MATLAB中多元线性回归

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由F(7,7)=3.79,可知:f =1.9092<3.79,故不存在异方差.
(3)残差的自相关性检验: 计算得到:dw = 1.4330,查表后得到:dl=0.97 , du=1.41, 由于 1.41=du<dw=1.433<4-du=2.59 ,残差不存在自相关性.
s: 3个统计量:决定系数R2,F值, F(1,n-2)分布大于
F值的概率p,p<时回归模型有效
rcoplot(r,rint) 残差及其置信区间作图
回归 模型 例3: 血压与年龄、体重指数、吸烟习惯
序 血 年 体重 吸烟 序 血 年 体重 吸烟 号 压 龄 指数 习惯 号 压 龄 指数 习惯 1 144 39 24.2 0 21 136 36 25.0 0 2 215 47 31.1 1 22 142 50 26.2 1 3 138 45 22.6 0 23 120 39 23.5 0 10 154 56 19.3 0 30 175 69 27.4 1
y ˆ 5 .5 8 1 0 .4 0x 3 1 1 2 . 0 33 x 4 2 1 4 .3 0 9 x 0 3 65
此时可见第二与第十二个点是异常点,于是删除 上述两点,再次进行回归得到改进后的回归模型的系 数、系数置信区间与统计量
回归系数 回归系数估计值 回归系数置信区间
0
58.5101
DW>4-dl,则存在一阶负相关; 若 dl<DW<du 或4-du<DW<4-dl ,则无法判断
下面我们对模型进行检验: (1)残差的正态检验: 由jbtest检验,h=0表明残差服从正态分布,进而由t检 验可知h=0,p=1,故残差服从均值为零的正态分布; (2)残差的异方差检验: 我们将28个数据从小到大排列,去掉中间的6个数据, 得到F统计量的观测值为:f =1.9092,
体重指数 = 体重(kg)/身高(m)的平方 吸烟习惯: 0表示不吸烟,1表示吸烟 建立血压与年龄、体重指数、吸烟习惯之间的回归模型
模型建立
血压y,年龄x1,体重指数x2,吸烟习惯x3
y与x1的散点图
y与x2的散点图
线性回归模型
y 0 1 x 1 2 x 2 3 x 3
回归系数0, 1, 2, 3 由数据估计, 是随机误差
其中,n为样本容量,k为自变量个数. 然后对残差进行自相关性的检验,通常我们利用DW检 验进行残差序列自相关性的检验。该检验的统计量为:
n
n
DW (et et1)2/ et2
t2
t1
其中 e t 为残差序列,对于计算出的结果通过查
表决定是否存在自相关性。
若 du<DW<4-du,则不存在自相关性; 若 DW<dl,则存在一阶正相关;
2.线性回归
b=regress(y,X) [b,bint,r,rint,s]=regress(y,X,alpha)
输入: y~因变量(列向量), X~1与自变量组成的矩阵,
Alpha~显著性水平(缺省时设定为0.05) 输出:b=( ˆ0, ˆ1,),bint: b的置信区间,
r:残差(列向量),rint: r的置信区间
22.0 25.3 27.4];
x3=[0 1 0 1 1 0 1 0 1 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 1 1 0 1 0 1];
X=[ones(n,1), x1',x2',x3']; [b,bint,r,rint,s]=regress(y',X); s2=sum(r.^2)/(n-m-1); b,bint,s,s2 rcoplot(r,rint)
剔除异常点 (第2点和第 10点)后
回归系数
0 1 2 3
R2= 0.8462
回归系数估计值 回归系数置信区间
58.5101
[29.9064 87.1138]
0.4303
[0.1273 0.7332]
2.3449
[0.8509 3.8389]
10.3065
[3.3878 17.2253]
F= 44.0087 p<0.0001 s2 =53.6604
67 56 64 56 59 34 42 48
45 18 20 19 36 50 39 21
44
53
63
29
25
69];
x2=[24.2 31.1 22.6 24.0 25.9 25.1 29.5 19.7 27.2 19.3 28.0 25.8 27.3
20.1 21.7 22.2 27.4 18.8 22.6 21.5 25.0 26.2 23.5 20.3 27.1 28.6 28.3
(4)对回归模型进行检验
其次进行残差的异方差检验: 戈德菲尔德一匡特 (Goldfeld—Quandt)检验 戈德菲尔德检验,简称为G—Q检验.为了检验异方差
性,将样本按解释变量排序后分成两部分,再利用样 本1和样本2分别建立回归模型,并求出各自的残差平 方和RSSl和RSS2。如果误差项的离散程度相同(即为 同方差的),则RSSl和RSS2的值应该大致相同;若两 者之间存在显著差异,则表明存在异方差. 检验过程
n=30;m=3;
y=[144 215 138 145 162 142 170 124
158 154 162 150 140 110 128 130
135 114 116 124 136 142 120 120
160 158 144 130 125 175];
x1=[39 47 45 47 65 46 67 42
模型 求解
xueya01.m
回归系数 回归系数估计值 回归系数置信区间
0
45.3636
[3.5537 87.1736]
1
0.3604
[-0.0758 0.7965 ]
2
3.0906
[1.0530 5.1281]
3
11.8246
[-0.1482 23.7973]
R2= 0.6855 F= 18.8906 p<0.0001 s2 =169.7917
y ˆ 5 .5 8 1 0 .4 0x 3 1 1 2 0 .33 x 4 2 1 4 .3 0 9 x 0 3 65
通常,进行多元线性回归的步骤如下:
(1)做自变量与因变量的散点图,根据散点图的形 状决定是否可以进行线性回归;
(2)输入自变量与因变量;
(3)利用命令: [b,bint,r,rint,s]=regress(y,X,alpha),rcoplot(r,rint) 得到回归模型的系数以及异常点的情况;
[29.9064 87.1138]
1
0.4303Fra Baidu bibliotek
[0.1273 0.7332]
2
2.3449
[0.8509 3.8389]
3
10.3065
[3.3878 17.2253]
R2= 0.8462 F= 44.0087 p<0.0001 s2 =53.6604
这时置信区间不包含零点,F统计量增大,可决系 数从0.6855增大到0.8462 ,我们得到回归模型为:
中为了“夸大”残差的差异性,一般先在样本中部去 掉C个数据(通常取c=n/4),再利用F统计量判断差 异的显著性:
F R 2 /n S ( c ) / ( 2 S k 1 ) R 2 ~ F S ( n ( c ) S / 2 k 1 , ( n c ) / 2 k 1 ) R 1 /n S ( c ) / ( 2 S k 1 )R 1 SS
相关文档
最新文档