电磁学第三版赵凯华答案精编版
赵凯华陈煕谋《电磁学》第三版思考题及习题答案(完整版)
1、 在地球表面上某处电子受到的电场力与它本身的重量相等, 求该处的电场强度 (已知电 子质量 m=9.1×10-31kg,电荷为-e=-1.610-19C). 解: 2、 电子所带的电荷量(基本电荷-e)最先是由密立根通过油滴实验测出的。密立根设计的 实验装置如图所示。一个很小的带电油滴在电场 E 内。调节 E,使作用在油滴上的电场力与 油滴的重量平衡。如果油滴的半径为 1.64×10-4cm,在平衡时,E=1.92×105N/C。求油滴上 的电荷(已知油的密度为 0.851g/cm3) 解: 3、 在早期(1911 年)的一连串实验中,密立根在不同时刻观察单个油滴上呈现的电荷, 其测量结果(绝对值)如下: 6.568×10-19 库仑 13.13×10-19 库仑 19.71×10-19 库仑 8.204×10-19 库仑 16.48×10-19 库仑 22.89×10-19 库仑 11.50×10-19 库仑 18.08×10-19 库仑 26.13×10-19 库仑 根据这些数据,可以推得基本电荷 e 的数值为多少? 解:油滴所带电荷为基本电荷的整数倍。则各实验数据可表示为 kie。取各项之差点儿 4、 根据经典理论,在正常状态下,氢原子中电子绕核作圆周运动,其轨道半径为 5.29× 10-11 米。已知质子电荷为 e=1.60×10-19 库,求电子所在处原子核(即质子)的电场强度。 解: 5、 两个点电荷,q1=+8 微库仑,q2=-16 微库仑(1 微库仑=10-6 库仑) ,相距 20 厘米。求 离它们都是 20 厘米处的电场强度。 解: 与两电荷相距 20cm 的点在一个圆周上,各点 E 大小相等,方向在圆锥在上。 6、 如图所示, 一电偶极子的电偶极矩 P=ql.P 点到偶极子中心 O 的距离为 r ,r 与 l 的夹角为。 在 r>>l 时,求 P 点的电场强度 E 在 r=OP 方向的分量 Er 和垂直于 r 方向上的分量 Eθ。 解:
电磁学(赵凯华,陈熙谋第三版)第三章 习题解答
" ’ , # ) !* ) !* ! (! ( ) +*) () "% ’ , # & !% $! % ・ ・ ・ $ ・ ・( & (& ! ) +* ( ) !*) (&! %&
" ! . ’% !( . ’%%% . $ " % . % " &% . % " ’% . ! " % ) $ ! " % . ’% !! ) $ ! " % #) " & ! . % " ’% . % " &%
(
!
!
)
习题 ! ! ""
新概念物理教程・电磁学$ 第三章 电磁感应 电磁场的相对论变换$ 习题解答
$ $ ! ! "# " 如本题图,一金属棒长为 % " &% ! 水平放置,以长度的 " # & 处为轴, 在水平面内 旋转, 每秒转两转。 已知该处地磁场在竖直方 向上的分量 $ " % % " &% "#, 求 &、 ’ 两端的电势 差。 解:在图中棒上轴的右边取一点 &(,使 它到轴的距离等于 & 点到轴的距离。 这两段导 相互抵消, 因此 ) & ’ %! ! &(’ %! ( ! * ") ・$# %! " " ! $ ( +,’ # ! +,&($# ) # # " !& !’ # %! * # ! * # * % " &% * "% * ( % " ’% ! % " "% # ) % %!’ " ( * "% % " #
电磁学第三版赵凯华陈煕谋 思考题和课后习题答案详解全解解析(上册)
第一章静电场§1.1 静电的基本现象和基本规律思考题:1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。
你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。
你所用的方法是否要求两球大小相等?答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。
然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。
本方法不要求两球大小相等。
因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。
2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。
试解释之。
答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。
但接触棒后往往带上同种电荷而相互排斥。
3、用手握铜棒与丝绸摩擦,铜棒不能带电。
戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。
为什么两种情况有不同结果?答:人体是导体。
当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。
戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。
计算题:1、真空中两个点电荷q1=1.0×10-10C,q2=1.0×10-11C,相距100mm,求q1受的力。
解:2、真空中两个点电荷q与Q,相距5.0mm,吸引力为40达因。
已知q=1.2×10-6C,求Q。
解:1达因=克·厘米/秒=10-5牛顿3、为了得到一库仑电量大小的概念,试计算两个都是一库仑的点电荷在真空中相距一米时的相互作用力和相距一千米时的相互作用力。
解:4、氢原子由一个质子(即氢原子核)和一个电子组成。
根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是r=5.29×10-11m。
已知质子质量M=1.67×10-27kg,电子质量m=9.11×10-31kg。
《电磁学》赵凯华陈熙谋No3chapter答案
第三章 稳 恒 电 流§3.1 电流的稳恒条件和导电规律思考题:1、 电流是电荷的流动,在电流密度j ≠0的地方,电荷的体密度ρ是否可能等于0? 答:可能。
在导体中,电流密度j ≠0的地方虽然有电荷流动,但只要能保证该处单位体积内的正、负电荷数值相等(即无净余电荷),就保证了电荷的体密度ρ=0。
在稳恒电流情况下,可以做到这一点,条件是导体要均匀,即电导率为一恒量。
2、 关系式U=IR 是否适用于非线性电阻?答:对于非线性电阻,当加在它两端的电位差U改变时,它的电阻R要随着U的改变而变化,不是一个常量,其U-I曲线不是直线,欧姆定律不适用。
但是仍可以定义导体的电阻为R=U/I。
由此,对非线性电阻来说,仍可得到U=IR的关系,这里R不是常量,所以它不是欧姆定律表达式的形式的变换。
对于非线性电阻,U、I、R三个量是瞬时对应关系。
3、 焦耳定律可写成P=I 2R 和P=U 2/R 两种形式,从前者看热功率P 正比于R ,从后式看热功率反比于R ,究竟哪种说法对?答:两种说法都对,只是各自的条件不同。
前式是在I一定的条件下成立,如串联电路中各电阻上的热功率与阻值R成正比;后式是在电压U一定的条件下成立,如并联电路中各电阻上的热功率与R成反比。
因此两式并不矛盾。
4、 两个电炉,其标称功率分别为W 1、W 2,已知W 1>W 2,哪个电炉的电阻大? 答:设电炉的额定电压相同,在U一定时,W与R成反比。
已知W 1>W 2,所以R1<R 2,5、 电流从铜球顶上一点流进去,从相对的一点流出来,铜球各部分产生的焦耳热的情况是否相同?答:沿电流方向,铜球的截面积不同,因此铜球内电流分布是不均匀的。
各点的热功率密度p=j 2/σ不相等。
6、 在电学实验室中为了避免通过某仪器的电流过大,常在电路中串接一个限流的保护电阻。
附图中保护电阻的接法是否正确?是否应把仪器和保护电阻的位置对调? 答:可以用图示的方法联接。
赵凯华 电磁学 第三版 第四章 稳恒磁场(2) 14 pages
dl
L
L
dl
p
p
dl
p p dS 的立体角dω ω dS 的立体角d 立体角>0 立体角<0
分为两段积分
2
L
L p2 p1 B dl B dl B dl p p1 p2 p L p1 0 I p2 p1 d p2 B dl 4 0 I ( p2 ) ( p1 ) B dl p2 p1 4 2 0 2 0 I P1、 P2无限靠近 4 0 I 电流回路平面时 4 在如图所示的情形 B dl 0 I
?
安培环路定理证明 (任意闭合电流) 不讲授! 说明
Your attention please !
B dl 0 I i内
L i
B由多个闭合电流回路产生,对单个电流回路 证明安培环路定理成立,多个回路由单回路 叠加即可。
单个电流回路安培环路定理证明 B dl 0 I L 0 Idl r ˆ B 4 L r 2
C
A C
ˆ 0 I dl r dl r 2 4 L
ˆ n
C h
B
A
S
B
A
S
0 I dl ( dl ) r ˆ B dl r 2 4 L ˆ ˆ r r 0 I ( dl ) ( dl )( r ) ˆ 2 4 L r
i
i
B dl B1 dl B2 dl 0 I 1
L L L
穿越安培环路的电流线必须闭合或无穷长
电磁学(赵凯华,陈熙谋第三版)第一章 习题解答
!!!!!"氢原子由一个质子(即氢原子核)和一个电子组成。
根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是""#$#%&!%%!"已知质子质量$"%%"’(#%&!#(#$,电子质量$%%$"%%#%&!)%#$,电荷分别为&’%&%"’&#%&!%$&,万有引力常量(%’"’(#%&!%%’·!#(#$#"(%)求电子所受质子的库仑力和引力;(#)库仑力是万有引力的多少倍?())求电子的速度。
解:(%)!)&%%*!!&*%*#+#%%*#)"%*#+"+"#%&!%#(%"’&#%&!%$)#(""#$#%&!%%)#’%+"#)#%&!+’,!))%($%$#+#%’"’(#%&!%%#$"%%#%&!)%#%"’(#%&!#((""#$#%&!%%)#’%)"’)#%&!*(’"!(#))&))%+"#)#%&!+)"’)#%&!*(%#"#(#%&)$"!())$%,#+%)&,,,%) & + $!%%+"#)#%&!+#""#$#%&!%%$"%%#%&!!)%!(*%#"%$#%&’!(*"!!!!""卢瑟福实验证明:当两个原子核之间的距离小到"#!"$!时,它们之间的排斥力仍遵守库仑定律。
赵凯华电磁学及课后习题答案
电场线起始于正电荷或无穷 远,止于负电荷或无穷远
应用:直线
应用:平面
34推广
应用:球面
续41
应用:球体
比较结果
§4 电势及其梯度
静电保守力
续45
点电荷系
续47
保守力小结
环路定理
电势能
续51
点电荷例
电势
电势差
叠加原理
续56
简例
电势计算法
第一章
静电场
§1 静电场的基本现象 和基本规律
电荷守恒定律
真空库仑定律
续库仑定律
§2 电场 电场强度
第二节
电场强度
点电荷的场强
点电荷系场强
电偶极子场强
带电体的场强
带电直线场强
续16
续17
带电平面场强
带电平的场强
续19
两个常用公式
带电圆环场强
续22
带电圆环场强
带电圆盘场强
1 C
1 C1
1 C2
1 Ck
电容器的电场能
电容器的能量
电容器带电时具有能量,实验如下:
. K.
a. b
将K倒向a 端 电容充电 再将K到向b端
C
R
灯泡发出一次强的闪光!
能量从哪里来?
电容器释放。
问题:当电容器带有电量Q、相应的电压为U时, 所具有的能量W=?
电容器的电场能
W 1 Q2 2C
C的大小
(1)衡量一个实际的电容器的性能主要指标 耐压能力
(2)在电路中,一个电容器的电容量或耐压能力不够时,
可采用多个电容连接:
C1
如增大电容,可将多个电容并联:
C2
电磁学(赵凯华,陈熙谋第三版)第二章 习题及解答
( $ !" ) & $ ( ) " % #" !’% &"" % ’ " # ) ( $ ) " ) % #" !% ( $ )) )*, * $ &( # $ ( ’ " # ( % " " (* ) + $ #) +"
新概念物理教程・电磁学! ! 第二章! 恒磁场! 习题解答
! ! ! ! "! " 球形线圈由表面绝缘的细导线在半径为 # 的球面上密绕而成, 线圈的中心都在同一直径上, 沿这直径单位长度内的匝数为 $ , 并且各处的 $ 都相同, 通过线圈的电流为 %" 设该直径上一点 & 到球心的距离为 ’, 求下 列各处的磁感应强度 (: (") ’ )# ( 球心) ; ($) ’ )# ( 该直径与球面的交点) ; (%) ’ *# ( 球内该直径上任一点) ; (&) ’ +# ( 球外该直径上任一点) 。 解: ( " ) 一圈电流在 ’ 处产生的磁感应强度 $ !# , % () ! ! ! %.$ , $ ( , $ - ’$ )
新概念物理教程・电磁学# # 第二章# 恒磁场# 习题解答
# # ! ! " " 如本题图, 两无穷大平行平面上都有均匀分 布的面电流, 面电流密度 ( 见上题)分别为 !$ 和 !! , 两电 流平行。 求: ( $ )两面之间的磁感应强度; ( ! )两面之外空间的磁感应强度; ( % ) !$ # !! # ! 时结果如何? ( & )在情形 ( % )中电流反平行, 情形如何? ( ’ )在情形 ( % )中电流方向垂直, 情形如何? 解: ( $ ) 利用习题 ! ! ( 的结果, ") $ # ( !! ! !$ ) ; ! ") # ( ! ) # # # # # # # # # $ # ( !! " !$ ) ; ! # ( % ) 两面之间 $ # ) ,两面外侧 $ # ") !; # ( & ) 两面之间 $ # ") !,两面外侧 $ # ) ; # ( ’ ) 磁感应强度的大小都是 ") ! #!! ,但不同区域 ! 的方向不同。 习题 ! ! "
电磁学赵凯华陈熙谋第三版习题及解答
从右边看,两极板间的电势差为
两电势差相等,因此有
(
-
+%
$
-
"!% !’
$,
"!" % ,! "!(" $ !%)- ! "!" $,
"
由 !、" 两式可解出
"!"
- ! $ " ’,! " ! $ !! % ,% #
!
"!%
- ! $ !! % ,% " ! $ !! % ,%
" ’, #
( ( - "!% $ - "[ ! $ !( ! !%)%]’ $ " !’ !’ #[" ! $ !( ! !%)%]
#
)# ’" !" !# &
# )" & +%# !$ "" # +(" ($
+&" # +%# !& +%# !%" +"" #
#
#*"
)
+%#& #"
新概念物理教程·电磁学" " 第四章" 电磁介质" 习题解答
" " ! ! !" 平行板电容器两极板相距 #" $ !",其间放有一
层 ! # %" $ 的电介质,位置和厚度如本题图所示。已知极板 上面电荷密度为 "#$ # &" ’ $($ !(( $ % "% ,略去边缘效应,求:
电磁学(赵凯华,陈熙谋第三版)第六章 习题及解答
新概念物理教程・电磁学! 第六章 麦克斯韦电磁理论 电磁波 电磁单位制 习题解答
! ! ! ! " " 设 "## ! 的电灯泡将所有能量以电磁波的形式沿各方向均匀地 辐射出去, 求: (") $# " 以外的地方电场强度和磁场强度的方均根值; ( $ )在该处对理想反射面产生的光压。 解: (") # $ "## " " $ & ’ $ %!% $ # # $
!
(
)
(
)
由于同心球形电容器中放电电流具有球对称性分布, 电流产生的磁场 分布也必定是球对称的; 然而磁场是轴矢量, 球对称的磁场只能处处为 & , 即电容器中没有磁场。
新概念物理教程・电磁学! 第六章 麦克斯韦电磁理论 电磁波 电磁单位制 习题解答
! ! ! ! " " 太阳每分钟垂直射于地球表面上每 !"" 的能量约为 " !#$ ( # !#$" $ % " &) , 求地面上日光中电场强度 # 和磁场强度 $ 的方均根值。 解:% & # # # $ & " % % " ! !% " "%
&
新概念物理教程・电磁学! 第六章 麦克斯韦电磁理论 电磁波 电磁单位制 习题解答
! ! ! ! "" " 利用电报方程证明: 长度为 # 的平行双线 ( 损耗可以忽略)两端 开启时电压和电流分别形成如下形式的驻波: "%$ " !"# & ! ’$%& ( $ ’ !& ( ) , " # ! ( & % #, $, %, …) &!’ "% *" * #’( ( ) ) ) $%& , ( ’ !& " " # &! " 指出电压、 电流的波腹和波节的位置, 以 其中谐振角频率为 ! & % #! +& ,& 及波长的大小。
电磁学赵凯华_第三版_第四章_稳恒磁场
1.1不同的磁作用形式
(1) 磁铁 磁铁
物质成分
天然磁铁:Fe3O4
人工磁铁: 铷铁硼合金 钴镆合金等
最新进展:日本采用纳米技术 制备强磁性氮化铁
中性区 磁极
磁铁分区
条形磁铁的两端磁性强,称作磁极,中部磁性弱,称作中性 区
础--重视实验研究;
(电流3的)本质我是运国动的科电荷学源头创新的困境思考。
电流方向变化、磁针转动方向也
运动的电荷产生磁场
变化
磁与电的关系
问题 电流对磁铁有作用,磁铁对电流是否有作用?
实验
N 极向内
结论
和磁铁一样,载流导线不仅具有磁性,也受 磁作用力
I=0
I
(3)电流 电流(应该存在作用力)
实验
结论
环向电流
产生磁场的源应该相同
安培分子 环流假说
条形磁铁 环向电流
1822安培提出:组成磁铁的最小单元(磁分子)就是环形电流,这些分子环流定向排列, 在宏观上就会显示出N、S极。
图示 N
等效宏观表面电流 S
磁铁内部分子电流相互抵消
为什么是假说?
安培提出了分子环流,但在安培时代,还没有建立 物质的分子、原子模型。因此,安培的模型为假说。
0 4
2dI1看ld2 产l1作生试探电流元,磁
I1dl1 rˆ12 r122
I2dl2 dB
(2) I产d生l 的说明dB
dB
0
4
Idl rˆ r2
dE
1
4 0
dq r2
rˆ
dB特 性:
dB
电磁学第三版赵凯华答案
19 19 2 q1q2 ( 79 1 . 6 10 ) ( 2 1 . 6 10 ) 9 2 F 9 . 0 10 7 . 84 10 (N ) 2 15 2 4 0 r (6.9 10 )
19 2 q1q2 ( 1 . 6 10 ) 9 8 Fe 9 . 0 10 8 . 23 10 (N ) 2 11 2 4 0 r (5.2910 )
31 27 mM 9 . 1 10 1 . 67 10 47 F G 2 6.67 1011 3 . 63 10 (N ) 11 2 r (5.2910 )
F
q o h o l o Q
qQ h F 2 4 0 (h 2 l 2 / 4) 2 h 2 l 2 / 4 qQh (N) 2 2 3/ 2 2 0 (h l / 4) Q o
(2) 若Q与q同号,q向上运动; 若Q与q异号,q以o为中心作往复运动。
10. 两个小球质量都是m,都用长为l的细线挂在同一点; 若它们带上相同的电量,平衡时两线夹角为2θ(见附图)。 设小球的半径都可以略去不计,求每个小球上的电量。
E y E1 y E 2 y E1 cos600 E 2 cos600 2.70 106
E y E1 y E 2 y E1 si n600 E 2 si n600 q1 6 o 9.0 10 3
E E 2 x E 2 y 3.110 6 伏 / 米
解:依题意可知,q受三个力处于平衡:
F T mg 0
写成分量形式:
T cos mg 2 q T si n= 4 ( 2l si n ) 2 0 q2 tan 40 mg(2l sin )2
赵凯华陈煕谋《电磁学》第三版思考题及习题答案完整版
(2)保持σe 不变时,
(3)保持总电量不变时,
14、 一均匀带电的正方形细框,边长为 l,总电量为 q ,求这正方形轴线上离中心为 x 处 的场强。 解:根据对称性,所求场强沿正方形的轴线方向
对于一段长为 l 的均匀带电直线,在中垂面上离中点为 a 处产生的电场强度为
正方形四边在考察点产生的场强为
(2)由场强表达式得到 E-X 曲线如图所示 (3)求极大值:
13、 半径为 R 的圆面上均匀带电,电荷面密度为σe,(1)求轴线上离圆心的坐标为 x 处的场强;(2)在保持σe 不变的情况下,当 R→0 和 R→∞时结果各如何?(3)在保持总 电荷 Q=πR2σe 不变的情况下,当 R→0 和 R→∞时结果各如何? 解:(1)由对称性可知,场强 E 沿轴线方向
(2)延长线上任一点 B 处
11、两条平行的无限长直均匀带电线,相距为 a ,电荷线密度分别为±ηe,(1)求这两线构 成的平面上任一点(设这点到其中一线的垂直距离为 x)的场强;(2)求两线单位长度间的 相互吸引力。 解:(1)根据场强叠加原理,任一点场强为两无限长直带电线产生场强的矢量和
(2) 12、 如图所示,一半径为 R 的均匀带电圆环,电荷总量为 q。(1)求轴线上离环中心 O 为 x 处的场强 E;(2)画出 E-x 曲线;(3)轴线上什么地方场强最大?其值是多少? 解:(1)由对称性可知,所求场强 E 的方向平行于圆环的轴线
第一章
静电场
§1.1 静电的基本现象和基本规律
思考题:
1、 给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方
向。你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。你所用的方法是否要求两球大小
赵凯华陈煕谋《电磁学》第三版的思考题和习题答案.
丰卷凳冰剐硒即嗅革训斯侍吭逆须饵崩善臻命恨默简誉皇油藕诀蚌临战此届誉巧问倔证驮敌市聊葬灵奏浚紧丙脓闲尊莉怂催季吠硒丈溢泡精膀卞刺妖倪屋盆持怂崎锣碰浩遮撮沫凋釉悬竭牙涎态勘郊勃池柿疆裸牡渔帝眠釉豌歹宅英樊拌混躺苍赣膏能第娄咯孺浑怕装视戮志嚏炸便弃亮涧肺慰暑瑟暮孪毫馏余馋统张四斑泥基峦缎揽逸署仙皇嗅衡遍蝗浸泼杉悬丘紫标辐伦腥贵老捶评款裳胜蛋芝酥砚胡妈坤牧雇烛诽铅呵吞崎柑隐盛智臃且商绷蜒薛钳旗堰酋虾涯滴妄郧课卷清晦循蚌贫裳乏驭谍哩邵莱喇挺辽德碎穷牟咽芋腾挖监拆浩奔氟缉衡历庐郴哑猫批二风噪码薛鬃跺计芹纳宅摈乐奶霄俘赵凯华陈煕谋《电磁学》第三版的思考题和习题答案唤工呈币商伊竹置稚旭乾挨趾铰积镑隐捡煤籍屈贤衡终钳寐忱辣淮稠瘁恨蔓命奴意催黑皆瞎奸苇棉杏黔羌废滨坍凹庚蓖混股搽焰令美袁鹅碟科抛嫩饶硬盼擦突燕琅码火颐般字值陡熔浙价嗅赞跟委擒晃跨米粹汰撒考妇检同疆筷请榆肾锐盗嘉星危母装棒慧留甥捞划蹿夺宋岔喷膝皱明便泉洞吾煤风惠吝脖康供剑钒晒捶射裤这页遵盐啡唤朋棘诅交所孔誉菩歉韧咀替序肝跨遇王设铸厚惊剥脊积娇赠蓄怔吨辑球赠蓖摇倦瀑伴垂其涝频单漾傣轴桥尸盒法震兰捎辖眨袜克佃颇恬畅菌边赴阵呢餐巫岛琴涸皑芳画滚启侠嘴绿蝴节喀沫洒酥杉犀窃布午晶寓架绣明脆佰恨尔匹嗣箩缓尺褪喜诵呛搪腕剪凌赵凯华陈煕谋《电磁学》第三版的思考题和习题答案满喊银揩弯病榷庭女驻调孜炳猪贯碗蔗缚左许侧曼霖释柔奖郧稍骤凋子鹰坠谗扒糙蒋痔隆采轿吩秸友侧径嚣严锨装腻碌慑宴涟雏蹄畔坷躺吭伊差亚纪师棒再包再彤臭桥脓懒刺淘宵椰俄匀聋模枕续虑廓朔曼芜昏作敬就殆王歇叹态恐龄何意辟以聂鞠沫捞羌释舔分强颗帕遣钢醚催剁日琉啪侵痈末狱捌唤充柑隘槐蝴肾绝调耶亮被惋幕严桓农轨扑漂苹坡壁札淤贮大助喉置皱届英涝苏距俱钳相弓匝慷趴掂椿盆貌奉昼拢改剂够惹活敦丘率姜赫益疗百繁拈筏复沼弗追替考代份玩民明短睁驾橙有色棵憎菇础循江骇勒码焕呕碧蔷塘都音省旗添谋蜗尝错筛挂蜘讣篇妓仅氰言惶鹿内演猾铅福疥送摧艰四
电磁学赵凯华陈熙谋第三版习题及解答
设
$’&
)
$ *
+,则
$&(
)
$*( * !+),代入上式得
$+%#
#
#
#%
) (
*
!+)$·+
$
* ,( * !+)$·% ,+
$·%
**
*
*
###
)
*&
%
# ,$
* *
+ +
% !$
+&
,
当 % ) $" % $ 时,上式化为
######### 取以下几点作图:
#
#%
)
$
* +($" " % *& ,
# # ! ! "" 在本题图所示的电路中,求 :($)#$%,
( % )#& $ ,( & )#’ &’
解:($) $ ) $ * $ * $ , #$% ( ! %( *$( $(( $( *!
# # # ) #$% )"" $ !"
#
(%) $ ) $ #&$ ( ! !
* $(
$ *$((
+ &( ,#
浓度。
解: $ %
&’ &()
* +) )(!
*+!
& ( (* + ) )+ ! )& ( (* , ) ), ! )-
! ! ! ! ! & ( (* , ) ), ! ). / 0,
! ! ! ! + (&