爆破破岩机理

合集下载

隧道钻爆法施工作业

隧道钻爆法施工作业

隧道钻爆法施工作业钻爆作业过程简述…开挖作业基本要求:1.按设计要求开挖出断面(包括形状、尺寸、表面平整、超欠挖等要求);2.石碴块度适中,便于装碴运输;3.钻眼工作量少,少占作业循环时间;4.尽量减小对围岩的震动破坏.一、爆破破岩作用机理及有关概念(一)无限介质中的爆破作用(图7-1)1.压缩粉碎区~半径为的区域.2.抛掷区~与之间的范围.3.松动区~与之间的区域.4.震动区~与之间的范围。

(二)爆破基本概念1.临空面:指暴露在大气中的开挖面.在爆破中的作用:临空面越多,爆破威力越大。

2.爆破漏斗(图7—2)爆破漏斗:在只有一个临空面的情况下,爆破形成圆锥形的爆破凹坑。

爆破漏斗由以下几何要素组成:①最小抵抗线:药包中心到临空面的最短距离②爆破漏斗半径③破裂半径:药包中心到爆破漏斗边沿的距离④漏斗深度⑤压缩圈半径其中,最关键的是。

3.爆破作用指数爆破作用指数:爆破漏斗半径与最小抵抗线的比值。

对于爆破效果有重要影响,注意到取决于,可见最小抵抗线是关键因素. (三)柱状药包爆破特点适用于隧道爆破的是柱状药包。

特点:柱状药包爆炸应力波的传播方向,是以药包轴线为轴线,沿着垂直于药包表面的方向往四周传播。

所以,这对于仅在孔口有一个临空面的爆破,是十分不利的.动脑筋,多设置临空面…二、钻孔机具(一)凿岩机(钻机)按使用动力可分为风动凿岩机、内燃凿岩机、电动凿岩机和液压凿岩机四种。

目前在隧道开挖中,广泛使用的是风动凿岩机和液压凿岩机.1.风动凿岩机(见图7—3)俗称风钻。

以压缩空气为动力。

既可单人操纵,也可装在台车上使用,但以前者为主。

优点:①结构简单,操作方便;②不怕超负荷和反复起动,在多水、多尘等不良环境中仍能正常工作。

缺点:①压缩空气供应设备复杂;②能量利用率低;③噪音大。

2.液压凿岩机由液压马达提供动力。

只能用于台车。

优点:①动力消耗少,能量利用率高,其动力消耗仅为风动凿岩机的1/3~1/2;②凿岩速度高.液压凿岩机凿岩速度比风动凿岩机高50%~150%。

爆破破岩机理

爆破破岩机理

爆破破岩机理【转发】:一、爆生气体膨胀压力作用破坏论Kutter和Hagan从静力学的观点出发,提出了“气楔作用”(PneumaticWedgtng)这种假说,认为炸药爆炸后产生的高温高压的气体,由于膨胀而产生的推力作用在炸药周围的岩壁上,引起岩体质点的径向位移,从而在岩体中形成剪切应力。

当这种剪切应力超过岩体的极限抗剪强度时,就会引起岩体的破坏。

当爆生气体的膨胀推力足够大时,还会引起自由面附近的岩体隆起、鼓开并沿径向方向抛掷。

这种假说认为,动能仅占炸药总能量的5%~15%,绝大部分能量包含在爆生气体产物中,另一方面,岩体爆破时岩石发生破裂和破碎所需的时间小于爆生气体作用于岩体的时间。

二、应力波反射拉伸作用破坏论以Coates和Hin。

为代表的这种假说,从爆轰动力学的观点出发,认为炸药爆炸后,强大的冲击波冲击和压缩周围的岩体,在岩体中激发出强烈的压缩应力波。

当压缩应力波传播到自由面时,从自由面处反射而形成拉伸波。

当拉伸波的强度超过岩体的极限抗拉强度时,从自由面处开始向爆源方向产生拉伸片裂作用。

三、应力波和爆生气体联合作用破坏论以Fairhurst为代表的这种假说认为,爆破时岩体的破坏是应力波和爆生气体共同作用的结果。

但在解释破碎岩体的主导原因时存在不同观点。

一种观点认为,应力波在破碎岩体时不起主导作用,只是在形成初始径向裂隙时起先锋作用,岩体的破碎主要依靠爆生气体的膨胀推力和尖劈作用;另一种观点则认为,爆破时破碎岩体的主导作用取决于岩体的性质,即取决于岩体的波阻抗。

对于波阻抗为(10一15)× 10^5g/(cm^2.s)的高波阻抗的岩体,即极致密坚韧的岩体,爆炸应力波在其中的传播性能好,波速高。

爆破时岩体的破碎主要由应力波引起。

对于波阻抗为(2一5)× 10^5 g/(cm^2. s) 低波阻抗的松软而具有塑性的岩体,爆炸应力波在其中的传播性能较差,波速低,爆破时岩体的破碎主要依靠爆生气体的膨胀压力;对于波阻抗为(5~10)× 10 ^5g/〈cm^2.S )的中等波阻抗的中等坚硬的岩体,应力波和爆生气体同样起重要作用。

爆破作用原理

爆破作用原理
在松软岩石、低猛度炸药、装药不偶合系数较大 旳条件下,爆轰气体旳破坏作用是主要旳。
二.爆破作用
一)单个药包旳爆破作用
㈠自由面和最小抵抗线 假如将一种球形或立方体形炸药包(爆破上称之为集中 药包)埋入岩石中,岩石与空气接触旳表面称为自由面。 最小抵抗线:药包中心到自由面旳垂直距离W。
爆破旳内部作用
光面爆破机理 光爆炮眼同步起爆,在各炮眼旳眼壁上产生细微旳
径向裂隙,因为起爆器材旳起爆时间误差,各炮眼不 可能在同一时刻爆炸,先爆炮眼旳径向裂隙,因为相 邻后爆炮眼所起旳导向作用,成果沿相邻两炮眼旳连 心线旳那条裂隙得到优先发展,并在爆愤怒体旳作用 下扩展,形成贯穿裂缝。贯穿裂缝形成后,周围岩体 内旳应力因释放而下降,从而能够克制其他方向上有 裂隙发展,同步又隔断了从自由面反射旳应力波向围 岩传播,因而爆破形成旳壁面平整。
衡量爆破作用旳效果: 当n=1时,形成原则抛掷漏斗(c); 1<n<3时,形成加强抛掷漏斗(d); 0.75<n<1时,形成减弱抛掷漏斗(b); n=0.75时,岩石只形成松动而不形 成抛掷,叫做松动漏斗(a); n<0.75时,爆破漏斗不能形成。二)多种药包旳爆破作用
三、微差爆破
利用毫秒雷管或其他设备控制放炮旳顺序,使每段 之间只有几十毫秒旳间隔,叫做毫秒爆破或微差爆破。
随即,爆轰气体产物继续压缩被冲击波压碎旳岩 石,爆轰气体“楔入”在应力波作用下产生旳裂隙中, 使之继续向前延伸和进一步张开。当爆轰气体旳压力 足够大时,爆轰气体将推动破碎岩块作径向抛掷运动。
对于不同性质旳岩石和炸药,应力波与爆轰气体 旳作用程度是不同旳。
在坚硬岩石、高猛度炸药、偶合装药或装药不偶 合系数较小旳条件下,应力波旳破坏作用是主要旳;

培训笔记-破岩机理

培训笔记-破岩机理

培训笔记(三)——破岩机理一、破岩过程一阶段:炸药爆炸阶段二阶段:冲击波反射阶段三阶段:气体膨胀阶段二、破岩理论1.爆炸气体产物膨胀压力破坏理论:岩石主要由于装药空间内爆炸气体产物的压力作用而破坏。

2.冲击波引起应力波反射破坏理论:岩石的破坏主要是由自由面上应力波反射转变成的拉应力波造成的。

3.爆炸气体膨胀压力和冲击波所引起的应力波共同作用理论:爆破时岩石的破坏是爆炸气体和冲击波共同作用的结果,它们各自在岩石破坏过程的不同阶段起重要作用。

三、波阻抗:即岩石密度与冲击波在岩石中传播速度的乘积。

岩石按波阻抗值分为三类:1、岩石波阻抗为10X105~25X105(g/cm2·s);2、岩石波阻抗为5X105~10X105(g/cm2·s);3、岩石波阻抗为2X105~5X105(g/cm2·s)。

四、爆破内部作用1.压缩区受到爆炸冲击波的强动作用,炮孔壁周围的介质被粉碎或强烈压缩,形成压缩区或粉碎区成压缩区或粉碎区。

2.破碎区爆炸冲击波在岩石中形成新鲜裂纹或激活原生裂纹,爆炸气体的高压气楔作用,对裂纹进行扩展,形成破碎区。

3.震动区在破坏区以外的岩体,只发生弹性震动。

五、爆破漏斗:当药包产生外部作用时,在地表会形成一个爆破坑,称为爆破漏斗。

1、爆破漏斗的构成要素(1)自由面;(2)最小抵抗线;(3)爆破漏斗底圆半径;(4)爆破作用半径;(5)爆破漏斗深度;(6)爆破漏斗可见深度;(7)爆破漏斗张开角。

图7-6 爆破漏斗2、爆破作用指数n=r/W在最小抵抗线相同的情况下,爆破作用愈强,爆破漏斗底圆半径愈大。

根据n的大小爆破漏斗分为:(1)标准抛掷(n=1);(2)加强抛掷(n>1);(3)减弱抛掷(0.75<n<1);(4)松动爆破(0<n<0.75)。

隧道光面爆破和预裂爆破的原理

隧道光面爆破和预裂爆破的原理

隧道光面爆破和预裂爆破的原理一、爆破原理1、光面爆破作用原理:光面爆破的破岩机理十分复杂,目前仍在探索中。

尽管在理论上还很成熟,但在定性分析方面已有共识。

一般认为炸药起爆时,对岩体产生两种效应,主要是爆炸气体膨胀做功所起的作用。

光面爆破是周边眼同时起爆,各炮眼的冲击波向四周作径向传播,相邻炮眼的冲击相遇,产生应力波德叠加,并产生切向拉力,拉力的最大值发生在相邻炮眼中心连线的中点,当岩体的极限抗拉强度小于此拉力时,岩体便被拉裂,在炮眼中心连线上形成裂缝,随后,爆炸气的膨胀令裂缝进一步扩展,形成平整的爆裂面。

2、预裂爆破作原理:主要指预裂爆破成缝机理。

为了保证预裂爆破成功,首要的条件是不压坏预裂孔壁,其次是沿预孔连线方向成缝。

当炸药爆炸后,产生的冲击压力和高压气体的作用,将会使孔壁产生剧烈破坏。

要想不压坏孔壁必须采用不偶令装药法,即药包直径小于钻孔直径。

试验发现,当药包与孔壁之间存在空气间隙时,由于空气的缓冲作用,使孔壁所受压力大大降低。

试验得出,当不偶令系数M=2.5时,作用在炮孔内壁的最大切向应力只相当于不偶令系数为1时的大约1/16。

因此,完全有可能利用现有的常用炸药,用不偶令装药来降低孔壁压力,把几万个大气压降到每平方厘米只有几千或几百会斤的压力值。

当降低的压力值小于或极接近于岩石的极限抗压强度时,便可使孔壁不受爆破压缩破坏或者只受少量的振动。

在利用不偶令装药保证孔壁不受破坏的前提下,第二个条件就是怎样保证在预定的方向成缝。

实践经验证明,只需要调整相邻炮孔的距离或孔内装药量便可达到成缝的目的。

二、技术措施1、光面爆破的主要技术措施如下:(1)根据围岩特点,合理选定周边眼的间距和最小抵抗线,尽最大努力提高钻眼质量。

(2)严格控制周边眼的装药量,尽可能将药量沿眼大均匀分布。

(3)周边眼宜使用小直径药卷和低猛度、低爆速的炸药。

为满足装药结构要求,可借助导爆索(传爆线)来实现客气间隔装药。

(4)采用毫秒微差有序起爆。

隧道光面爆破和预裂爆破的原理(优选.)

隧道光面爆破和预裂爆破的原理(优选.)

隧道光面爆破和预裂爆破的原理一、爆破原理1、光面爆破作用原理:光面爆破的破岩机理十分复杂,目前仍在探索中。

尽管在理论上还很成熟,但在定性分析方面已有共识。

一般认为炸药起爆时,对岩体产生两种效应,主要是爆炸气体膨胀做功所起的作用。

光面爆破是周边眼同时起爆,各炮眼的冲击波向四周作径向传播,相邻炮眼的冲击相遇,产生应力波德叠加,并产生切向拉力,拉力的最大值发生在相邻炮眼中心连线的中点,当岩体的极限抗拉强度小于此拉力时,岩体便被拉裂,在炮眼中心连线上形成裂缝,随后,爆炸气的膨胀令裂缝进一步扩展,形成平整的爆裂面。

2、预裂爆破作原理:主要指预裂爆破成缝机理。

为了保证预裂爆破成功,首要的条件是不压坏预裂孔壁,其次是沿预孔连线方向成缝。

当炸药爆炸后,产生的冲击压力和高压气体的作用,将会使孔壁产生剧烈破坏。

要想不压坏孔壁必须采用不偶令装药法,即药包直径小于钻孔直径。

试验发现,当药包与孔壁之间存在空气间隙时,由于空气的缓冲作用,使孔壁所受压力大大降低。

试验得出,当不偶令系数M=2.5时,作用在炮孔内壁的最大切向应力只相当于不偶令系数为1时的大约1/16。

因此,完全有可能利用现有的常用炸药,用不偶令装药来降低孔壁压力,把几万个大气压降到每平方厘米只有几千或几百会斤的压力值。

当降低的压力值小于或极接近于岩石的极限抗压强度时,便可使孔壁不受爆破压缩破坏或者只受少量的振动。

在利用不偶令装药保证孔壁不受破坏的前提下,第二个条件就是怎样保证在预定的方向成缝。

实践经验证明,只需要调整相邻炮孔的距离或孔内装药量便可达到成缝的目的。

二、技术措施1、光面爆破的主要技术措施如下:(1)根据围岩特点,合理选定周边眼的间距和最小抵抗线,尽最大努力提高钻眼质量。

(2)严格控制周边眼的装药量,尽可能将药量沿眼大均匀分布。

(3)周边眼宜使用小直径药卷和低猛度、低爆速的炸药。

为满足装药结构要求,可借助导爆索(传爆线)来实现客气间隔装药。

(4)采用毫秒微差有序起爆。

爆破工程期末必考题

爆破工程期末必考题

1.岩石爆破破坏原因的理论学说和破坏过程。

理论1“爆生气体膨胀作用理论:炸药爆炸引起岩石破坏,主要是高温高压气体产物对岩石膨胀做功的结果;2爆炸应力波反射拉伸作用理论:岩石的破坏主要是由于岩石中爆炸应力波在自由面反射后形成反射拉伸波的作用,岩石中的拉应力大于其抗拉强度二产生的,岩石是被拉断的;3爆生气体和应力波综合作用理论:实际爆破中,爆生气体膨胀和爆炸应力波都对岩石破坏起作用,不能绝对分开,而应该是两种作用综合的结果,因而加强了岩石破碎效果,比如冲击波对岩石的破碎,作用时间短,而爆生气体的作用时间长,爆生气体膨胀促进了裂隙的发展,同样,反射拉伸波也同样加强了径向裂隙的扩展。

过程1.炮孔周围岩石的压碎作用2.景象裂隙作用3。

卸载引起的岩石内部环状裂隙作用 4。

反射拉伸引起的“片落”和引起径向裂隙的延伸 5。

爆炸气体扩展应力波所产生的裂隙。

2。

巷道掘进爆破中炮眼形式:掏槽眼:用于爆出新自由面,为辅助眼/周边眼爆破创造有利条件,直接影响循环进尺,掘进效果;周边眼:控制爆破后的巷道断面形状、大小和轮廓,使之符合设计要求;(顶眼、底眼、周边眼)辅助眼:破碎岩石的主要炮眼,利用掏槽眼爆破后创造的平行于炮眼的自由面,爆破条件大大改善;3.中深孔爆破设计的基本内容:确定台阶高度,网孔参数,装药结构,装填长度,起爆方法,起爆顺序,炸药的单位消耗量4炸药爆炸与燃烧区别燃烧与爆炸传播速度截然不同,燃烧几毫米到几百米每秒,亚音速,爆炸通常几千米每秒1。

从传播连续进行的机理来看,燃烧的能量通过热传导,辐射和气体产物的扩散传到下一层炸药,激起未反应炸药产生化学反应,是燃烧连续进行,爆炸,能量以压缩波的形式提供给前沿冲击波,维持前沿冲击波的强度,然后前沿冲击波冲击压缩激起下一层炸药进行化学反应,是爆轰连续进行;2从反应产物的压力来看,燃烧产物压力很低,对外界显示不出力的作用,爆炸产物有强烈的力效应3从反应产物质点运动方向,燃烧产物质点运动方向与燃烧传播的方向相反,二爆炸产物质点运动方向与爆炸传播方向相同;4从炸药本身条件,燃烧随装药密度的增加,燃烧速度下降,而爆轰速度随密度增加而增加;5从外界条件,燃烧易受外界压力和初温影响,爆炸基本不受外界条件影响;5氧平衡:指炸药中所含的氧用以完全氧化其所含的可燃元素后氧的剩余情况的衡量指标。

现场混装乳化炸药爆破破岩机理分析及其工程应用

现场混装乳化炸药爆破破岩机理分析及其工程应用

第35卷第4期2020年12月矿业工程研究Mineral Engineering ResearchVol.35No.4Dec.20200oi:1043522/j.c56i.l674-5276.2020.04401现场混装乳化炸药爆破破岩机理分析及其工程应用卢军!,马元军(葛洲坝易普力四川爆破工程有限公司,四川成都610000)摘要:为提高现场混装乳化炸药爆破效果,以某石灰石矿为背景,采用理论分析方法研究其爆轰波、爆破冲击波及爆破压缩波的作用机理,计算得到其对爆破大块率的影响,并提出合适的布孔方式及孔网参数.研究表明:某石灰石矿山采用现场混装乳化炸药爆破时,炮孔中的爆轰压力为10.04GPa,炸药对周边岩体的爆破初始冲击压力为1349GPa,爆破冲击压力及拉伸应力对岩体的影响区域分别为14,14m;采用梅花形布孔,孔网参数设置为5mx4m时,爆破块度分布更集中,块度破碎更充分,大块率较参数优化前降低1347%.关键词:现场混装乳化炸药;爆破冲击;孔网参数;布孔方式;大块率中图分类号:TD2354文献标志码:A文章编号:1672-9102(2020)04-0001-05Mechanism Analysis and Engineering Application of Blasting Fragmentation for On-sitt Mixed Emulsion ExplosivesLu Jun,MaYuanjun(Gezhouba Explosive Sichuan Blasting Engineering Co.,Ltd.,Chengdu610000,China)Abstract:In order to improve the blasting effect of on-site mixed emulsion explosive,taking a limestone mine as the reseerch background,the action mechanism of detonation wave,blasting shock wave and blasting compression wave are studied by theoreticcl analysit method.The influence of blasting bouldeo ratio is obtained by celculation,the appropaaie I io I c arrangemeni mode and I o I c network parametera are proposed.R cu O s show that the detonation passua in the blast hok is10.04GPa and the initim impact pressure on surrounding rock mass is1349GPa.The aree of impact pressure and hnsile stress on rock masses is14and1.1m especthely. When plum blossom shaped holes are used and the hcOe network parametere are set at5mX4m,the blasting fraamentation distriVuhon is more concentrated and the fragmentation is more sufficient,the block ratio is decreesed by13.47%compared with that before optimization.Keywords:on-site mixed emulsion explosives%blasting impact%hcOe network parametere%hcOe arangement%block ratio自1627年,奥地利人葛期帕尔•温德首次将炸药应用于煤矿开采以来,经过几百年的发展,爆破法已成为矿山开采最主要的方法[1].伴随着爆破法的推广应用,工业炸药也陆续更新换代,最初的黑火药,逐步由代那买特、硝铵炸药所替代•硝铵炸药由于安全、可靠、威力大,特别是现场混装乳化炸药生产工艺简单,其制造、运输、使用等环节均为炸药半成品,无雷管、机械等感度,安全可靠,且生产工艺高效、环保,因此广泛应用于露天大型矿山爆破开采.收稿日期:2020-08-16通信作者$E-maiV****************2矿业工程研究2020年第35卷现场混装乳化炸药流动性大,主要呈耦合装药结构,其配方可以根据矿岩的性质调整,因此研究其与矿岩匹配性对于爆破效果提升至关重要.国内外大量学者分别从现场混装乳化炸药原材料性质'$,3(、配方'#旳、装药结构'7,8]等方面研究了其对爆破效果的影响,并提出了针对性的措施•但是针对现场混装乳化炸药爆区爆破参数的设计仍采用传统的经验公式⑼,对于现场混装乳化炸药破岩机理及影响范围研究较少,相关爆破参数的优选理论支撑不足•基于此,本文以某石灰石矿山为背景,研究现场混装乳化炸药爆破应力波传播规律,分析其破岩机理,为爆破参数的优化提供理论依据・1现场混装乳化炸药爆轰冲击性能分析某石灰石矿山采用现场混装乳化炸药进行爆破作业,工艺简单.首先在地面集中制备站制备水相(硝酸铵水溶液)、油相(柴油及乳化剂)、敏化剂(亚硝酸钠),然后将水相、油相、敏化剂分别装入BCRH-15型现场混装乳化炸药车的不同罐体内,现场混装乳化炸药车进入爆破区域后,通过螺杆泵将水相、油相搅拌均匀,形成W/O型抗水乳胶基质,输入炮孔时添加敏化剂,10~15min后现场混装乳化炸药在炮孔中敏化发泡,成为具备爆炸性能的乳化炸药•具体配比:水相溶液中!(硝酸铵):!(水)=82%:18%,油相溶液中!柴油):!(SP-80)=80%:20%,敏化剂中!(亚硝酸钠):!(水)=25%:75%,炸药密度为1.15g/cm3,水相吸晶点温度为63°C.现场混装乳化炸药装药完成后,在起爆具爆炸能作用下,炸药爆炸并以较快的速度达到爆轰,其爆轰波传播过程符合ZND模型,如图1所示.爆轰波在炮孔传播过程中,以D表示爆轰波速度,以p H,P h,“H,$H,e H及P o,P o,"0,$0,%)分别表示爆轰产物及炸药的密度、压力、运动速度、温度和比热力学能(如图1所示)•在爆轰波传播过程中,爆轰波阵面前后单位质量炸药遵循质量、动量及能量守恒定律'10(:&H'&0=(e H-e0)+(*H-*0);(1)p(")==P((2)P h_P0=p(D~"0)("h-"0)-(3)式中:&0,&h分别为炸药、爆轰产物单位质量热力学能,E*0,*h分别为炸药、爆轰产物单位质量的化学能,J.采用Microtrap孔内爆速仪对现场混装乳化炸药爆速进行测试,得到"=6051.6m/s.将相关参数代入式(1)~式(3),可得现场混装乳化炸药爆轰压力ph=10.04GPa.1—爆轰产物;2—反应区;3—现场混装乳化炸药;4—压力曲线;5—(C-J)面;6—冲击波面图1柱状耦合装药爆轰ZND模型2现场混装乳化炸药爆破应力波传播特征2.1爆轰波对岩体初始冲击荷载现场混装乳化炸药装入炮孔后呈流体状,根据应力波传播特征,爆轰波在炮孔壁发生透射及反射,透射波向岩体内部继续传播,反射波则在爆轰产物中传播,如图2所示.透射波向岩体深处传播,对周边岩体产生动力扰动,因此,研究爆轰波对岩体的冲击荷载实际上就是研究爆轰波作用于孔壁的透射波的冲击荷载.第#期卢军,等:现场混装乳化炸药爆破破岩机理分析及其工程应用31—爆轰产物;2—现场混装乳化炸药;3—炮孔壁;4—爆轰波头;5—入射波;6—反射波;7—透射波图2柱状装药爆轰波冲击荷载透射波均遵循质量、动量和能量守恒,参照式(1)~式(3),得到透射波压力(岩体初始冲击荷载)为1+N-—式中:P2为爆轰波对岩体初始冲击荷载,MPa;N为比例系数,该石灰石属中风化灰岩,取1.2;P s为岩体密度,取2670kg/m3;为岩体中弹性波波速,取4644m/s.将相关参数代入式!4),计算得到p=13.79GPa.2.2现场混装乳化炸药爆破应力波衰减规律炸药爆炸后,产生大量高温高压气体作用于炮孔周边的岩体,在距炮孔中心较近的范围内(—7.0),岩体变形过程复杂,呈类似流体变形状态,在该区域内,高温高压气体的能量快速释放,影响范围较小•在r#7R a附近,爆轰波产生的冲击波在岩体中很快形成陡峭的波阵面[11],具有较高的冲击压力,冲击波继续传播的过程中,冲击压力开始衰减,当冲击荷载衰减至小于岩体抗压强度时,冲击压力转换为压缩应力,压缩应力对岩体压缩产生拉应力,压缩应力小于岩体抗压强度,不会使岩体产生破坏,但是因压缩产生的拉应力大于岩体抗拉强度,促使岩体出现拉伸破坏.根据文献[10,11]爆破应力波衰减理论公式,分别得到爆破压缩应力P及切向拉应力#的特征方程:P2二);(5式中:P为压缩应力,MPa;为径向压应力,MPa;#为初始冲击压力,MPa;-为比距离;$为压力衰减指数,爆破冲击波的衰减指数$#3;A r为爆破应力计算点与爆轰波波阵面的相对距离,!r=r-7R%,其中r 为爆破应力计算点距炮孔中心的距离,m;R%为炮孔半径,.%=0.069m.式中:#为切向拉应力,MPa;"为岩石泊松比,取0.28.将相关参数代入式!5)~式(7),得到爆破压应力、拉应力与距炮孔中心距离的反比关系如图3所示.现场混装乳化炸药爆破后,首先产生爆破冲击压力,爆破冲击波压力P由13.79GPa迅速衰减至40.20MPa (图3a所示),衰减的距离为1.0m,此后爆破冲击波继续衰减形成爆破压缩波,爆破压缩波压应力小于岩体抗压强度,不会对岩体产生破坏,但是压缩产生横向拉应力,导致岩体破坏,拉应力由6.9MPa逐步衰减至2.0MPa时(图3b所示),拉应力对岩体不再产生破坏,拉应力破岩范围为1.1m,爆破应力破岩范围为2.1m.4矿业工程研究2020年第35卷3工程应用3.1方案优化根据经验,某石灰石矿爆破孔排距设计范围为(4~6) mx ( 3~5) m ,为提高爆破效果,一般采用大孔距、 小排距•选取几种典型的爆破参数及炮孔布置形式进行混装乳化炸药破岩机理分析.不同的布孔方式下爆破应力破岩范围如图4所示.当孔排距为5 mX4 m 时,梅花形布孔方式对比长方 形布孔,相邻炮孔起爆后,中间区域未受冲击,且拉裂的区域较小并呈狭长分布,该区域产生爆破大块率的 概率较小,更利于控制爆破块度.(a )梅花形布孔(b )长方形布孔图4不同布孔方式爆破应力破岩范围当炮孔采用梅花形布孔时,不同孔排距导致相邻炮孔间未受扰动区域面积各不相同,如图5所示.当孔排 距6 mX4 m 时(如图5a ),相邻炮孔间未受扰动的区域最大,大块率发生概率最大;当孔排距4 mX4 m 时(如 图5c ),相邻炮孔破裂区域重叠,可能导致炮孔爆炸能更多应用于岩石过度破碎,产生大量粉矿,不利于铲装; 当孔排距5mX4 m 时(如图5b ),能量利用率最高,且炮孔间岩石破碎较充分,发生大块率概率较小.(a) 6 m X 4 m (b) 5 m x 4 m图5不同爆破参数爆破应力破岩范围4m(c) 4 m x 4 m因此,基于现场混装乳化炸药爆破应力破岩机理,采用孔排距为5 mX4 m 的梅花形布孔方式,更利于 充分破岩, 提高爆破效果.第4期卢军,等:现场混装乳化炸药爆破破岩机理分析及其工程应用53.2应用效果分析为进一步直观对比分析不同孔网参数条件下混装乳化炸药爆破时,该石灰石矿大块率的分布特征,选 取常用的6 mX4 m 和优化推荐的5 mX4 m 孔网参数进行爆破效果对比分析,爆破单耗均取04 kg/m 3.进 行混装乳化炸药装药并起爆后,利用爆破块度软件对爆堆表面大块率进行分析,如图6所示.(a)原参数爆破块度 (b)优化后爆破块度图6爆破参数优化前后岩石爆破块度对2种爆破参数起爆后大块率进行分析后,其爆破块度累计质量百分比如图7所示.参数优化前后,爆破块度 在矿山要求的10 - 100 mm 内所占比例分别为72.13%, 8244%,超过100 mm 的所占比例分别为27.47% ,1440%. 由此可见,基于现场混装乳化炸药破岩机理,优化爆破孔 网参数后,爆破块度分布更集中,大块率降低13.57%.4结论1)分析并计算得到现场混装乳化炸药耦合柱状装药结构爆轰压力及其对周边岩体爆破冲击压力,为现场混装 乳化炸药爆轰能定量计算及配方优化提供了思路.00O O O OO OOO O987654321 %、£0皿*径44除图7参数优化前后爆破块度对比2)现场混装乳化炸药爆破冲击压力随着应力波向外传播,冲击压力逐步衰减为压缩应力,冲击压力对周边岩体产生冲击破碎,压缩产生的拉应力对周边岩体产生拉裂破碎.3)研究表明梅花形布孔较长方形布孔爆破效果更佳,针对某石灰石矿提出了梅花形布孔适合的孔网 参数,有效降低了爆破大块率.参考文献:[1] 李有良,郝志坚,姜庆洪.工业炸药生产技术'M ].北京:北京理工大学出版社,2015.[2] 卢文川,孟昭禹,马军,等.乳化剂和油相材料对现场混装乳化炸药基质稳定性的影响'J ].爆破器材,2019,48(6) $7-12.[3] 张家田,高锡敏,黄胜松.混装乳化炸药敏华助剂对爆破效果的影响研究'J ].采矿技术,2020,20(5):161-163.[4] 李杰,刘露,赵明生,等.基于混装乳化炸药配方调整改善爆破效果的研究[J].矿业研究与开发,2020,40(5) $27-31.[5] Huang S S , Zhao M S , Zhang Y P , st aO Experimental Study on the Performance oO on-site Mixed Emulsion Explosives andRock Impedancc Matching [ J ]. American Journal oO Scientific Research and Essays , 2020,5( 26) : 1-7.[6] 黄麟,田丰,田惺哲,等.抗低温地下混装乳化炸药工艺配方研究[J ].工程爆破,2018,24(5):35-39.[7] 余红兵,赵明生,周桂松,等.混装乳化炸药不同孔径水孔装药结构研究'J ].爆破,2018,35(4):104-123.[8] 李斌,马元军,胡劲松,等.某铁矿大孔径中深孔爆破装药结构对比试验[J ].现代矿业,2019,35( 12):117-119.[9] 汪旭光.爆破手册'M ].北京:冶金工业出版社,2010.[10] 戴俊.岩石动力学特征与爆破理论'M ] 4匕京:冶金工业出版社,2014.[11] 杨仁树,丁晨曦,王雁冰,等.爆炸应力波与爆生气体对被爆介质作用效应研究[J ].岩石力学与工程学报,2016,35(s2) :3501-3505.。

第六章 岩土中爆炸的基本理论

第六章  岩土中爆炸的基本理论

爆破工程
炸药爆炸首先形成应力脉冲,使岩石表面产生变 形和运动。由于爆轰压力瞬间高达数千乃至数万 兆帕,以致于可在岩石表面形成冲击波,并在岩 石中传播。 岩石中某局部被激发的应力脉冲是时间和距离的 函数。由于应力作用时间短,往往其前沿才传播 一小段距离而荷载已作用完毕,因此在岩石中产 生明显的应力不均现象。 岩石中各点的应力呈动态,即岩石的变形、位移 均与时间有关,岩石中的应力场随时间而变化。
中国矿大建筑工程学院
岩石的可爆性

爆破工程
岩石爆破性指数F分级方法 在标准的爆破试验条件和标准装药条件下,根据 爆破漏斗的体积、岩石破碎块度、岩石的波阻抗综合 评价岩石的可爆性,以多元回归经验公式对岩石进行 分级。 67 . 22 7 . 42 2 . 03
e K (c) d F ln 38 . 44 v 1 . 89 4 . 75 K K e p x
σθ2
微单元
σθ2
r 1 t 2 c
σr1
岩石不会被压碎
产生径向裂隙
中国矿大建筑工程学院
岩石爆破破碎机理
爆破工程
爆破体作用在爆炸空腔的 岩壁上,形成准静压应力场。 在高压气体的膨胀挤压、气楔 作用下,径向裂隙继续扩展和 延伸,并且在裂隙尖端处的气 体压力下引起应力集中,加速 裂隙的扩展,构成了靠近粉碎 区的内密外疏、开始宽末端细 的径向裂隙。
中国矿大建筑工程学院
岩石爆破破岩机理
一、岩石爆破破岩机理三种假说
爆破工程
1、爆生气体膨胀作用理论
2、反射拉伸应力波作用理论 3、爆生气体和应力波共同作用理论
中国矿大建筑工程学院
岩石爆破破碎机理
爆生气体膨胀作用理 论(静作用理论)

5爆破破岩机理

5爆破破岩机理
爆破漏斗又叫加强松动爆破漏斗。 ④松动爆破漏斗。如图5-5(d)所示,当0<n<0.75时,爆 破漏斗为松动爆破漏斗,这时爆破漏斗内的岩石只产生破裂、 破碎而没有向外抛掷的现象。从外表看,没有明显的可见漏斗 出现。
r
W W
r
θ
45
°
45
θ
°
(a)
(b)
r
r
W
θ
W
θ
(c)
图5-5 爆破漏斗分类
(d)
和进一步张开。当爆轰气体的压力足够大时,爆轰气体将推动破
碎岩块作径向抛掷运动。 对于不同性质的岩石和炸药,应力波与爆轰气体的作用程
度是不同的。
在坚硬岩石、高猛度炸药、偶合装药或装药不偶合系数较 小的条件下,应力波的破坏作用是主要的; 在松软岩石、低猛度炸药、装药不偶合系数较大的条件下, 爆轰气体的破坏作用是主要的。
研究成果还不很完善,但它们基本上反映了岩石爆破作用
中的某些客观规律,对爆破实践具有一定的指导意义和应 用价值。
5.1 岩石爆破破碎原因的几种学说
(1)爆轰气体压力作用学说(explosion gas failure
theory)
这种学说从静力学观点出发,认为岩石的破碎主要是由 于爆轰气体(explosion gas)的膨胀压力引起的。这种学说
` `
θ θ θ θ
`
`
区贯通的径向裂隙(crack)。
σr
`
θ θ
σ
σ (a)
σr (b)
`
随着径向裂隙的形成,作用在岩石上的压力
迅速下降,药室周围岩石随即释放出在压缩过程
θ θ θ
σr
σr
` `
σr
` `

关于岩石爆破破碎机理及影响爆破作用的因素

关于岩石爆破破碎机理及影响爆破作用的因素

关于岩石爆破破碎机理及影响爆破作用的因素班级:____________姓名:____________学号:____________指导教师:__________关于岩石爆破破碎机理及影响爆破作用的因素摘要:岩石爆破破坏是一个高温、高压、高速的瞬态过程,在几十微秒到几十毫秒之内即完成。

使得研究岩石爆破破碎机理变得困难,所提出的各种破岩理论还只能算是假说。

关键词:岩石爆破、压力膨胀、冲击波1.岩石爆破破碎机理研究的问题1.1岩石爆破破碎机理研究的主要内容(1)炸药爆炸释放的能量是通过何种形式作用在岩石上;(2)岩石在这种能量作用下处于什么样的应力状态;(3)岩石在这种应力状态中怎么发生破坏、变形和运动的。

(4)影响岩石破坏的因素。

(5)炸药装药量和爆破效果关系。

1.2岩石爆破破碎机理研究存在的主要困难(1)炸药爆炸荷载复杂性:高速、高温、高压、高能量密度荷载(2)岩体本身的复杂性:不均质性,各向异性,非连续,非线性(3)爆破施工工艺多样性2.岩石爆破破碎的主因破碎岩石时炸药能量以两种形式释放出来,一种是冲击波,一种是爆炸气体。

但是,岩石破碎的主要原因是冲击波作用的结果还是爆炸气体作用的结果,由于认识和掌握资料的不同,便出现了不同的结果。

2.1爆炸气体产物膨胀压力破坏理论2.1.1爆炸气体产物膨胀压力破坏理论基本观点1953年以前,该派观点在爆破界极为流行。

从静力学观点出发,认为药包爆炸后,产生大量高温、高压气体,这种气体膨胀时所产生的推力作用在药包周围的岩壁上,引起岩石质点的径向位移,由于作用力不等引起的不同径向位移,导致在岩石中形成剪切应力。

当这种剪切应力超过岩石的极限抗剪强度时就会引起岩石的破裂。

当爆炸气体的膨胀推力足够大时,还会引起自由面附近的岩石隆起、鼓开并沿径向方向推出。

它在很大程度上忽视了冲击波的作用。

后来经过村田勉等人的努力,利用近代观点重新做了解释,形成了一个完整的体系。

2.1.2理论依据(1)炸药爆炸→气体产物(高温,高压)→在岩中产生应力场→引起应力场内质点的径向位移→径向压应力→切向拉应力→岩石产生径向裂纹(2)如果存在自由面,岩石质点速度在自由面方向上最大,位移阻力各方向上的不等,产生剪切应力,通过剪切破坏岩石。

钻爆作业爆破破岩作用机理及有关概念无限介质中的爆破

钻爆作业爆破破岩作用机理及有关概念无限介质中的爆破

4.3.2 钻爆作业1. 爆破破岩作用机理及有关概念(1)无限介质中的爆破作用假定将药包埋置在无限介质中进行爆破,则在远离药包中心不同的位置上,其爆破作用是不相同的。

大致可以划分为四个区域,如图7—1所示。

◆压缩粉碎区——指半径为1 R 范围的区域。

该区域内介质距离药包最近,受到的压力最大,故破坏最大。

当介质为土壤或软岩时,压缩形成一个环形体孔腔;介质为硬岩时,则产生粉碎性破坏,故称为压缩粉碎区。

◆抛掷区——1 R 与 2 R 之间的范围叫抛掷区。

在这个区域内介质受到的爆破力虽然比压缩粉碎区小,但介质的结构仍然被破坏成碎块。

炸药爆炸能量除对介质产生破坏作用外,尚有多余能量使被破坏的碎块获得运动速度,在介质处于有临空面的空间时,则在临空面方向上被抛掷出去,产生抛掷运动。

◆破坏区——该区又叫松动区,是指2 R 与 3 R 之间的区域。

爆炸能量在此区域内只能使介质破裂松动,已没有能力使碎块产生抛掷运动。

◆震动区——3 R 与 4 R 之间的范围叫爆破震动区。

在此范围内,爆破能量只能使介质发生弹性变形,不能产生破坏作用。

举例:移山填海、自已参与科研常德烟厂基础拆除爆破、水池爆破等。

(2)爆破基本概念◆临空面——又叫自由面,是指暴露在大气中的开挖面。

◆爆破漏斗——在有临空面的情况下,炸药爆破形成的一个圆锥形的爆破凹坑就叫爆破漏斗。

如图7—2所示。

◆最小抵抗线(W )——药包中心到自由面的最短距离。

◆爆破漏斗半径(r)——最小抵抗线与自由面交点到爆破漏斗边沿的距离。

◆爆破作用指数——爆破漏斗半径r与最小抵抗线W 的比值n,称为爆破作用指数,这是一个描述爆破漏斗大小,爆破性质,抛掷堆积情况等因素的重要相关系数。

通常把n=1的爆破称为标准抛掷爆破,其漏斗称为标准抛掷爆破漏斗;n>1的爆破称为加强抛掷爆破或扬弃爆破;0.75<n<1的爆破称为加强松动或减弱抛掷爆破;n≤0.75的爆破称为松动爆破。

平坦地形的松动爆破结果,只能看到岩土破碎和隆起,并没有爆破漏斗可见。

岩石爆破破岩机理

岩石爆破破岩机理

岩石爆破破岩机理论文导读:岩体在冲击荷载的作用下产生应力波或冲击波,它在岩体中传播,引起岩石变形乃至破坏。

炸药爆炸首先形成应力脉冲,使岩石表面产生变形和运动。

爆生气体膨胀力引起岩石质点的径向位移,由于药包距自由面的距离在各个方向上不一样,质点位移所受的阻力就不同,最小抵抗线方向阻力最小,岩石质点位移速度最高。

破碎的岩石又在爆生气体膨胀推动下沿径向抛出,形成一倒锥形的爆破漏斗坑。

岩体中爆炸应力波在自由面反射后形成反射拉伸波引起岩石破碎,岩石的破坏形式是拉应力大于岩石的抗拉强度而产生的,岩石是被拉断的。

同样,反射拉伸波也加强了径向裂隙的扩展。

关键词:爆炸,气体膨胀,应力波,爆破,自由面,径向裂隙岩体在冲击荷载的作用下产生应力波或冲击波,它在岩体中传播,引起岩石变形乃至破坏。

炸药爆炸首先形成应力脉冲,使岩石表面产生变形和运动。

由于爆轰压力瞬间高达数千乃至数万兆帕,从而在岩石表面形成冲击波,并在岩石中传播。

1、爆生气体膨胀作用炸药爆炸生成高温高压气体,膨胀做功引起岩石破坏。

爆生气体膨胀力引起岩石质点的径向位移,由于药包距自由面的距离在各个方向上不一样,质点位移所受的阻力就不同,最小抵抗线方向阻力最小,岩石质点位移速度最高。

正是由于相邻岩石质点移动速度不同,造成了岩石中的剪切应力,一旦剪切应力大于岩石的抗剪强度,岩石即发生剪切破坏。

破碎的岩石又在爆生气体膨胀推动下沿径向抛出,形成一倒锥形的爆破漏斗坑。

2、爆炸应力波反射拉伸作用岩体中爆炸应力波在自由面反射后形成反射拉伸波引起岩石破碎,岩石的破坏形式是拉应力大于岩石的抗拉强度而产生的,岩石是被拉断的。

岩石爆破破碎正是爆生气体和爆炸应力波综合作用的结果。

因为冲击波对岩石的破碎作用时间短,而爆生气体的作用时间长,爆生气体的膨胀促进了裂隙的发展;同样,反射拉伸波也加强了径向裂隙的扩展。

岩体内最初裂隙的形成是由冲击波或应力波造成的,随后爆生气体渗入裂隙并在准静态压力作用下,使应力波形成的裂隙进一步扩展。

《爆破理论基础》PPT课件

《爆破理论基础》PPT课件

(3)生成的气体多。
硝酸铵炸药爆炸全部生成气体。 1kg工业炸
药爆炸时约产生700 ~1000升的气体。
例如:C H N (NO )→ 26.12.2020
3 63
2
2 3C2 O 2 3C O 2 3N 2 O 2 3H 2 3 N 2
精选PPT
3
二、炸药及其分类 1、炸药的概念 炸药是在一定条件下能够发生快速
岩石铵梯炸药分为:1号、2号、2号抗水、3号抗水、 42号6.12抗.202水0 等。
精选PPT
17
26.12.2020
精选PPT
18
26.12.2020
精选PPT
19
铵梯炸药,一般制成直径27mm、 32mm、35mm、38mm,重100g、150g、 200g的药卷;
聚能穴:药卷一端为平顶,另一端内凹 入,称为聚能穴。
最小抵抗线:药包中心到自由面的垂直
距离叫最小抵抗线。
爆破漏斗:炸药爆炸后在靠近自由面一
侧所形成的漏斗状的坑叫爆破漏斗。
爆破作用指数:爆破漏斗半径γ与最小抵
抗线W之比,
26.12.2020
n W
精选PPT
37
2、破岩原理 将药包埋入岩石中,起爆后的瞬间产生高
温高压气体,它以冲击波的形式(压缩级)作 用于药包周围的岩石上,并以药为中心,以每 秒数千米的速度向四周作径向传播,在药包附 近形成一个粉碎圈,在粉碎圈外形成一个环状 裂隙圈,当冲击波达到自由面后,产生反射而
26.12.2020
精选PPT
6
3、炸药的爆温 爆温是指炸药爆炸瞬间放出的
热在定容条件下爆炸产物被加热达 到的最高温度。
单质炸药:3000~5000℃ 矿用混合炸药:2000~2500℃

《爆破工程》考试重点

《爆破工程》考试重点

《爆破⼯程》考试重点考试题型:名词解释 102=20''?简答题 105=50''? 论述题215=30''? 第⼀章爆破⼯程概论⼀、⼯程爆破的分类⽅法:1、按药包形状分类:(1)集中药包法:药包的最长边长不超过最短边长的4倍。

(2)延长药包法:药包的最长边长边⼤于最短边长或直径的4倍(3)平⾯药包法:药包的直径⼤于其厚度的3到4倍(4)形状药包法:将炸药做成特定形状的药包,⽤以达到某种特定的爆破作⽤2、按装药⽅式和装药空间形状的不同分类(1)药室法(2)药壶法(3)炮孔法(4)裸露药包法3、按爆破技术分类:定向爆破,预裂、光⾯爆破,微差爆破,聚能爆破,其他特殊条件下的爆破技术第⼆章爆破器材和起爆技术⼀、解释下列术语最⼤安全电流:给电雷管通恒定的直流电,5分钟内不⾄引爆电雷管的电流最⼤值最⼩发⽕电流:给电雷管通恒定的直流电,能准确引爆雷管的最⼩电流值称为最⼩发⽕电流发⽕冲能:电雷管在点燃时间内,每欧姆桥丝所提供的热能称为发⽕冲能。

发⽕冲能与通⼊电流值的⼤⼩有关,电流愈⼩,散热损失愈⼤。

标称发⽕冲能:实际中常采⽤当电流强度等于两倍百毫秒发⽕电流时的发⽕冲能值⼆、对⼯业炸药的基本要求有哪些?1具有⾜够的炸药能量,爆炸性能良好,且有⾜够的爆炸威⼒;2具有合适的感度,既能⽤⼯业雷管引爆,⼜能确保制造、运输、储存和使⽤等⽅⾯的安全;3炸药的反应接近零氧平衡,即爆后⽣成的有毒⽓体不得超过安全规定所允许的标准; 4具有⼀定的化学安定性,在存储中不变质、⽼化、失效甚⾄爆炸,具有⼀定的存储期;5原料来源⼴,制造⼯艺简单,价格便宜。

三、⽐较铵梯炸药和铵油炸药的优缺点及组成成分铵梯炸药组成NH 4NO 3、TNT 、⽊粉等可燃物(品种不同附加物不同)铵梯炸药爆炸后⽣成⽓体量⼤、感度低,吸湿性强,当空⽓相对湿度⼤于硝酸铵吸湿点时,随空⽓湿度增⾼,吸湿速度加快,吸湿后易结块、硬化、⼤⼤降低爆炸性能,抗⽔性差。

爆破破岩机理讲解

爆破破岩机理讲解

用n表示,即:
n
r
W(5-1)
爆破作用指数n在工程爆破中是一个极重要的参数。 爆破作
用指数n值的变化,直接影响到爆破漏斗的大小、岩石的破碎
程度和抛掷效果。
3)爆破漏斗的分类
根据爆破作用指数n值的不同,将爆破漏斗分为以下四种:
①标准抛掷爆破漏斗。如图5-5之(a)所示,当r=W,即n=1
时,爆破漏斗为标准抛掷爆破漏斗,漏斗的张开角θ=90°。形
成标准抛掷爆破漏斗的药包叫做标准抛掷爆破药包。
②加强抛掷爆破漏斗。如图5-5(b)所示,当r>W,即n>1时, 爆破漏斗为加强抛掷爆破漏斗,漏斗的张开角θ>90°。形成加 强抛掷爆破漏斗的药包,叫做加强抛掷爆破药包。
③减弱抛掷爆破漏斗。如图5-5(c)所示,当0.75<n<1时, 爆破漏斗为减弱抛掷爆破漏斗,漏斗的张开角θ<90°。形成减 弱抛掷爆破漏斗的药包,叫做减弱抛掷爆破药包,减弱抛掷爆 破漏斗又叫加强松动爆破漏斗。
随后,爆轰气体产物继续压缩被冲击波压碎的岩石,爆轰气体 “楔入”在应力波作用下产生的裂隙中,使之继续向前延伸和进 一步张开。当爆轰气体的压力足够大时,爆轰气体将推动破碎岩 块作径向抛掷运动。
对于不同性质的岩石和炸药,应力波与爆轰气体的作用程度是 不同的。
在坚硬岩石、高猛度炸药、偶合装药或装药不偶合系数较小的 条件下,应力波的破坏作用是主要的;
④松动爆破漏斗。如图5-5(d)所示,当0<n<0.75时,爆破 漏斗为松动爆破漏斗,这时爆破漏斗内的岩石只产生破裂、破 碎而没有向外抛掷的现象。从外表看,没有明显的可见漏斗出 现。
W W
W
r 45° 45°
θ
(a)
r
r
θ
(b)
r
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岩石爆破机理早期发展阶段主要为 L.W.利文斯顿的爆破 理论、流体动力学理论以及炸药量与岩石破碎体积成比例 理论。
4.1 岩石爆破理论发展阶段
直到20世纪60年代日野熊雄的冲击波拉伸破坏理论的出 现,标志着早期爆破理论发展阶段的结束,爆破机理发展 第二阶段的开始。
岩石爆破理论发展的第二阶段主要提出了岩石爆破机理 的三种假说:
作 用下产生的裂隙中,使之继续向前延伸和进一步张开。当 爆轰气体的压力足够大时,爆轰气体将推动破碎岩块作径 向抛掷运动。自由面的反射拉伸作用同样也加强了径向裂 隙的扩展,并造成岩石片落。
岩石爆破破坏机理的三种假说(综合)
对于不同性质的岩石和炸药,应力波与爆轰气体的作 用程度是不同的。
在坚硬岩石、高猛度炸药、偶合装药或装药不偶合系 数较小的条件下,应力波的破坏作用是主要的。
爆炸应力波在距爆源不同距离的区段内可表现为:爆炸 冲击波、爆炸应力波和爆炸地震波。在爆源近区是冲击 波,具有陡峭的波阵面并以超声速传播,波阵面前后的 岩石状态参数(压力、密度、温度、岩石质点移动速度) 都发生突跃变化。冲击波在传播过程中能量消耗大、衰 减快。随着距离增大,冲击波衰变为压缩应力波,波头 变缓,以声速传播,能量衰减较慢。随传播距离增大, 应力波又衰变为周期性振动的地震波。
爆生气体的膨胀作用
爆炸应力波反射拉伸作用假说
这种学说以爆炸动力学为基础,认为应力波是引起岩 石破碎的主要原因。这种学ቤተ መጻሕፍቲ ባይዱ忽视了爆轰气体的破坏作 用,也忽视了压应力的作用,其基本观点如下:
爆轰波冲击和压缩药包周围的岩壁,在岩石中激发形 成冲击波并很快衰减为应力波。 此应力波在周围岩体内形 成裂隙的同时向前传播,当应力波传到自由面时,产生反 射拉应力波,当拉应力波的强度超过自由面处岩石的抗拉 强度时,从自由面开始向爆源方向产生拉伸片裂破坏,直 至拉伸波的强度低于岩石的动态抗拉强度处时停止。自由 面形成片落爆破漏斗。(外——内)
炸药在岩土介质中爆炸发展图像
1)岩石中爆炸应力波的演变
炸药在岩土介质中爆炸发展图像(续)
2) 冲击载荷作用下岩石的变形及其对应的各种应力波
原理:炸药爆炸后,在岩石压杆中产生沿压杆轴向传 播的爆炸压缩应力波,到达压杆的另一端遇端面(自由 面)将发生反射,形成拉伸应力波反射入压杆,当此拉 伸波的拉应力值高于岩石的抗拉强度时,岩石将从该端 被拉断,随着反射波的传播,拉断的块数增多,直至拉 应力小于岩石的抗拉强度停止
爆生气体和爆炸应力波综合作用假说
★ 岩石爆破破坏机理的三种假说: 1)爆生气体膨胀推力作用假说; 2)爆炸应力波反射拉伸作用假说; 3)爆生气体和爆炸应力波综合作用假说。
★ 装药爆破作用: *内部作用:岩石在炸药作用下发生破坏的物理过程 *外部作用:爆破漏斗
一、岩石爆破破坏机理的三种假说
由于岩石是一种非均质、各向异性的介质,爆炸本身 又是一个高温高压高速的变化过程,炸药对岩石破坏的整 个过程在几十微秒到几十毫秒内就完成了,因此研究岩石 爆破作用机理是一项非常复杂和困难的工作。尽管如此, 理论研究方面仍取得重大成果,归结起来岩石爆破破坏机 理有三种假说
1)爆生气体膨胀推力作用假说; 2)爆炸应力波反射拉伸作用假说; 3)爆生气体和爆炸应力波综合作用假说。
爆生气体膨胀推力作用假说
这种学说从静力学观点出发,认为岩石的破碎主要是 由于爆轰气体的膨胀压力引起的。这种学说忽视了岩体中 冲击波和应力波的破坏作用,其基本观点如下:
药包爆炸,产生大量高温高压气体,这些爆炸气体迅 速膨胀并以极高的压力作用于药包周围的岩壁上,形成压 应力场。当岩石的抗拉强度低于压应力在切向衍生的拉应 力时,将产生径向裂隙。作用于岩壁上的压力引起岩石质 点径向位移,由于不同方向受力不等引起径向位移速度不 等,导致在岩石中形成剪切应力。当剪切应力超过岩石抗 剪强度时,岩石即产生剪切破坏。破碎岩块又在爆轰气体 推力作用下沿径向抛出,形成爆破漏斗坑。(内——外)
这种学说认为,岩石的破坏是应力波和爆轰气体共同 作用的结果。这种学说综合考虑了应力波和爆轰气体在岩 石破坏过程中所起的作用,其基本观点如下:
炸药爆炸后在岩石中激发形成冲击波并很快衰减为应 力波。冲击波在药包附近的岩石中产生“压碎”现象,应
力 波在压碎区域之外产生径向裂隙。随后,爆轰气体产物继 续压缩被冲击波压碎的岩石,爆轰气体“楔入”在应力波
霍普金森压杆试验示意图
不同药量的岩石压杆爆破试验
自由面附近应用波的发射作用
岩石条爆破试验:
1-雷管; 2-炸药; 3-岩石条试件; 4-粉碎区; 5-裂隙区; 6-震动区; 7-片落区
霍普金森效应
试验:在岩石压杆的一端安置炸药,起爆后,靠近炸 药一端的岩石被炸碎,压杆中间部分没有明显的破坏, 而杆件的另一端则被拉断呈许多块。
在松软岩石、低猛度炸药、装药不偶合系数较大的条 件下,爆轰气体的破坏作用是主要的。
工程爆破实践中应根据岩石条件、爆破效果要求,合 理选择炸药品种和爆破方法(特别是装药结构)
第二节 岩石中爆炸应力波
炸药在岩石中的爆炸时,最初施加在岩石上的是冲击荷 载,在极短的时间内上升到峰值压力,而后又迅速下降, 爆炸载荷的整个作用过程很短。在此冲击荷载作用下, 岩石内激起爆炸应力波。冲击压缩岩石,造成岩石破坏。
第4章 爆破破岩机理
4.1 岩石爆破理论发展阶段 4.2 岩石中的爆炸应力波 4.3 岩石爆破作用 4.4 炸药在岩石中的爆破破坏过程 4.5 爆破漏斗理论 4.6 光面爆破和预裂爆破 4.7 微差爆破 4.8 聚能效应 4.9 装药量计算原理 4.10 影响爆破效应的因素
4.1 岩石爆破理论发展阶段
从古代至今,采用炸药爆炸来破碎岩体仍然是一种最有效的方法。 炸药爆炸作用下,岩体是如何破碎的呢?
早在1613年德国人马林(Marlin)、韦格尔(Weigel) 在弗雷帕格(Freisberg)矿山首先用炸药开掘坑道,开创 了爆破采矿的历史。
国内外学者们经过长期探索,包括高速摄影技术、现场爆破试验和 计算机模拟技术,提出了岩石爆破机理的种种假说。
相关文档
最新文档