SPSS统计分析第5章 非参数检验

合集下载

SPSS非参数检验—两独立样本检验_案例解析

SPSS非参数检验—两独立样本检验_案例解析

SPSS非参数检验—两独立样本检验_案例解析非参数检验是一种在统计学中常用于比较两个或多个独立样本的方法。

与参数检验不同,非参数检验不需要对数据的分布进行假设,并且适用于非正态分布的数据。

SPSS(统计软件包for社会科学)是一个广泛使用的统计分析软件,它提供了许多非参数检验的功能。

本文将以一个案例为例,解析如何使用SPSS进行两独立样本的非参数检验。

案例描述:一家公司正在评估一个新的培训课程对员工的绩效是否有显著影响。

为了评估培训课程的效果,研究人员随机选择了两组员工,一组接受了培训课程(实验组),另一组没有接受培训课程(对照组)。

研究人员想要比较两组员工在绩效上的差异。

步骤一:导入数据首先,将实验组和对照组的数据分别导入SPSS中。

假设每个样本中有n个观测值。

在SPSS中,每一组数据应该是一个独立的变量(或列),并且每个观测值应该占据矩阵中的一个单元格。

步骤二:选择非参数检验方法在SPSS中,可以使用Mann-Whitney U检验来比较两组独立样本的绩效差异。

该检验的原假设是两组样本来自同一个总体,备择假设是两组样本来自不同的总体。

步骤三:运行非参数检验在SPSS的菜单栏中,依次选择"分析" - "非参数检验" - "独立样本检验(Mann-Whitney U)"。

将实验组和对照组的变量分别输入到"因子1"和"因子2"中。

在"可选"选项中,可以选择在报告中包含各种统计量。

步骤四:解读结果SPSS将输出很多统计信息,包括推断统计、置信区间、效应大小等。

其中,最重要的是U值和显著性。

U值是用来检验两组样本是否来自同一个总体的统计量,显著性则是用来判断差异是否显著。

如果显著性小于0.05,则可以拒绝原假设,认为两组样本在绩效上存在显著差异。

总结:通过上述步骤,我们可以利用SPSS进行两独立样本的非参数检验。

SPSS的非参数检验

SPSS的非参数检验
非参数检验可以提供更准确的统计推断,特别是在 数据特征不明或数据量较小的情况下。
02
SPSS非参数检验概述
定义与特点
定义
非参数检验是在统计分析中,相对于参数检验的一种统计方法。 它不需要对总体分布做严格假定,只关注数据本身的特点,因此 具有更广泛的适用范围。
特点
非参数检验对总体分布的假设较少,强调从数据本身获取信息, 具有灵活性、稳健性和适用范围广等优点。
局限性
计算量大
对于大规模数据集,非参数检验的计算量可 能较大,需要较长的计算时间。
对数据要求高
非参数检验要求数据具有可比性,对于不可 比的数据集可能无法得出正确的结论。
解释性较差
非参数检验的结果通常较为简单,对于深入 的统计分析可能不够满足。
对异常值敏感
非参数检验对异常值较为敏感,可能导致结 果的偏差。
THANK YOU
感谢聆听
常用非参数检验方法
独立样本非参数检验
用于比较两个独立样本的差异 ,如Mann-Whitney U 检验 、Kruskal-Wallis H 检验等。
相关样本非参数检验
用于比较相关样本或配对样本 的关联性,如Wilcoxon signed-rank 检验、Kendall's tau-b 检验等。
等级排序非参数检验
案例二:两个相关样本的非参数检验
总结词
适用于两个相关样本的比较,如同一班级内不同时间点的成绩比较。
描述
使用SPSS中的两个相关样本的非参数检验,如Wilcoxon匹配对检验,可以比较两个相关样本的总体分布是否相 同。
案例二:两个相关样本的非参数检验
01
步骤
02
1. 打开SPSS软件,输入数据。

SPSS第讲非参数检验(共72张PPT)

SPSS第讲非参数检验(共72张PPT)

SPSS应用
Kendall协同系数检验中会计算Friedman检验方 法,得到friedman统计量和相伴概率。如果相伴概
率小于显著性水平,可以认为这10个节目之间没有 显著差异,那么可以认为这5个评委判定标准不一 致,也就是判定结果不一致。
SPSS应用
3.多配对样本的Cochran Q检验
多配对样本的Cochran Q检验也是对多个互 相匹配样本总体分布是否存在显著性差异的统计 检验。不同的是多配对样本的Cochran Q检验所能 处理的数据是二值的(0和1)。其零假设是:样 本来自的多配对总体分布无显著差异。
SPSS应用
单样本K-S检验可以将一个变量的实际频数分
布与正态分布(Normal)、均匀分布(Uniform)、
泊松分布(Poisson)、指数(Exponential)分 布进行比较。其零假设H0为样本来自的总体与指定
的理论分布无显著差异。
SPSS应用
6.2 两配对样本非参数检验
6.2.1 统计学上的定义和计算公式
SPSS应用
两配对样本非参数检验的前提要求两个样本 应是配对的。在应用领域中,主要的配对资料包 括:具有年龄、性别、体重、病况等非处理因素 相同或相似者。首先两个样本的观察数目相同, 其次两样本的观察值顺序不能随意改变。
SPSS应用
SPSS中有以下3种两配对样本非参数检验方 法。
SPSS应用
1验.两配对样本的McNemar变化显著性检
SPSS应用
2.两配对样本的符号(Sign)检验
当两配对样本的观察值不是二值数据时,无法 利用前面一种检验方法,这时可以采用两配对样本
的符号(Sign)检验方法。其零假设为:样本来
自的两配对样本总体的分布无显著差异。

第5讲SPSS非参数检验

第5讲SPSS非参数检验
二、操作
数据文件:“糖果中的卡路里.sav” 菜单:“分析→非参数检验→旧对话框→K个独立样本”
多独立样本非参数检验整体分析与设计的内容
输入最大值、 最小值。
Kruskal-Wallis H检 验:是曼-惠特尼U 检验在多个独立样 本下的推广。
检验各个样本是否来自有相同中位数的 总体。--- 这种检验的效能最低。
2)对数据的测量尺度无约束,对数据的要求也不严格,任何数据类型 都可以。
3)适用于小样本、无分布样本、数据污染样本、混杂样本等。
注:若参数检验模型的所有假设在数据中都能满足,而且测量达到了所 要求的水平,那么,此时用非参数检验就浪费了数据。
因此,若所需假设都满足的情况下,一般就选择参数检验方法。
卡方检验
此时,零假设:两总体的 均值无显著性差异;就可 能不成立。
K-S检验。以变量的秩 作为分析对象;而非变 量值本身。
也需要先将两组样本混 合、升序排列。
两独立样本非参数检验整体分析与设计的内容 二、操作
该检验有特定用途,给出的结果均为单侧 检验。若施加的处理时的某些个体出现正 向效应,而另一些个体出现负向效应时, 就应当采用该检验方法。 基本思想为:将一组样本作为控制样本, 另一组作为试验样本。以控制样本为对照, 检验试验样本相对于控制样本是否出现了 极端反应。若无极端反应,则认为两总体 分布无显著性差异;否则,有显著性差异。
选择分布
“结”的处理
单样本K-S检验
整体分析与设计的内容
三、补充描述性统计的P-P图和Q-Q图
P-P图的输出样子: P-P图
期望(理论)累计 概率值
去势P-P图
样本数据实际累计 概率值
实际与期望的差值
样本数据实际累计 概率值

SPSS教程-非参数检验

SPSS教程-非参数检验
两独立样本的非参数检验是在对总体分布不很 了解的情况下,通过分析样本数据,推断样本 来自的两个独立总体分布是否存在显著差异。
一般用来对两个独立样本的均数、中位数、离 散趋势、偏度等进行差异比较检验。
两个样本是否独立,主要看在一个总体中抽取 样本对另外一个总体中抽取样本有无影响。
Mann-Whitney检验
=0.18576
计算表
SPSS基本操作
SPSS基本操作
SPSS基本操作
SPSS基本操作
SPSS基本操作
单样本K-S检验
利用样本数据推断样本来自的总体是否服从某一理论 分布,是一种拟合优度的检验方法,适用于探索连续 型随机变量的分布
步骤
计算各样本观测值在理论分布中出现的理论累计概率值F(x) 计算各样本观测值的实际累计概率值S(x) 计算理论累计概率值与实际累计概率值的差D(x) 计算差值序列中最大绝对差值D
针麻效果
(1) Ⅰ Ⅱ Ⅲ Ⅳ

肺癌 (2) 10 17 19 4
三种病人肺切除术的针麻效果比较肺化脓症Fra bibliotek肺结核
(3)
(4)
24
48
41
65
33
36
7
8
合计 (5) 82 123 88 19
SPSS基本操作
与例7的操作相同
随机区组设计资料的秩和检验
M检验(Friedman法)法计算步骤
将每个区组的数据由小到大分别编秩 计算各处理组的秩和Ri 求平均秩:R=1/2b(k+1) 计算各处理组的( Ri-R) 求M 查M界值表,F近似法
参数统计(parametric statistics) : 在 统计推断 中,若样本所来自的总体分布为已知的函数形式 (正态/近似正态分布),但其中的参数未知,统 计推断的目的就是对这些未知参数进行估计/检验, 这类统计推断方法称参数统计。

非参数检验-SPSS

非参数检验-SPSS

非参数检验-SPSS什么是非参数检验?非参数检验是一种统计假设检验方法,它不依赖于总体的任何假设条件,如总体分布的正态性、方差的同一性等。

与参数检验相比,非参数检验更加灵活,能够适应更多的数据情况。

为什么需要非参数检验?当我们的数据不满足正态分布等假设条件时,就需要使用非参数检验。

此外,非参数检验还有以下优点:1.不需要知道总体分布的具体形态,从而更加适用于实际情况2.对于离群值和极端值并不敏感3.数据缺失并不会影响检验结果SPSS中的非参数检验现在我们来介绍SPSS中的非参数检验。

1. Wilcoxon符号秩检验Wilcoxon符号秩检验旨在检验两组配对样本的中位数差异是否为零。

它的原假设是两组样本中位数相同。

首先,我们需要打开SPSS,导入数据集,然后点击菜单栏中的“数据”-“配对样本T检验”-“Wilcoxon符号秩检验”。

接下来,我们需要在弹出的对话框中选择配对变量,然后点击“OK”即可得到检验结果。

2. Mann-Whitney U检验Mann-Whitney U检验是一种非参数检验方法,用于检验两组独立样本的中位数是否相同。

它的原假设是两组样本中位数相同。

要进行Mann-Whitney U检验,我们需要打开SPSS,导入数据集,然后点击菜单栏中的“分析”-“非参数检验”-“2独立样本”。

接着,在弹出的对话框中选择两组样本的变量,并设置分析的方法为“Mann-Whitney U检验”。

最后点击“OK”即可得到检验结果。

3. Kruskal-Wallis检验Kruskal-Wallis检验是一种非参数检验方法,用于检验多个独立样本的中位数是否相同。

它的原假设是多组样本中位数相同。

要进行Kruskal-Wallis检验,我们需要打开SPSS,导入数据集,然后点击菜单栏中的“分析”-“非参数检验”-“Kruskal-Wallis检验”。

接着,在弹出的对话框中选择多组样本的变量,并点击“OK”即可得到检验结果。

spss使用教程非参数检验

spss使用教程非参数检验
第23页/共152页
SPSS二项分布检验就是根据收集到的样本 数据,推断总体分布是否服从某个指定的二项 分布。其零假设是H0:样本来自的总体与所指 定的某个二项分布不存在显著的差异。
第24页/共152页
SPSS中的二项分布检验,在样本小于或等 于30时,按照计算二项分布概率的公式进行计 算;样本数大于30时,计算的是Z统计量,认 为在零假设下,Z统计量服从正态分布。Z统计 量的计算公式如下
人数 2 4 7 16 20 25 24 22 16 2 6 1
第49页/共152页
实现步骤
图10-12 在菜单中选择“1-Sample K-S”命令
第50页/共152页
图10-13 “One-Sample Kolmogorov-Smirnov Test”对话框
第51页/共152页
图10-14 “One-Sample K-S:Options”对话框
第28页/共152页
表10-2
35名婴儿的性别
婴儿
Sex
婴儿
Sex
婴儿
Sex
1
1
13
1
25
1
2
0
14
1
26
1
3
1
15
1
27
0
4
1
16
1
28
0
5
1
17
0
29
0
6
1
18
0
30
0
7
0
19
0
31
1
8
0
20
0
32
0
9
0
21
0
33
0
10

【VIP专享】统计学实验报告——SPSS软件的参数检验与非参数检验

【VIP专享】统计学实验报告——SPSS软件的参数检验与非参数检验

统计学2——SPSS软件的参数检验与非参数检验班级学号姓名日期实验目的(1)熟悉单样本t检验。

(2)熟悉两独立样本t检验。

(3)熟悉两配对样本t检验。

(4)熟悉总体分布的卡方检验。

实验内容(1)SPSS的单样本t检验操作。

(2)SPSS的两独立样本t检验。

(3)SPSS的两配对样本t检验。

(4)SPSS的总体分布的卡方检验。

实验过程(1)SPSS的单样本t检验操作。

(2)SPSS的两独立样本t检验。

(3)SPSS的两配对样本t检验。

(4)SPSS的总体分布的卡方检验。

DATASET NAME 数据集1 WINDOW=FRONT.T-TEST/TESTVAL=0.8/MISSING=ANALYSIS/VARIABLES=x5678_1/CRITERIA=CI(.95).T检验T-TEST/TESTVAL=0.8/MISSING=ANALYSIS/VARIABLES=x10_1/CRITERIA=CI(.95).T检验GETFILE='C:\Documents and Settings\admin\LocalSettings\Temp\Rar$DI02.829\商品房购买意向调查模拟数据.sav'. DATASET NAME 数据集2 WINDOW=FRONT.T-TEST GROUPS=t2(1 2)/MISSING=ANALYSIS/VARIABLES=t10_1/CRITERIA=CI(.95).T检验独立样本检验DATASET ACTIVATE 数据集1.T-TEST GROUPS=x13(1.5)/MISSING=ANALYSIS/VARIABLES=x5678_1/CRITERIA=CI(.95).T检验DATASET ACTIVATE 数据集2.GETFILE='C:\Documents and Settings\admin\Local Settings\Temp\Rar$DI67.032\减肥茶.sav'. DATASET NAME 数据集3 WINDOW=FRONT.T-TEST PAIRS=hcq WITH hch (PAIRED)/CRITERIA=CI(.9500)/MISSING=ANALYSIS.T检验DATASET ACTIVATE 数据集1.GETFILE='C:\Documents and Settings\admin\Local Settings\Temp\Rar$DI10.7860\心脏病猝死.sav'. DATASET NAME 数据集4 WINDOW=FRONT.NPAR TESTS/CHISQUARE=rq/EXPECTED=2.8 1 1 1 1 1 1/MISSING ANALYSIS.NPar 检验卡方检验频率实验心得。

非参数检验的SPSS操作

非参数检验的SPSS操作

第八节非参数检验的SPSS操作前面一章介绍的二项分布的比率检验、配合度检验——卡方检验和1-Sample K-S检验等都属于非参数检验。

这一节我们主要结合前面参数假设检验一章讲过的t检验以及方差分析一章讲过的方差分析,来进一步分析,当参数检验的前提条件不满足时,两个样本和多个样本平均数差异的SPSS 操作方法。

一、两个独立样本的差异显著性检验两独立样本的的差异显著性检验只有在满足如下条件时才能进行T检验:变量为正态分布的连续测量数据。

若数据不满足这样的条件,强行进行T检验容易造成错误的结论。

在数据不能满足这种参数检验的条件下,我们可以选择非参数检验方法进行。

与两独立样本差异显著性检验相对应的方法可以在SPSS主菜单Analyze / Nonparametric Tests / 2 Independent Samples…中得到。

1.数据采用本章第一节中例2的数据(数据文件“9-4-1.sav”),具体介绍操作过程。

2.理论分析对于数据文件9-4-1.sav中的数据,目的是检验男女生之间注意稳定性是否存在显著差异,注意稳定性测量的结果虽然是测量数据但是从总体上来看不满足正态分布的前提假设,另外不同性别的学生可以看成是两组独立的样本,因此对上述资料的检验可以用非参数的独立样本的检验方法。

2.操作过程(1)在SPSS主菜单中选择Analyze / Nonparametric Tests / 2 Independent Samples…得到两个独立样本非参数检验的主对话框(图9-1),把因变量atten选入到检验变量表列(Test Independent-Sample Tests)中去,把gender选到分组变量(Grouping Variable)中,并单击Define Groups…,在随后打开的对话框中分别键入1与2,单击Continue回到主对话框如图9-1所示。

在Test Type中有四个可选项,其中最常用的是第一种方法Mann-Whitney U(又称秩和检验法)。

SPSS的参数检验和非参数检验

SPSS的参数检验和非参数检验

SPSS的参数检验和非参数检验SPSS是一种非常常用的统计分析软件,可以用于参数检验和非参数检验。

参数检验是假设检验的一种方法,用于判断统计样本是否代表总体。

而非参数检验则是用于检验数据是否满足一些分布假设,或判断两个或多个群体是否具有差异。

参数检验主要有t检验、方差分析和回归分析等。

其中,t检验用于比较两个样本均值是否有显著差异,包括独立样本t检验和相关样本t检验。

方差分析用于比较三个或更多样本均值是否有显著差异,可以进行单因素方差分析或多因素方差分析。

回归分析用于建立预测模型,可以通过线性回归或多项式回归进行。

非参数检验通常适用于数据不满足正态分布或方差齐性的情况,如Wilcoxon符号秩检验、Kruskal-Wallis H检验、Mann-Whitney U检验等。

Wilcoxon符号秩检验用于比较两个配对样本的差异是否有显著差异,Kruskal-Wallis H检验用于比较三个或更多独立样本的差异是否有显著差异,Mann-Whitney U检验用于比较两个独立样本的差异是否有显著差异。

在SPSS中进行参数检验和非参数检验一般需要进行以下步骤:1.导入数据:将数据导入SPSS软件,可以通过选择文件-导入功能进行操作。

2.设定分析变量:定义需要进行分析的变量,并将其添加到分析列表中。

3.选择统计方法:根据实验设计和数据分布情况,选择合适的参数检验或非参数检验方法。

4.执行分析:点击运行按钮进行分析,在分析结果中可以查看得到显著性水平、均数、方差等指标。

5.结果解释:根据分析结果进行假设检验,判断是否存在显著差异,并解释其结果。

无论是参数检验还是非参数检验,在进行分析前需要注意数据的合理性、样本的选择和实验设计的合理性等,以保证分析结果的可靠性。

同时,还应根据不同的研究目的和数据特点选择适当的方法,并合理解释分析结果。

在SPSS软件中,可以通过图表、表格和描述性统计等形式展示和解释结果,并通过结果进行科学判断和相关推断。

spss卡方检验和非参数检验

spss卡方检验和非参数检验

练习一、 为试验某止疼药物的效果,将178例患者随机分为两组,用药组90 人,对照组88人,试验结果见数据chi_ex,请根据此数据回答,此 药物止疼效果如何?
练习二、 用两种方法检查乳腺癌患者120名,甲法检出率60%,乙法检出率 50%,两法检出都阳性的是35%,请问两种方法检出率是否有差别?
H1:B≠C
Test Statisticsb
N Chi-Squarea
VAR00001 & VAR00002 410
86.449
Asymp. Sig.
.000
a. Continuity Corrected
b. McNemar Test
χ2 =86.45, P=0.000 P<0.05,拒绝H0,接受H1,差别有显著性,两种方法 检验结果不同。
二、 行×列表的χ2检验
a. 什么是行×列表 整理表的行数多于2,或者列数多于2。 四格表是为了比较两个率(构成比)是 否相等;行×列表是为了比较三组或者 三组以上的率(构成比)是否相等。
b. 行×列表χ2检验的假设: H0:各组构成相同 H1:各组构成不同或不全相同
c. 行×列表的自由度: (行数-1) ×(列数-1)
L i ne a r-b y-L i ne a r Asso ci a ti on
2.333
1
.127
N of Valid Cases
25
a. Computed only for a 2x2 table
b. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1. 60.
两型慢性布氏病患者得植物血凝素皮试反应

SPSS非参数检验

SPSS非参数检验

SPSS⾮参数检验实验⽬的:学会使⽤SPSS的简单操作,掌握⾮参数检验。

实验内容: 1.中位数符号检验,检验总体中位数是否等于某个假定的值。

设⼀个随机样本有n个数据,总体中位数的实际值为M,假设的总体中位数值为。

当样本中的数据⼤于假设的中位数时,⽤“+”号表⽰,⼩于假设的中位数时,⽤“-”表⽰;对于恰好等于假设的中位数的数据予以剔出。

若关⼼实际的M与假设的是否有差别,应建⽴假设:;计算检验统计量S+和S-。

S+表⽰每个样本数据与与差值符号为正的个数;S-表⽰每个样本数据与差值符号为负的个数。

计算P值并作出决策。

若P<,拒绝原假设。

2.Wilcoxon符号秩检验,检验总体参数(如中位数)是否等于某个假定的值。

它是对符号检验的⼀种改进,弥补了符号检验的不⾜,要⽐单纯的符号检验更准确⼀些(对应的参数检验—单样本均值检验)。

检验步骤:①计算各样本观察值与假定的中位数的差值,并取绝对值;②将差值的绝对值排序,并找出它们的秩;③计算检验统计量和P值,并作出决策。

3.独⽴样本的检验,Mann-Whitney检验不需要诸如总体服从正态分布且⽅差相同等之类的假设,但要求是两个独⽴随机样本的数据⾄少是顺序数据;Kruskal-Wallis检验不需要总体服从正态分布且⽅差相等这些假设。

该检验可⽤于顺序数据,也可⽤于数值型数据。

要检验k个总体是否相同,提出如下假设。

:所有总体都相同,:并⾮所有总体都相同或等价于,不全相同。

4.秩相关检验,对两个顺序变量之间相关程度的⼀种度量。

Spearman秩相关系数也称等级相关系数,记为,计算公式为,的取值范围为[-1,1];,两种排序之间完全相关;若,两种排序之间为负相关;若,两种排序之间为正相关;若,两种排序之间不相关;越趋于1,相关程度越⾼;越趋于0,相关程度越低。

实验步骤: 1.中位数符号检验SPSS操作,点击【分析】→【⾮参数检验】→【相关样本】,打开【⾮参数检验、两个或更多相关样本】对话框。

SPSS的参数检验和非参数检验

SPSS的参数检验和非参数检验

实验二 SPSS的参数检验和非参数检验(验证性实验 4学时)1、目的要求:熟练掌握t检验及其结果分析。

熟练掌握单样本、两独立样本、多独立样本的非参数检验及各种方法的适用范围,能对结果给出准确分析。

2、实验内容:使用指定的数据按实验教材完成相关的操作。

3、主要仪器设备:计算机。

练习:1、给幼鼠喂以不同的饲料,用以下两种方法设计实验:鼠体内钙的留存量有显著不同。

2、为分析大众对牛奶品牌是否具有偏好,随机挑选超市收集其周一至周六各天并说明分析结论。

1 参数检验概述假设检验的基本思想.事先对总体参数或分布形式作出某种假设,然后利用样本信息来判断原假设是否成立;.采用逻辑上的反证法,依据统计上的小概率原理。

2 单样本的T检验2.1检验目的:•检验单个变量的均值是否与给定的常数(总体均值)之间是否存在显著差异。

如:分析学生的IQ平均分是否为100分;大学生考研率是否为5%。

•要求样本来自的总体服从或近似服从正态分布。

2.2 单样本T检验的实现思路•提出原假设:•计算检验统计量和概率P值●给定显著性水平与p值做比较:如果p值小于显著性水平,小概率事件在一次实验中发生,则我们应该拒绝原假设,反之就不能拒绝原假设。

2.3 单样本t检验的基本操作步骤1、选择选项Analyze-Compare means-One-Samples T test,出现窗口:2、在Test Value框中输入检验值。

3、单击Option按钮定义其他选项。

Option选项用来指定缺失值的处理方法。

其中,Exclude cases analysis by analysis表示计算时涉及的变量上有缺失值,则剔除在该变量上为缺失值的个案;Exclude cases listwise表示剔除所有在任意变量上含有缺失值的个案后再进行分析。

可见,较第二种方式,第一种处理方式较充分地利用了样本数据。

在后面的分析方法中,SPSS对缺失值的处理方法与此相同,不再赘述。

spss课件第五讲__非参数检验

spss课件第五讲__非参数检验
第五讲 非参数检验


统计推断方法是根据样本数据推断总体特征( 均值,方差等)的方法,包括参数检验和非参 数检验两种方法。 参数检验是适用于总体分布已知的情况。 非参数检验适用于总体分布未知或知道甚少的 情况。(由于在推断过程中不涉及有关总体分 布的参数,故得名“非参数”检验)
2
单样本的非参数检验 两配对样本的非参数检验 两独立样本的非参数检验 多独立样本的非参数检验 多配对样本的非参数检验9来自方差为: r2
2n1n2 (2n1n2 n1 n2 ) (n1 n2 )2 (n1 n2 1)
大样本时,游程近似服从正态分布,即
Z
r r
其中,r 为游程数。SPSS自动计算 Z 值和概率P值。
r
10
两配对样本的非参数检验
两配对样本的非参数检验是在对总体分布不甚了解的情况下,通过对 两组配对样本的分析,推断样本来自的两个配对总体的分布是否存在显 著差异的方法。 配对样本的样本数是相同的,且各样本值的先后次序是不能随意更 改的。 SPSS提供的检验方法有: 符号检验 Wilcoxon符号秩检验 McNemar检验 Marginal Homogeneity检验
Z
np(1 p)
(当 x 小于 n 2 时加0.5,当 x大于n 2 时减0.5。) SPSS自动计算上述精确概率和近似概率值。若概率值小于显著性水平,则拒绝 原假设,认为样本来自的总体与指定二项分布有显著差异;若大于显著性水平, 则接受原假设,认为样本来自的总体与指定的二项分布无显著差异。
7
15
1. 曼-惠特尼U检验(Mann-Whitney U)
原假设:两组独立样本来自的两总体分布无显著差异。 基本原理:通过对两组样本平均秩的研究来实现推断。秩,是变量值 排序的名次。 可以将数据按升序排列,每个变量值都会有一个在整个变量值序列中 的名次,这个名次就是变量值的秩。变量值有几个,对应的秩便有几 个。 首先,将两组样本数据 X1 , X 2 , , X m 和 Y1 , Y2 , , Yn 混合并按升序排序,得 到每个数据各自的秩 Ri ; 然后,分别对两组样本数据的秩求平均,得到两个平均秩 WX M和WY N 。对 两个平均秩的差距进行比较:如果两个平均秩相差甚远,则应是一组样本的 秩普遍偏小,另一组样本的秩普遍偏大的结果,也就是一组样本的值普遍偏 小,另一组样本的值普遍偏大的结果。此时,原假设很可能不成立; 再次,计算样本 X1 , X 2 , , X m 每个秩优先于样本 Y1 , Y2 , , Yn 每个秩的个 数U1 ,以及样本 Y1 , Y2 , , Yn 每个秩优先于样本 X1 , X 2 , , X m 每个秩的个数 U 2 。

SPSS非参数检验—两独立样本检验_案例解析

SPSS非参数检验—两独立样本检验_案例解析

SPSS非参数检验—两独立样本检验_案例解析非参数检验是一种不基于总体分布特征的统计方法,适用于数据分布未知、非正态分布或无法满足参数检验假设的情况。

其中一种非参数检验是两独立样本检验,用于比较两组独立样本之间的统计差异。

本篇文章将结合案例解析,详细介绍SPSS软件中如何进行非参数检验的两独立样本检验。

案例背景:工厂生产两种不同形状的零件,为了比较两种零件的尺寸是否存在差异,随机选取了30个零件进行测量。

现在需要使用两独立样本检验来研究这两种零件的尺寸是否存在显著差异。

步骤一:数据导入首先,将收集到的数据导入SPSS软件中。

数据包括两个变量:零件类型(Group)和尺寸(Size)。

将数据按照Excel或CSV格式保存,然后在SPSS中选择"文件"->"导入"->"数据",选择导入文件,并进行数据格式定义。

步骤二:描述性统计分析在进行假设检验之前,首先进行描述性统计分析,以了解样本数据的基本特点。

在SPSS中,选择"分析"->"描述性统计"->"描述性统计",将"Size"变量拖入"变量"框中,然后点击"统计"按钮,选择要统计的统计量(如均值、标准差等),最后点击"确定"按钮进行计算。

步骤三:正态性检验在进行非参数检验之前,需要进行正态性检验,以确定数据是否满足参数检验的假设。

在SPSS中,选择"分析"->"非参数检验"->"单样本分布检验",将"Size"变量拖入"变量"框中,然后点击"选项"按钮,选择要进行的正态性检验方法,如Kolmogorov-Smirnov检验或Shapiro-Wilk检验等。

《SPSS的非参数检验》PPT课件

《SPSS的非参数检验》PPT课件

精选课件ppt
33
数,计算实际观察频数与期望频数的差距,即:计算
卡方值 – 卡方值较小,则实际频数和期望频数相差较小。如果P
大于a,不能拒绝H0,认为总体分布与已知分布无显著 差异。反之
精选课件ppt
4
一、SPSS单样本非参数检验
(一)总体分布的chi-square检验 (4)基本操作步骤
菜单:analyze->nonparametric test->chi square 选定待检验变量入test variable list 框 确定待检验个案的取值范围(expected range)
(六)案例结果 p203-210
精选课件ppt
22
四、SPSS两配对样本非参数检验
(一)含义
由配对样本数据推断两总体分布是否存在显著 差异。
(二)基本假设
H0:两总体分布无显著差异。
(三)数据要求
两配对的样本数据。
精选课件ppt
23
四、SPSS两配对样本非参数检验
(四)基本方法
1.变化显著性检验(McNemar)
化。系统会作出提示。
案例:7-5 p194使用寿命
精选课件ppt
16
二、SPSS两独立样本非参数检验
(五)基本操作步骤
菜单选项:analyze->nonparametric tests->2 independent sample
选择待检验的变量入test variable list框 选择一种或几种检验方法
将研究对象作为自身的对照者检验其“前后”的变化 是否显著
关心的是发生变化的两格中的频数变化。如果频数变 化相当,则认为无显著变化。
数据要求只能是二分值数据(即0,1)

SPSS非参数检验

SPSS非参数检验

非参数检验SPSS单样本非参数检验是对单个总体的分布形态等进行推断的方法,其中包括卡方检验、二项分布检验、K-S检验以及变量值随机性检验等方法。

参数检验与非参数检验的区别:参数检验是在总体分布形式已知的情况下,对总体分布的参数如均值、方差等进行推断的方法.但是,在数据分析过程中,由于种种原因,人们往往无法对总体分布形态作简单假定,此时参数检验的方法就不再适用了。

非参数检验正是一类基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。

由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数检验”。

一、几种常见的非参数检验1、总体分布的卡方检验卡方检验方法可以根据样本数据,推断总体分布与期望分布或某一理论分布是否存在显著差异,是一种吻合性检验,通常适于对有多项分类值的总体分布的分析。

它的原假设是:样本来自的总体分布与期望分布或某一理论分布无差异。

例如,医学家在研究心脏病人猝死人数与日期的关系时发现:一周之中,星期一心脏病人猝死者较多,其他日子则基本相当.当天的比例近似为2。

8:1:1:1:1:1:1。

现收集到心脏病人死亡日期的样本数据,推断其总体分布是否与上述理论分布相吻合。

2、二项分布检验SPSS的二项分布检验正是要通过样本数据检验样本来自的总体是否服从指定的概率为P的二项分布,其原假设是:样本来自的总体与指定的二项分布无显著差异。

在生活中有很多数据的取值是二值的,例如,人群可以分成男性和女性,产品可以分成合格和不合格,学生可以分成三好学生和非三好学生,投掷硬币实验的结果可以分成出现正面和出现反面等.通常将这样的二值分别用1或0表示。

如果进行n次相同的实验,则出现两类(1或0)的次数可以用离散型随机变量X 来描述。

如果随机变量X为1的概率设为P,则随机变量X值为0的概率Q便等于1-P,形成二项分布。

从某产品中随机抽取23个样品进行检测并得到检测结果.用1表示一级品,用0表示非一级品。

《SPSS数据分析教程》――非参数检验PPT课件

《SPSS数据分析教程》――非参数检验PPT课件
例如,医生研究心脏病人猝死人数与日期的关系,检 验现在的人口结构和十年前是否一样,血型是否和人 的性格有关系,现代社会中受过高等教育、高中毕业、 初中毕业、小学毕业和文盲的比例是否为3:6:10: 2:1等问题都可以通过卡方检验来实现。
卡方检验的原理(1)
卡方检验的原假设是:
H0样本来自的总体的分布与假设的分布(又称期望分 布或者理论分布)无显著差异。
适用于探索连续型随机变量的分布。 K-S检验的基本思想:根据样本数据和用户的指定构
造理论分布,查看分布表得到相应的理论累计概率分 布函数;利用样本数据计算各样本点的累计概率,得 到经验累计概率分布函数;计算这两个函数在相同变 量点上的差值,得到差值序列。K-S检验主要对差值 序列进行研究。 SPSS的K-S检验可以检验四种理论分布:正态分布、 均匀分布、泊松分布和指数分布。
研究定类变量和定序变量之间的关系。
SPSS非参数检验
新的用户界面统一了方法的选择,根据样本的 个数来组织方法。
非参数统计过程仍然保留了SPSS18以前的非参 数检验的界面,称为“旧对话框”,它的输出 仍然为传统的表格方式展现检验结果。同时可 以选择输出描述性统计量和四分位数,而新用 户界面下没有。
6.3独立样本非参数检验
独立样本非参数检验使用一个或多个非参数检 验方法来识别两个或更多个组间的差别。对于 两个分布未知的总体,或者两个总体的分布不 服从正态时,我们无法应用T检验来比较两个 总体。可以转而应用非参数的方法来比较两个 总体的中心位置的差异。独立样本是指样本来 自的总体相互独立。
独立样本包括两个独立样本或者两个以上的独立样本。 SPSS提供的独立样本非参数检验的方法有:
《SPSS数据分析教程》 ——非参数检验
整体概况
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H0
5.2 单样本的非参数检验 5.2.1 基本概念及统计原理
(1)“目标”选项卡:用于设置非参数检验的目标,每个 不同的选项对应于“设置”选项卡上不同的默认配置,如 下图所示。
H0
5.2 单样本的非参数检验 5.2.1 基本概念及统计原理
(2)“字段”选项卡:用于设定待检验变量。
H0
5.2 单样本的非参数检验
r
其中,r为游程数。
5.2 单样本的非参数检验 5.2.4 游程检验
3.分析步骤
游程检验也是假设检验问题,检验步骤同前。 SPSS会根据上面式子自动计算Z统计量,并依据正 态分布表给出对应的概率P值。如果概率值小于显著 性水平,则拒绝原假设,认为变量的分布不是随机 的,反之认为变量值的出现是随机的。
【例5-4】有20名学生经过新型教学法后测试成绩如下表,以 90分及以上为优秀,请检验这20名同学的优秀率是否达到了 10%。
成绩 78 75 84 76 89 93 94 88 95 87 88 73 84 82 80 84 87 91 95 83
第1步 分析:由于成绩分为优秀与非优秀两种状态,故应用 二项分布检验。 第2步 数据的组织:数据分成一列,其变量名为“成绩”, 输入数据并保存。
例如,30次掷硬币出现正反面的序列为 000011100000110000011111100000,如果称连在一起的0或 连在一起的1为一个游程,则共有4个0游程和3个1游程,共7 个游程(R = 7)。
5.2 单样本的非参数检验 5.2.4 游程检验
2.统计原理
SPSS单样本变量随机性检验中,利用游程数构造检
5.2 单样本的非参数检验 5.2.2 卡方检验
4.卡方检验SPSS实例分析
【例5-1】 某公司质检负责人欲了解企业一年内出现的次品 数是否均匀分布在一周的五个工作日中,随机抽取了90件次 品的原始记录,其结果如下表,问该企业一周内出现的次品 数是否均匀分布在一周的五个工作日中?( 0.05)
5.2 单样本的非参数检验
5.2.3 二项分布检验
在大样本的情况下,计算的是Z统计量,认为在零假设下, Z统计量服从正态分布,其计算公式如下:
x 0.5 np Z np(1 p)
当x小于n/2时,取加号;反之取减号,p为检验概率, n为样本总数。
5.2 单样本的非参数检验 5.2.3 二项分布检验
5.2 单样本的非参数检验
5.2.4 游程检验
4.游程检验SPSS实例分析
【例5-5】 某股票连续20天的收盘价如下表所示,在显著性水 平0.05下,判断此价格是否是随机的?(数据来源:M.R.斯皮 格尔,《统计学(第3版)》,科学出版社;参见数据文件: data5-7.sav。)
10.375 11.125 10.875 10.625 11.500 11.625 11.250 11.375 10.750 11.000
第五章
非参数检验
主要内容
5.1 参数检验与非参数检验的比较 5.2单样本的非参数检验
非参数检验
非参数检验是在总体分布未知的情况下,利用样本数据 对总体分布形态等进行推断的方法,在推断过程中不涉及有 关总体分布的参数,而是检验总体某些有关的性质,如总体 的分布位置、分布形状之间的比较等。 与参数检验的原理相同,非参数检验过程也是先根据问 题提出原假设,然后利用统计学原理构造出适当的统计量, 最后利用样本数据计算统计量的概率P值,与显著性水平进 行比较,得出拒绝或者接受原假设的结论。 非参数检验包括单样本(O)、独立样本(I)、相关样 本(R)的非参数检验。
5.2 单样本的非参数检验 5.2.3 二项分布检验
1.基本概念
二项分布检验正是要通过样本数据检验样本来自的总体 是否服从指定的概率为p的二项分布,其零假设H0是:样本 来自的总体与指定的二项分布无显著性差异。
2.统计原理
二项分布检验在样本小于等于30时,按下式计算概率值:
i i n i P{ X x} Cn pq i 1 x
验统计量。如果设n1为出现1的个数,n2为出现0的个数
,当n1, n2较大时,游程抽样分布的均值为
方差为
r2
2n1n2 (2n1n2 n1 n2 ) (n1 n2 )2 (n1 n2 1)
r
2n1n2 n1 n2

。在大样本条件下,游程近
似服从正态分布,即
Z r r
5.2 单样本的非参数检验 5.2.4 游程检验
1.基本概念
一 个游程(Run)就是某序列中位于一种符号之前或 之后的另一种符号持续的最大主序列,或者说,一个游程是 指某序列中同类元素的一个持续的最大主集。 主要用于检验一个变量两个值的分布是否呈随机分布, 即检验前一个个案是否影响下一个个案的值,如果没有影响 ,这一组个案便是随机的。
5.2 单样本的非参数检验
5.2.2 卡方检验 第6步 运行结果及分析:
卡方检验的假设检验数据摘要
给出了卡方检验 的原假设为“工作日的 类别以相同的概率发 生”,其相伴概率值Sig. = 0.014 < 0.05,说明应 拒绝原假设,因此图512的“决策者”给出 “拒绝原假设”的决策, 认为工作日的类别是以 不同概率发生的,即认 为该企业一周内出现的 次品数不是均匀分布在 一周的五个工作日中。
5.2 单样本的非参数检验 5.2.2 卡方检验
第4步 单因素的非参数检验设置:选择菜单“分析→非参数 检验→单样本”,在“目标”选项卡选择“自定义分析”; 在“字段”选项卡中选择“使用定制字段分配”,并将“工 作日”字段选入“检验字段”;“设置”选项卡中选择“自 定义检验”,并选中“比较观察可能性和假设可能性(卡方 检验)”,“检验选项”及“用户缺失值”保持默认选项。 第5步 卡方检验的选项设置:打开“卡方检验选项”对话框 ,选择” 所有类别概率相等(V)“选项。
5.2.1 基本概念及统计原理
(3)“设置”选项卡:用于设定检验方法及对应的选项, 如下图所示。
5.2 单样本的非参数检验 5.2.2 卡方检验
1.卡方检验的概念
也称卡方拟合优度检验,它是K.Pearson给出的一种最 常用的非参数检验方法,用于检验观测数据是否与某种概率 分布的理论数值相符合,进而推断观测数据是否是来自于该 分布的样本的问题。
5.2 单样本的非参数检验 5.2.3 二项分布检验SPSS实例分析
第5步 主要结果及分析:
二项式假设检验数据摘要 单尾检测的相伴概率Sig.=0.043<0.05,因此应拒绝零假 设,即小于90分的学生所占的比例与总体分布存在显著差 异,即小于90分的学生所占比例比90%小。这说明优秀学 生所占的比重是大于10%的。
10.875
10.750
11.500
11.250
12.125
11.875
11.375
11.875
11.125
11.750
5.2 单样本的非参数检验
5.2.4 游程检验
第1步 分析:由于判断的是价格是否随机分布,可用游程检 验对统计量进行随机性检验。该检验的原假设H0:样本是随机 的。 第2步 数据组织:将这些数据组织成一列,变量名为 “price”,输入数据并保存为文件data5-7.sav。 第3步 单因素的非参数检验设置:选择菜单“分析→非参数 检验→单样本”,按以下步骤进行设置: 在“目标”选项卡选择“自定义分析”。 在“字段”选项卡中选择“使用定制字段分配”,并将 “price”字段选入“检验字段”或使用默认设置。 在“设置”选项卡中选择“自定义检验”,并选中“检验随 机序列(游程检验)”,“检验选项”及“用户缺失值”保持 默认选项。
工作日 次品数 1 25 2 15 3 8 4 16 5 26
5.2 单样本的非参数检验 5.2.2 卡方检验
第1步 分析:由于考虑的是次品是否服从均匀分布的问题, 故用卡方检验。
第2步 数据组织:建立SPSS数据文件,建立两个变量:“工 作日”、“次品数”,录入相应数据,保存为文件data54.sav。 第3步 “次品数”字段加权处理:通过分析“工作日”及“ 次品数”两个字段的含义及度量标准,确定“工作日”为被 分析字段,而“次品数”表示各工作日出现的频数,所以应 该对“次品数”进行加权处理。执行“数据”→“加权个案 ”,打开“加权个案”对话框,按图5-10所示进行设置。
3.分析步骤
二项分布检验亦是假设检验问题,检验步骤同前。SPSS 会自动计算上述精确概率和近似概率值。如果概率值小于显 著性水平,则拒绝零假设,认为样本来自的总体与指定的二 项分布有显著差异,反之样本来自的总体与指定的二项分布
无显著差异。
5.2 单样本的非参数检验
5.2. 单样本的非参数检验
5.2.4 游程检验
第4步 游程检验的选项设置:在“单样本非参数检验”对话框 中单击“检验随机序列(游程检验)”对应的“选项”按钮 ,打开“游程检验选项”对话框,选择“定义连续字段的割 点”中的“样本中位数”选项。 第5步 主要结果及分析: 游程检验的数据摘要 上图显示其本例显著性水平为0.05,相伴概率值 Sig.=0.014<0.05,因此“决策者”给出“拒绝原假设”的 决策,认为“由股价 ≤11.25和>11.25定义的值”的序列不 是随机序列。
5.1 参数检验及非参数检验的区别
3 非参数检验的缺点 (1)二者效率有差距。 (2)当样本容量较大时,非参数检验的计算比较复 杂、困难。 (3)参数检验与非参数检验有各自特点,并非所有 的参数检验都可转化为非参数检验。
主要内容
5.1参数检验与非参数检验比较 5.2单样本的非参数检验
H0
5.2 单样本的非参数检验
5.2.1 基本概念及统计原理
单样本非参数检验使用一个或多个非参数检验方法 来识别单个总体的分布情况,不需要待检验的数据呈正态 分布。 SPSS 的单样本非参数检验方法包括卡方检验、二项 分布检验、游程检验、K-S检验及Wilcoxon符号检验五种。
相关文档
最新文档