的熟悉求解非线性方程的Aitken-Steffensen 加速法. 4. 基础理论将方程0)(=x f 改写成等价形式)(x x ϕ=,得到从初值0x 开始的迭代公式)(1k k x x ϕ=+后,基于迭代公式)(1k k x x ϕ=+的Aitken-Steffensen 加速法是通过“迭代-再迭代-加速”完成迭代的,具体过程为kk k k k k k k k k k x y z z y x x y z x y +---===+2)(),(),(21ϕϕ. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程为了验证Aitken-Steffensen 加速法可以把一些不收敛的迭代加速成迭代收敛,我们使用将方程组变形为31021x x -=,取迭代函数31021)(x x -=ϕ,并利用宏定义出迭代函数.由于不用保存迭代过程,所以用x0表示初值同时也存放前一步迭代的值,y 和z 是迭代过程中产生的y k 和z k ,x 存放新迭代的结果.算法的伪代码描述:Input :初值x 0;精度要求(即误差限)ε;迭代函数φ(x );最大迭代次数N7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:Aitken_Steffensen.m * %* 程序功能:用Aitken-Steffensen 加速法求方程. * %************************************************************* clc;clear all;phi=inline('0.5 * sqrt( 10 - x^3)'); % 迭代函数x0=input('初值: x0 = ');epsilon=input('误差限: epsilon='); N=input('最大迭代次数: N=');disp(' n 迭代中间值y(n-1) 再迭代结构z(n-1) 加速后的近似值x(n)'); fprintf('%2d%54.6f\n',0,x0);% 占2位整数显示步数0, 为了对齐, 占54位小数6位显示x01 % n 是计数器2 % while n<=Ny= 3 ; % 迭代 z= 3 ; % 再迭代 x= 3 ; % 加速% x0初值与前一步的近似值, y 和z 是中间变量, x 是下一步的近似值fprintf('%2d%18.6f%18.6f%18.6f\n',n,y,z,x);%显示中间值和迭代近似值6 % 如果与上一步近似解差的绝对值不超过误差限 fprintf('\n\n 近似解 x≈x(%d)≈%f \n',n,x);% 则输出近似根 (7), 可简略为: fprintf('\n\n 近似解 x=%f',x); return; % 并完毕程序(7) 8 % 相当于endif9 % 计数器加110 % 新近似值x 作为下一次迭代的初值 11fprintf('\n 迭代%d 次还不满足误差要求.\n\n',N); %输出错误信息(12)《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Newton 下山法) 2. 实验题目用Newton 下山法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的熟悉非线性方程的Newton 下山法. 4. 基础理论Newton 下山法:Newton 下山法公式为)(')(1k k kk k x f x f x x λ-=+,使|)(||)(|1k k x f x f <+,其中10≤<k λ.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程定义函数f(x)和df(x),其中df(x)是f(x)的导函数.每步迭代时先取下山因子为1,尝试迭代,判断尝试结果是否满足下山因子,若满足则作为这步的迭代结果;否则将下山因子减半,然后再尝试.为防止当前的x k 是极小值点,附近不会有满足下述条件的其它点,使尝试陷入死循环,同时计算机中能表示出的浮点数也有下界,因此我们设置了最大尝试次数.当超过最大尝试次数时,不再进行下山尝试.由于反复尝试迭代且要判断下山条件,所以f (x 0)和f ‘(x 0)会反复使用,为避免重复计算浪费运行时间,将这两个值分别保存在变量fx0和dfx0.而尝试产生的节点,判断下山条件时要用到它的函数值,若尝试成功,这个点会作为下一步的初值再使用,所以把该点的函数值也保存在变量fx 中.算法的伪代码描述:Input :初值x 0;精度要求(即误差限)ε;函数与其导函数f (x )和f’(x);最大迭代次数N ;K 下山尝试最大次数Output :近似解或失败信息7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:NewtonDownhill.m *%* 程序功能:用Newton下山法求解非线性方程. *%*************************************************************clc;clear all;f=inline('x^3-x-1'); % 函数f(x)df=inline('3*x^2-1'); % 函数f(x)的导函数x0=input('初值: x0 = ');epsilon=input('误差限: epsilon=');N=input('最大迭代次数: N=');K=input('最大下山尝试次数: K=');1 % 迭代次数计数器2 % 存x0点函数值fprintf('\n\n n x(n) f(x(n))\n'); % 显示表头fprintf('%2d%14.6f%14.6f\n',0,x0,fx0); % 2位整数显示0, 共14位小数6位显示x0和fx03 % while n≤ Ndisp(''); % 换行显示下山尝试过程的表头disp(' 下山因子尝试x(n) 对应f(x(n)) 满足下山条件');disp('');4 % 存x0点导数值, 每次下山尝试不用重新计算ifdfx0==0 % 导数为0不能迭代disp(‘无法进行Newton迭代’);return;endlambda=1.0; % 下山因子从1开始尝试k=1; % k下山尝试次数计数器while k<=K % 下山最多尝试K次% 下山公式fx=f(x); % 函数值fprintf('%22.6f%14.6f%14.6f',lambda,x,fx); % 显示尝试结果if (abs(fx)<abs(fx0)) % 判断是否满足下山条件fprintf(' 满足\n');break; % 是, 则退出下山尝试的循环elsefprintf(' 不满足\n');endlambda=lambda/2; % 不是, 则下山因子减半k=k+1; % 计数器加1endif k>Kfprintf('\n 下山条件无法满足, 迭代失败.\n\n');return;endfprintf('%2d%14.6f%14.6f\n',n,x,fx);% 2位整数显示步数n, 共14位小数6位显示下步迭代结果22 % 达到精度要求否fprintf('\n\n 方程的近似解为: x≈%f\n\n',x); % (23)return; % 达到, 则显示结果并完毕程序(23) end % (24)% 用x0,fx0存放前一步的近似值和它的函数值, 进行循环迭代25262728fprintf('\n 迭代%d次还不满足误差要求.\n\n',N);《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之弦截法) 2. 实验题目用弦截法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-. 3. 实验目的熟悉非线性方程的弦截法. 4. 基础理论将Newton 迭代法中的导数用差商代替,得到弦截法(或叫正割法)公式)()()(111k k k k k k k x f x f x f x x x x --+---=.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程不保存迭代过程,所以始终以x 0和x 1分别存放x k -1和x k ,而x 存放新产生的迭代值x k +1,这样,下一次迭代时需要把上一步的x 1(即x k )赋值于x 0(做新的x k -1).这些点的函数值会重复用到,在迭代公式中也要用到,上一步的x 1作为下一步的x 0也会再一次用它的函数值,为减少重新计算该点函数值的运行时间,将x 1点的函数值保存在变量fx1中.算法的伪代码描述:Input :初值x 0,x 1;精度要求(即误差限)ε;函数f (x );最大迭代次数N7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:SecantMethod.m *%* 程序功能:用弦截法求解非线性方程. *%*************************************************************clc;clear all;f=inline('2*x^3-5*x-1'); % 函数f(x)x0=input('第一初值: x0 = ');x1=input('第二初值: x1 = ');epsilon=input('误差限: epsilon=');N=input('最大迭代次数: N=');fprintf('\n n x(n)\n'); % 显示表头fprintf('%2d%14.6f\n', 0, x0); % 占2位显示步数0, 共14位其中小数6位显示x0fprintf('%2d%14.6f\n', 1, x1); % 占2位显示步数1, 共14位其中小数6位显示x11 % 存x0点函数值2 % 存x1点函数值3 % 迭代计数器4 % while n≤ N% 弦截法公式fprintf('%2d%14.6f\n', n, x); %显示迭代过程6 % 达到精度要求否fprintf('\n\n 方程的近似解为: x≈%f\n\n', x);return; % 达到, 则显示结果并完毕程序89 % 原x1做x0为前两步的近似值10 % 现x做x1为一两步的近似值11 % x0点函数值12 % 计算x1点函数值, 为下一次循环13 % 计数器加1 14fprintf('\n 迭代%d 次还不满足误差要求.\n\n',N);《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Gauss 消去法) 2. 实验题目用Gauss 消去法求解线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000.3000.2000.1643.5072.1000.2623.4712.3000.1000.3000.2001.0321x x x . 3. 实验目的掌握解线性方程组的Gauss 消去法. 4. 基础理论Gauss 消去法是通过对增广矩阵的初等行变换,将方程组变成上三角方程组,然后通过回代,从后到前依次求出各未知数.Gauss 消去法的第k 步(1≤k≤n -1)消元:若0≠kk a ,则依次将增广矩阵第k 行的kk ik a a /-倍加到第i 行(k+1≤i≤n),将第k 列对角线下的元素都化成0.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Gauss 列主元消去法) 2. 实验题目用Gauss 列主元消去法求解线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000.3000.2000.1643.5072.1000.2623.4712.3000.1000.3000.2001.0321x x x . 3. 实验目的掌握解线性方程组的Gauss 列主元消去法. 4. 基础理论Gauss 列主元消去法也是通过对增广矩阵的初等行变换,将方程组变成上三角方程组,然后通过回代,从后到前依次求出各未知数.Gauss 列主元消去法的第k 步(1≤k≤n -1)消元:先在nk k k kk a a a ,,,,1 +中找绝对值最大的,将它所在的行与第k 行交换,然后将第k 行的kk ik a a /-倍加到第i 行(k+1≤i≤n),将第k 列对角线下的元素都化成0. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Doolittle 分解) 2. 实验题目对矩阵A 进行Doolittle 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A .3. 实验目的掌握矩阵的Doolittle 分解. 4. 基础理论矩阵的Doolittle 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个单位下三角矩阵和一个上三角矩阵的乘积.若设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n n n u u u u u u u u u u U l l ll l l L000000,1010010001333223221131211321323121则可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=+=-=∑∑-=-=1111,,2,1,/)(,,1,,k t kk tk it ik ik k r rj kr kj kj nk k i u u l a l nk k j u l a u其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程(1)按计算公式依次计算一行u 同时计算一列l ;(2)因为计算完u ij (或l ij )后,a ij 就不再使用,为节省存储空间,将计算的u ij (和l ij )仍存放在矩阵A 中的相应位置;(3)使用L 矩阵和U 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 对角线上的元素为1,上三角部分为0,下三角部分为A 中对应的元素;U 的下三角部分为0,上三角部分为A 中对应的元素.算法的伪代码描述: Input :阶数n ;矩阵A7. 结果与分析8. 附录:程序清单%****************************************************% 程序名: Doolittle.m *% 程序功能: 矩阵LU分解中的Doolittle分解. *%****************************************************clc;clear all;n=4; % 矩阵阶数A=[6 2 1 -1;2 4 1 0; 1 1 4 -1; -1 0 -1 3]disp('A=');disp(A);% LU分解(Doolittle分解)for k=1:n% 计算矩阵U的元素u_{kj}% (可参照下面l_{ik}的公式填写)% 计算矩阵L的元素l_{ik}% L 在A 下三角, U 在上三角(对角线为1) enddisp('分解结果:'); disp('L='); for i=1:n for j=1:nif i>j % 在下三角部分, 则取A 对于的元素显示 fprintf(' %8.4f',A(i,j));elseif i==j % 在对角线上, 则显示1 fprintf(' %8d',1);else % 在上三角部分, 则显示0 fprintf(' %8d',0); end endfprintf('\n'); % 换行 enddisp('U='); for i=1:n for j=1:nif i<=j % 在上三角部分或对角线上, 则取A 对于的元素显示 fprintf(' %8.4f',A(i,j));else % 在下三角部分, 则显示0 fprintf(' %8d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之LU 分解法) 2. 实验题目用LU 分解(Doolittle 分解)法求解线性方程组⎪⎩⎪⎨⎧=++=++=++104615631552162321321321x x x x x x x x x 3. 实验目的熟悉解线性方程组LU 分解法.4. 基础理论若将矩阵A 进行了Doolittle 分解,A = LU ,则解方程组b x A=可以分解求解两个三角方程组b y L=和y x U =.它们都可直接代入求解,其中b y L=的代入公式为∑-==-=11,,2,1,k j j kj k k n k y l b y而y x U=的代入公式为∑+=-=-=nk j kk j kjk k n n k u x uy x 11,,1,,/)( .5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程(1)Doolittle 分解过程依次计算一行u 同时计算一列l 完成,并将计算的u ij (和l ij )仍存放在矩阵A 中的相应位置;(2)求解方程组的代入公式中用到的u ij 和l ij 都直接在A 的相应位置取值即可. 算法的伪代码描述:Input :阶数n ;矩阵A ;常数项向量b7. 结果与分析8. 附录:程序清单%**************************************************** % 程序名: LinearSystemByLU.m *% 程序功能: 利用LU分解(Doolittle分解)解方程组. *%****************************************************clc;clear all;n=3; % 矩阵阶数A=[1 2 6; 2 5 15; 6 15 46];b=[1;3;10];% LU分解(Doolittle分解)for k=1:n% 计算矩阵U的元素u_{kj}% (可参照下面l_{ik}的公式填写)% 计算矩阵L的元素l_{ik}% L在A下三角, U在上三角(对角线为1) endfor k=1:n % 用代入法求解下三角方程组Ly=by(k)=b(k);3 %∑-==-=11,,2,1,kjj kjk knkylby33enddisp('方程组Ly=b的解:y=');disp(y');for k=n:-1:1 % 回代求解上三角方程组Ux=y x(k)=y(k);6 %∑+=-=-=nkjj kjk knnkxuyx11,,1,,666 enddisp('原方程组的解:x='); disp(x');《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X成绩:1. 实验名称实验3 解线性方程组的直接法(之Cholesky 分解) 2. 实验题目对矩阵A 进行Cholesky 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A . 3. 实验目的理解矩阵的Cholesky 分解. 4. 基础理论矩阵的Cholesky 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个下三角矩阵L 和L 转置的乘积,即A =LL T,其中L 各元素可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=-=∑∑-=-=11112,,2,1,/)(k t kktk it ik ik k r kr kk kk nk k i l l l a l l a l其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:VC++ 6. 实验过程(1)按计算公式依次先计算一列对角线上的元素l kk ,再计算这列其他元素l ik ,且对称位置的元素也取同一个值;(2)因为计算完l ij 后,a ij 就不再使用,为节省存储空间,将计算的l ij 仍存放在矩阵A 中的相应位置;(3)使用L 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 上三角部分为0,对角线和下三角部分为A 中对应的元素.算法的伪代码描述:Input :阶数n ;矩阵AOutput :矩阵L (合并存储在数组A 中)行号 伪代码注释1 for k ← 1 to n2∑-=-=112k r krkk kk l a l3 for i ← k to n4 ∑-=-=11/)(k t kk tk it ik ik l l l a l计算结果存放在a ij5 endfor6 endfor7return L输出L7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:Cholesky.m * %* 程序功能:对称正定矩阵的Cholesky 分解. * %*************************************************************n=4; % 矩阵阶数 A=[6,2,1,-1; 2,4,1,0; 1,1,4,-1; -1,0,-1,3];disp('A ='); for i=1:n for j=1:nfprintf('%10.4f',A(i,j)); % 共占14位endfprintf('\n');% 一行完毕换行end% Cholesky 分解 for k=1:n % 计算对角线上的l _{kk}% 计算其他的l _{ik} % 和l _{ki}end % L 在A 下三角, L^T 在上三角disp('分解结果:'); disp('L='); for i=1:n for j=1:n if i>=j % 在下三角部分或对角线上, 则取A 对于的元素显示fprintf('%10.4f',A(i,j));else % 在上三角部分, 则显示0 fprintf('%10d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X成绩:1. 实验名称实验3 解线性方程组的直接法(之改进的Cholesky 分解) 2. 实验题目对矩阵A 进行改进的Cholesky 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A .3. 实验目的理解矩阵改进的Cholesky 分解. 4. 基础理论矩阵的改进的Cholesky 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个单位下三角矩阵L 和对角矩阵D 与L 转置的乘积,即A =LDL T,其中L 和D 各元素可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=-=∑∑-=-=11112,,2,1,/)(k t k kt it t ik ik k r kr r kk k nk k i d l l d a l l d a d其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:VC++ 6. 实验过程(1)按计算公式依次先计算D 的一个元素d k ,再计算L 中这列的元素l ik ,且对称位置的元素也取同一个值;(2)因为计算完d k 和l ij 后,a kk 或a ij 就不再使用,为节省存储空间,将计算的a kk 或l ij 仍存放在矩阵A 中的相应位置;(3)使用L 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 对角线和上三角部分为0,下三角部分为A 中对应的元素;D 对角线为A 中对应的元素,其余都是0.算法的伪代码描述: Input :阶数n ;矩阵AOutput :矩阵L (合并存储在数组A 中)7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:ImprovedCholesky.m * %* 程序功能:对称正定矩阵的改进的Cholesky 分解. * %*************************************************************n=4; % 矩阵阶数A=[6,2,1,-1; 2,4,1,0; 1,1,4,-1; -1,0,-1,3];disp('A =');for i=1:nfor j=1:nfprintf('%10.4f',A(i,j)); % 共占14位endfprintf('\n'); % 一行完毕换行end% Cholesky分解for k=1:n% 计算D对角线上的u_{kk}% 计算L的元素l_{ik}% 和L转置的元素l_{ki} end % L在A下三角, D在对角线disp('分解结果:');disp('L=');for i=1:nfor j=1:nif i>j % 在下三角部分, 则取A对于的元素显示fprintf('%10.4f',A(i,j));elseif i==j % 在对角线上, 则显示1fprintf('%10d',1);else % 在上三角部分, 则显示0fprintf('%10d',0);endendfprintf('\n'); % 换行enddisp('D='); for i=1:n for j=1:n if i==j % 在对角线上, 则取A 对于的元素显示fprintf('%10.4f',A(i,j));else % 其余显示0fprintf('%10d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之追赶法) 2. 实验题目用追赶法求解线性方程组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----101053001210023100124321x x x x 3. 实验目的熟悉解线性方程组的追赶法. 4. 基础理论对于系数矩阵为三对角矩阵的方程组,其Crout 分解可分解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=------11111211122111122211n n nn n n nn n n t t t s a s a s a s b a c b a c b a c b A这样,解方程组可以由如下2步完成:“追”:,,,3,2,/)(,,/,/,1111111111n i s y a f y t a b s s c t s f y b s i i i i i i i i i i i i =-=-====-----其中:Tn f f ),,(1 为方程组的常数项,n t 没用;“赶”:.1,,2,1,,1 --=-==+n n i x t y x y x i i i i n n5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程在“追”的过程中,向量s 和y 都有n 个元素,t 只有n -1个元素,又1s 和1y 的计算公式与其它i s 和i y 不同,所以先单独计算1s 和1y ,然后在一个n -1次循环中,求其它i s 和i y 以与i t .由于在“追”的过程中,i b ,i c 和i f 在分别计算完对应的i s ,i t 和i y 后就不再使用,所以借用数组b ,c 和f 存储向量s ,t 和y ;同样在“赶”的过程中,i y 在计算完对应的i x 后就不再使用,所以再一次借用数组f 存储向量x .追赶法算法的伪代码描述:Input :阶数n ;三对角矩阵的三条对角线向量a ,b ,c ,常数项向量f Output :方程组的解x改进的追赶法算法的伪代码描述:Input :阶数n ;三对角矩阵的三条对角线向量a ,b ,c ,常数项向量f Output :方程组的解x7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:ChaseAfter.m *%* 程序功能:用追赶法求解三对角线性方程组. *%*************************************************************clc;clear all;n=4;a=[0,-1,-1,-3];b=[2, 3, 2, 5];c=[-1, -2, -1, 0];f=[0, 1, 0, 1];% "追"s(1) = b(1);y(1) = f(1); % 先单独求s_1和y_1 for k = 1 : n-1% 再求t_i(i=1,2,…,n-1)% s_i(i=2,3,…,n)% y_i(i=2,3,…,n)end% "赶"x(n) = y(n); % 先单独求x_nfor k = n-1 : -1 : 1% 再求x_i(i=n-1,n-2, (1)endx=x' % 输出解向量-------------------------------------------------------------------------------------------------------------------改进的程序:%*************************************************************%* 程序名:ChaseAfter.m *%* 程序功能:用追赶法求解三对角线性方程组. *%*************************************************************clc;clear all;n=4;a=[0,-1,-1,-3];b=[2, 3, 2, 5];c=[-1, -2, -1, 0];f=[0, 1, 0, 1];% "追"% b(1)=b(1); % s_1仍在b_1中,不用重新计算y(1)=f(1)/b(1); % 先单独y_1for k=1:n-1% 再求t_i(i=1,2,…,n-1)% s_i(i=2,3,…,n)% y_i(i=2,3,…,n)end% "赶"% f(n)=f(n); % x_n等于y_n仍在f_n中for k=n-1:-1:1% 再求x_i(i=n-1,n-2, (1)endx=f' % 输出解向量《数值计算方法》实验4报告班级:20##级####x班学号:20##2409####:##X 成绩:1. 实验名称实验4 解线性方程组的迭代法(之Jacobi迭代)2. 实验题目用Jacobi迭代法求解线性方程组1231231232251223x x x x x x x x x +-=⎧⎪++=⎪⎨++=⎪⎪⎩任取3. 实验目的掌握解线性方程组的Jacobi 迭代法. 4. 基础理论将第i (n i ≤≤1)个方程i n in i i b x a x a x a =+++ 2211移项后得到等价方程ii n in i i i i i i i i i a x a x a x a x a b x /)(11,11,11------=++--便可构造出Jacobi 迭代公式,1,0,/)()()(11,)(11,)(11)1(=------=++--+k a x a x a x a x a b x ii k n in k i i i k i i i k i i k i . 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验4报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验4 解线性方程组的迭代法(之Gauss-Seidel 迭代) 2. 实验题目用Gauss-Seidel 迭代法求解线性方程组。
数值计算方法实验报告
数值计算方法实验报告数值计算方法实验报告引言:数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。
在科学研究和工程应用中,数值计算方法被广泛应用于求解方程、优化问题、模拟仿真等领域。
本实验报告将介绍数值计算方法的基本原理和实验结果。
一、二分法求根二分法是一种通过不断折半缩小搜索区间来求解方程根的方法。
在实验中,我们选取了一个简单的方程f(x) = x^2 - 4 = 0来进行求根实验。
通过不断将搜索区间进行二分,我们可以逐步逼近方程的根。
实验结果表明,通过二分法,我们可以得到方程的根为x = 2。
二、牛顿迭代法求根牛顿迭代法是一种通过不断逼近方程根的方法。
在实验中,我们同样选取了方程f(x) = x^2 - 4 = 0进行求根实验。
牛顿迭代法的基本思想是通过对方程进行线性近似,求得近似解,并不断迭代逼近方程的根。
实验结果表明,通过牛顿迭代法,我们可以得到方程的根为x = 2。
三、高斯消元法求解线性方程组高斯消元法是一种通过变换线性方程组的系数矩阵,将其化为上三角矩阵的方法。
在实验中,我们选取了一个简单的线性方程组进行求解实验。
通过对系数矩阵进行行变换,我们可以将其化为上三角矩阵,并通过回代求解得到方程组的解。
实验结果表明,通过高斯消元法,我们可以得到线性方程组的解为x = 1,y = 2,z = 3。
四、插值与拟合插值与拟合是一种通过已知数据点来构造函数模型的方法。
在实验中,我们选取了一组数据点进行插值与拟合实验。
通过拉格朗日插值多项式和最小二乘法拟合,我们可以得到数据点之间的函数模型。
实验结果表明,通过插值与拟合,我们可以得到数据点之间的函数关系,并可以通过该函数模型来进行预测和拟合。
结论:数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。
通过本次实验,我们学习了二分法求根、牛顿迭代法求根、高斯消元法求解线性方程组以及插值与拟合的基本原理和应用。
这些方法在科学研究和工程应用中具有广泛的应用前景。
定积分计算实验报告(3篇)
第1篇一、实验目的1. 理解定积分的概念,掌握定积分的计算方法。
2. 熟悉数值积分的方法,提高数值计算能力。
3. 通过实验,验证定积分的计算结果,加深对定积分理论的理解。
二、实验原理定积分是数学分析中的一个基本概念,它表示函数在某一区间上的累积效果。
对于给定的函数f(x),在区间[a, b]上的定积分可以表示为:∫[a, b] f(x) dx其中,dx表示无穷小的区间宽度。
在实际计算中,定积分往往采用数值积分的方法进行近似计算。
三、实验仪器与软件1. 仪器:计算机2. 软件:MATLAB四、实验步骤1. 输入函数表达式:在MATLAB中输入待积分函数的表达式,例如f(x) = x^2。
2. 设置积分区间:设定积分的上下限a和b。
3. 选择数值积分方法:MATLAB提供了多种数值积分方法,如梯形法、辛普森法、高斯法等。
根据需要选择合适的方法。
4. 进行数值积分计算:调用MATLAB的数值积分函数,如quad函数,进行积分计算。
5. 结果分析:观察计算结果,与理论值进行对比,分析误差来源。
五、实验数据及结果1. 函数表达式:f(x) = x^22. 积分区间:[0, 1]3. 数值积分方法:辛普森法4. 计算结果:I ≈ 1.1666666667六、误差分析1. 理论值:∫[0, 1] x^2 dx = [x^3/3] |[0, 1] = 1/32. 误差来源:a. 数值积分方法的误差:由于数值积分方法是一种近似计算方法,其计算结果与真实值存在一定的误差。
b. 计算过程中的舍入误差:在计算过程中,由于计算机的浮点数表示,可能导致舍入误差。
3. 误差分析:计算结果与理论值相差较大,说明数值积分方法的误差较大。
在实际应用中,可以根据需要选择合适的数值积分方法,以减小误差。
七、实验结论1. 通过本次实验,掌握了定积分的计算方法,了解了数值积分的方法及其优缺点。
2. 了解了数值积分方法在计算过程中的误差来源,为实际应用提供了参考。
数值计算方法实验报告
#include<math.h>
double f(double x)
{
double s;
s=x*x*x/3-x;
return fabs(s);
}
void main()
{double x=-0.99,y;
int k=0;
printf("%d ,%lf\n",k,x);
{if(r>=x[i]&&r<=x[i+1])
{s=m[i]*pow(x[i+1]-r,3)/6*h[i]+m[i+1]*pow(r-x[i],3)/6*h[i]+(y[i]-m[i]*pow(h[i],2)/6)*(x[i+1]-r)/h[i]+(y[i+1]-m[i+1]*pow(h[i],2)/6)*(r-x[i])/h[i];
28.65
39.62
50.65
5.28794
9.4
13.84
20.2
24.9
28.44
31.1
k
7
8
9
10
11
12
78
104.6
156.6
208.6
260.7
312.5
35
36.5
36.6
34.6
31.6
31.0
k
13
14
15
16
17
18
364.4
416.3
468
494
507
520
20.9
14.8
7.8
do
{y=x;
数值计算方法实验报告
数值计算方法实验报告一、实验目的本实验旨在通过数值计算方法的实验操作,深入理解数值计算方法的原理与应用,掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。
二、实验内容1.数值微积分2.数值代数3.数值微分方程4.数值线性代数5.数值优化6.数值统计分析7.数值随机模拟8.数值傅立叶分析9.数值偏微分方程三、实验步骤1.数值微积分:通过不同的数值积分方法,计算给定函数的定积分值,并对不同数值积分方法的误差进行分析。
2.数值代数:通过使用线性代数方法,求解给定的线性方程组,并分析不同线性方程组求解方法的优劣。
3.数值微分方程:通过使用常微分方程数值解法,求解给定的微分方程,并比较不同求解方法的精度和稳定性。
4.数值线性代数:通过使用特征值分解方法,对给定的矩阵进行特征值分解,并分析不同特征值分解方法的优缺点。
5.数值优化:通过使用不同的优化方法,求解给定的优化问题,并比较不同的优化方法的效率和精度。
6.数值统计分析:通过使用不同的统计分析方法,对给定的数据进行统计分析,并分析不同的统计方法的优缺点。
7.数值随机模拟:通过使用随机模拟方法,模拟给定的概率分布,并分析不同随机模拟方法的效率和精度。
8.数值傅立叶分析:通过使用傅立叶分析方法,对给定的信号进行频谱分析,并分析不同的傅立叶分析方法的优缺点。
9.数值偏微分方程:通过使用偏微分方程数值解法,求解给定的偏微分方程,并比较不同求解方法的精度和稳定性。
四、实验结果与分析本实验中,通过对不同的数值计算方法的实验操作,我们可以更深入地理解数值计算方法的原理与应用,并掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。
同时,通过实验结果的分析,我们可以更好地比较不同数值计算方法的优缺点,为实际应用提供参考依据。
五、实验总结本实验旨在通过数值计算方法的实验操作,深入理解数值计算方法的原理与应用,掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二数值方法计算积分
学号:姓名:指导教师:实验目的
1、了解并掌握matlab软件的基本编程、操作方法;
2、初步了解matlab中的部分函数,熟悉循环语句的使用;
3、通过上机进一步领悟用复合梯形、复合辛普森公式,以及用龙贝格求积
方法计算积分的原理。
、用不同数值方法计算积分x In xdx=- 4 .
09
(1) 取不同的步长h.分别用复合梯形及辛普森求积计算积分,给出误差中关
于h的函数,并与积分精确值比较两个公式的精度,是否存在一个最小的h,使得精度不能再被改善?
(2) 用龙贝格求积计算完成问题(1)。
、实现实验
1、流程图:
复合辛普森磴程勒
下图是龙贝格算法框图:
开始
2、算法:
h n 1
(1)复合梯形公式:Tn =—[f(a) f (b) 2 f (xk)];
2 k i
h n 1 n 1
(2)复合辛普森公式:Sn=— [f(a)+f(b)+2 f (xk)] +4 f (x 1/2)];
6 k 1 k 0
以上两种算法都是将a-b之间分成多个小区间(n ),则
h=(b-a)/n, X k二a+kh, x k+1/2 =a+(k+1/2)h,利用梯形求积根据两公式便可。
⑶龙贝格算法:在指定区间内将步长依次二分的过程中运用如下公式
4 1
1、S n= —T2n- — Tn
3 3
2、Cn= — S2n—Sn
15 15
64 1
3、Rn= — C2n- — Cn从而实现算法。
63 63
3、程序设计
(1)、复合梯形法:
fun ctio n t=n atrapz(fname,a,b, n)
h=(b-a)/n;
fa=feval(f name,a);fb=feval(fname,b);f=feval(f name,a+h:h:b-h+0.001*h);
t=h*(0.5*(fa+fb)+sum (f));
(2 )、复合辛普森法:
fun ctio n t=n atrapz(fname,a,b, n)
h=(b-a)/n;
fa=feval(f name,a);fb=feval(fname,b);f1=feval(f name,a+h:h:b-h+0.001*h);
f2=feval(fname,a+h/2:h:b-h+0.001*h);
t=h/6*(fa+fb+2*sum(f1)+4*sum(f2));
(3)龙贝格法:
function [l,step]=Roberg(f,a,b,eps)
if(nargin==3)
eps=1.0e-4;
en d;
M=1;
tol=10;
k=0;
T=zeros(1,1);
h=b-a;
T(1,1)=(h/2)*(subs(sym(f),fi ndsym(sym(f)),a)+subs(sy m(f),fin dsym(sym(f)),b));
while tol>eps
k=k+1;
h=h/2;
Q=0; for i=1:M
x=a+h*(2*i-1);
Q=Q+subs(sym(f),fi ndsym(sym(f)),x); end
T(k+1,1)=T(k,1)/2+h*Q;
M=2*M;
for j=1:k
T(k+1,j+1)=T(k+1,j)+(T(k+1,j)-T(k,j))/(4Aj-1); end
tol=abs(T(k+1,j+1)-T(k,j));
end
I=T(k+1,k+1);
step=k;
4、实验结果;(1)复合梯形法
for it at long ;rtatrapz (inline C sqrt (K) . *log (x) ) f eps^ 1, 10)fl format short;
arts =
-0.41705283177947
»formai long ;natrapz(irLLirieC' sqrt(x)・ *log (s)' ) j epsj L 100}, format short, ans =
-0.44311790800816
»format long ;n at trapz (inline C sqrt (x)* *log (M V) j eps,, lj 1000), format short: an呂二
-0. 44438753899716
(2)、复合辛普森法结果:
fornta/t long ; na"t rapz (inlirLe(' sq^rt (x) ■ ^log lx) epsj 1」10) j £o rmat skort ;
ams —
-0.43529789007469
»f ornLat long:; nat zapz (ml ine ( suet (x). Klog (,x) '、, eps^ 100i) f orniat short ; ars 二
-0.4441 Cl 17841567
£口mat long ;nat rapz (iixl me sqr t (x) ■ *Log (x,J' ),eps:3 1』lOOOl))£omat sherl ; ans =
-0.44443^11761418
(3) 龙贝格法结果
>>[Q J, s] =Rab^rg (* sqrt (j) *lcg(I)30. 0000001 ±1)
q 二
-0..4444
s -
9
四•总结由结果(1)、( 2)可知复合辛普森法求积分精度明显比复合梯形法求积的精度要高,且当步长取不同值时即n越大、h越小时,积分精度越高。
实验结
果说明不存在一个最小的h,使得精度不能再被改善。
又两个相应的关于h的误差(余项)Rn(f)=- - - h2f ( n ;Rn(f)=-b - (h/2)4f凶(n,其中n属于a 到b。
可知
12 180
h愈小,余项愈小,从而积分精度越高。