六年级上册数学培优材料含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级上册数学培优材料含答案
一、培优题易错题
1.小李到某城市行政中心大楼办事,假定乘电梯向上一楼记为+1,向下一楼记为–1.
小李从1楼出发,电梯上下楼层依次记录如下(单位:层):+5,–3,+10,–8,+12,–6,–10.
(1)请你通过计算说明小李最后是否回到出发点1楼;
(2)该中心大楼每层高2.8m,电梯每上或下1m需要耗电0.1度.根据小李现在所处的位置,请你算一算,当他办事时电梯需要耗电多少度?
【答案】(1)解:(+5)+(–3)+(+10)+(–8)+(+12)+(–6)+(–10)=0
所以小李最后回到出发点1楼.
(2)解:
54×2.8×0.1=15.12(度)
所以小李办事时电梯需要耗电15.12度.
【解析】【分析】(1)根据有理数的加法列出算式并进行计算即可得出结果;
(2)利用所给数据的绝对值的和计算总的层数,然后根据每层高2.8m,电梯每上或下1m 需要耗电0.1度利用乘法可得结果.
2.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.
(1)求前4个台阶上数的和是多少?
(2)求第5个台阶上的数是多少?
(3)应用求从下到上前31个台阶上数的和.
发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.
【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3
(2)解:由题意得-2+1+9+x=3,
解得:x=-5,
则第5个台阶上的数x是-5
(3)解:应用:由题意知台阶上的数字是每4个一循环,
∵31÷4=7…3,
∴7×3+1-2-5=15,
即从下到上前31个台阶上数的和为15;
发现:数“1”所在的台阶数为4k-1
【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.
3.规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c.
例如:因为23=8,所以(2,8)=3.
(1)根据上述规定,填空:(3,27)=________,(5,1)=________,(2,)=________.
(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:
设(3n, 4n)=x,则(3n)x=4n,即(3x)n=4n,
所以3x=4,即(3,4)=x,
所以(3n, 4n)=(3,4).
请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)
【答案】(1)3;0;-2
(2)解:设(3,4)=x,(3,5)=y,则, =5,∴,∴
(3,20)=x+y ,
∴(3,4)+(3,5)=(3,20)
【解析】(1)∵33=27,50=1,2-2= ,∴(3,27)=3,(5,1)=0,(2,)=-2.
故答案依次为:3,0,-2
【分析】根据新定义的运算得到幂的运算规律,由幂的运算规律得到相等的等式.
4.如果,那么我们规定 .例如:因为,所以 .
(1)根据上述规定,填空:
________, ________, ________.
(2)若记,, .求证: .
【答案】(1)3;0;-2
(2)解:依题意则
∵
∴
【解析】【解答】解:(1)(3,27)=3,(4,1)=0,(2,0.25)=-2,
故答案为:3;0;-2【分析】根据新定义的算法计算出根指数即可;由新定义的算法,得到同底数幂的乘法,底数不变,指数相加;证明出结论.
5.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒。
(1)写出数轴上点B表示的数________,点P表示的数________(用含t的代数式表示);
(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?
(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;
(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x-8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.
【答案】(1)-6;8-5t
(2)解:设点P运动x秒时,在点C处追上点Q(如图)
则AC=5x,BC=3x,
∵AC-BC=AB
∴5x-3x=14
解得:x=7,
∴点P运动7秒时,在点C处追上点Q
(3)解:没有变化.分两种情况:
①当点P在点A、B两点之间运动时:
MN=MP+NP= AP+ BP= (AP+BP)= AB=7
②当点P运动到点B的左侧时:
MN=MP-NP= AP- BP= (AP-BP)= AB=7
综上所述,线段MN的长度不发生变化,其值为7
(4)解:式子|x+6|+|x-8|有最小值,最小值为14.
【解析】【解答】解:(1)点B表示的数是-6;点P表示的数是8-5t,
【分析】(1)点B表示的数是-6;点P表示的数是8-5t,
【分析】(1)根据点A的坐标和AB之间的距离即可得出B点的坐标和P点的坐标;(2)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据距离的差为14列出方程即可求解;
(3)分类讨论:①当点P在点A、B两点之间运动时,根据MN=MP+NP进行计算即可;
②当点P运动到点B的左侧时,根据MN=MP-NP计算即可;
(4)分三种情况去绝对值符号:x8时,原式=x+6+x-8=2x-214; -6x8时,原式=x+6+8-x=14; x-6时,原式=-x-6-x+8=-2x+214,综上所述得出最小值。
6.甲容器中有浓度为的盐水克,乙容器有浓度为的盐水克.分别从甲和乙中取出相同重量的盐水,把从甲中取出的倒入乙中,把从乙中取出的倒入甲中.现在甲、乙容器中盐水浓度相同.问:从甲(乙)容器取出多少克盐水倒入了另一个容器中?【答案】解:互换后盐水的浓度:
(400×20%+600×10%)÷(400+600)
=140÷1000
=14%
互换的质量:
400×(20%-14%)÷(20%-10%)
=400×0.06÷0.1
=240(千克)
答:从两个容器中各取出240千克盐水倒入另一个容器中。
【解析】【分析】由于两种盐水互换后浓度相等,而在互换的过程中盐的总质量是不变,先计算出互换后盐水的浓度,然后求出互换的重量即可。
7.有两种溶液,甲溶液的酒精浓度为,盐浓度为,乙溶液中的酒精浓度为,盐浓度为.现在有甲溶液千克,那么需要多少千克乙溶液,将它与甲溶液混和后所得的溶液的酒精浓度和盐浓度相等?
【答案】解:甲中酒精:1×10%=0.1(千克),盐:1×30%=0.3(千克);
1千克乙中酒精:1×50%=0.5(千克),盐:1×10%=0.1(千克);
0.5÷2=0.25(千克),0.1÷2=0.05(千克),0.1+0.25=0.35(千克),0.3+0.05=0.35(千克)
答:需要0.5千克乙溶液,将它与甲溶液混和后所得的溶液的酒精浓度和盐浓度相等。
【解析】【分析】根据浓度的意义求出甲溶液中酒精和盐分别有多少千克。
假设乙溶液也有1千克,然后分别计算出乙溶液中盐和酒精的含量,试算后确定乙溶液的重量即可。
8.甲、乙、丙三人同时分别在3个条件和工作量相同的仓库工作,搬完货物甲用10小时,乙用12小时,丙用15小时.第二天三人又到两个大仓库工作,这两个仓库的工作量相同.甲在仓库,乙在仓库,丙先帮甲后帮乙,用了16个小时将两个仓库同时搬完.丙在仓库搬了多长时间?
【答案】解:三人工作效率的比:;
搬完一个大仓库需要的时间:16÷2=8(小时),
搬大仓库甲的工作效率:,丙的工作效率:,
甲16小时完成的工作量:,
丙在A仓库搬的时间:(小时)。
答:丙在A仓库搬了6小时。
【解析】【分析】原来三人的工作效率不能用在搬两个大仓库中,所以根据原来三人的工
作效率求出三人的工作效率的比。
然后把现在三人的工作效率和按照6:5:4的比分配后就可以求出搬大仓库时甲的工作效率和丙的工作效率。
用甲此时的工作效率乘16求出甲完成A仓库的工作量,进而求出丙完成A仓库的工作量,用这个工作量除以丙的工作效率即可求出丙在A仓库搬的时间。
9.几个同学去割两块草地的草,甲地面积是乙地面积的4倍,开始他们一起在甲地割了半天,后来留下12人割甲地的草,其余人去割乙地的草,这样又割了半天,甲、乙两地的草同时割完了,问:共有多少名学生?
【答案】解:每人每天割草:,
(名)。
答:共有20名学生。
【解析】【分析】有12人全天都在甲地割草,设有人上午在甲地,下午在乙地割草.由
于这人在下午能割完乙地的草(甲地草的),所以这些人在上午也能割甲地的草,所以
12人一天割了甲地的草,这样就可以求出每人每天割草量,用全部草量除以每人每天的割草量即可求出学生总数。
10.搬运一个仓库的货物,甲需小时,乙需小时,丙需小时.有同样的仓库和,甲在仓库,乙在仓库同时开始搬运货物,丙开始帮甲搬运,中途又转向帮乙搬
运,最后同时搬完两个仓库的货物.丙帮助甲、乙各搬运了几小时?
【答案】解:甲、乙、丙搬完两个仓库共用了:(小时),
丙帮助甲搬运了:(小时),
丙帮助乙搬运了:(小时)。
答:丙帮助甲搬运了3小时,帮助乙搬运了5小时。
【解析】【分析】整个搬运的过程,就是甲、乙、丙三人同时开始同时结束,共搬运了两个仓库的货物,用工作量2除以三人的工作效率和求出共同完成工作量需要的时间。
在这段时间内,甲、乙各自在某一个仓库内搬运,丙则在两个仓库都搬运过。
用甲的工作效率乘共同完成的时间即可求出甲完成的工作量,用1减去甲完成的工作量即可求出丙帮甲完成的工作量,用这个工作量除以丙的工作效率即可求出丙帮甲的时间,进而求出丙帮乙的时间即可。