高中数学必考知识点总结
高中数学知识点大全总结

高中数学知识点大全总结高中数学是一门重要的学科,它是其他学科的基础,也是培养学生逻辑思维能力和解决问题能力的重要手段。
在高中数学中,有许多重要的知识点需要掌握,下面将对高中数学的重要知识点进行总结。
一、初等数论1. 自然数的性质及其运算法则2. 整数的性质及其运算法则3. 有理数的性质及其运算法则4. 整除与最大公因数5. 求解同余方程6. 等比数列的性质及公式二、代数学1. 多项式的运算与恒等式2. 二次函数与一般二次方程3. 四种基本函数及其性质(线性函数、二次函数、指数函数、对数函数)4. 高次方程的求解方法(韦达定理、有理根定理、根的分布情况)三、平面几何1. 直角三角形和斜角三角函数2. 圆的性质及其相关定理(切线定理、弦定理、正弦定理、余弦定理)3. 三角函数的图像与性质4. 平面向量的定义及其运算法则(向量的模、向量的共线性、向量的夹角、向量的垂直)5. 平面几何的证明方法(巴比内斯定理、相似三角形的证明、正弦定理的证明)四、立体几何1. 三角形与四边形的性质2. 球与球面的性质3. 正多面体的性质4. 空间直线的位置关系5. 空间几何中的立体角6. 空间向量的运用(平面与直线的交线与夹角、平面与平面的夹角)五、数列与数列极限1. 等差数列与等比数列的性质及其求和公式2. 数列的极限概念与性质3. 单调数列与有界数列的性质4. 黎曼和与定积分的关系5. 等差数列与等比数列的极限六、函数与导数1. 基本初等函数的性质与图像2. 极限与连续性3. 函数的求导法则(常用函数的导数、和差积商的求导法则)4. 函数的极值与最值5. 曲线的切线与法线6. 定积分与函数的面积七、微分学应用1. 可导函数的微分近似与应用(导数与函数的近似、函数的单调性、最值问题)2. 积分与定积分的性质及其应用(黎曼和与函数的面积、曲线长度和旋转体体积)3. 微分方程的基本概念及一阶微分方程的解法4. 概率统计与数理统计的基本概念与方法(随机事件、条件概率、正态分布)以上是高中数学的一些重要知识点总结,这些知识点是高中数学学习的基础,也是高考数学考试的重点。
高中数学知识点全总结(7篇)

高中数学知识点全总结(7篇)必背公式篇一1、一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有两个不相等的个实根b2-4ac0抛物线标准方程y2=2pxy2=-2px2=2pyx2=-2py直棱柱侧面积S=cxh斜棱柱侧面积S=c'xh正棱锥侧面积S=1/2cxh'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pixr2圆柱侧面积S=cxh=2pixh圆锥侧面积S=1/2xcxl=pixrxl弧长公式l=axra是圆心角的弧度数r>0扇形面积公式s=1/2xlxr锥体体积公式V=1/3xSxH圆锥体体积公式V=1/3xpixr2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=sxh圆柱体V=pixr2h3、图形周长、面积、体积公式长方形的周长=(长+宽)某2正方形的周长=边长某4长方形的面积=长某宽正方形的面积=边长某边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)和:(a+b+c)x(a+b-c)x1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r常用的三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 高中复习数学方法篇二1.多动脑思考2.强化自己学习训练要是想学好高中数学,必须做的一件事就是做大量的题,数学不一定好,因袭要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。
高中数学重点知识归纳(3篇)

高中数学重点知识归纳(3篇)文章一:一、函数与导数1. 函数的概念:函数是两个集合之间的一种特定关系,具有唯一性、确定性、有序性。
2. 函数的性质:单调性、奇偶性、周期性、对称性。
3. 基本初等函数:常数函数、正比例函数、一次函数、二次函数、指数函数、对数函数、三角函数。
4. 复合函数:复合函数是由两个或两个以上的函数通过自变量和函数值的关系组合而成的函数。
5. 反函数:如果函数f(x)在其定义域内是一一对应的,那么可以通过反解法得到它的反函数f^(1)(x)。
6. 导数的概念:导数表示函数在某一点附近的变化率,是函数的局部线性近似。
7. 导数的运算:四则运算法则、复合函数求导法则、反函数求导法则。
8. 导数的应用:求极值、最值、拐点、单调区间、凹凸性。
二、三角函数与平面向量1. 三角函数的定义:正弦、余弦、正切、余切、正割、余割。
2. 三角函数的图像与性质:周期性、奇偶性、单调性、对称性。
3. 三角恒等变形:和差公式、倍角公式、半角公式、积化和差与和差化积、正弦定理、余弦定理。
4. 平面向量的概念:向量有大小和方向,可以用有向线段表示。
5. 向量的运算:向量加法、向量减法、数乘向量、向量点积、向量叉积。
6. 向量的应用:解三角形、物理运动问题、线性方程组。
文章二:三、数列与极限1. 数列的概念:数列是按照一定规律排列的一列数。
2. 数列的性质:单调性、有界性、收敛性。
3. 常见数列:等差数列、等比数列、斐波那契数列。
4. 数列的极限:数列的极限表示数列无限接近于某个值。
5. 数列的求和:错位相减法、分组求和法、求和公式。
6. 数列的应用:求解级数、判断级数的收敛性、求解函数的极限。
四、解析几何1. 坐标系:直角坐标系、极坐标系。
2. 直线方程:点斜式、斜截式、两点式、截距式。
3. 圆的方程:标准式、一般式。
4. 椭圆的方程:标准式、一般式。
5. 双曲线的方程:标准式、一般式。
6. 抛物线的方程:标准式、一般式。
高中数学必考知识点

章节/主题
必考知识点
集合与函数
1. 集合的表示法(列举法、描述法)2. 集合的运算(交集、并集、补集)3. 函数的概念与表示法4. 函数的单调性、奇偶性5. 幂函数、指数函数、对数函数的性质与图像
数列
1. 数列的定义与表示法2. 等差数列的定义、通项公式、性质及求和3. 等比数列的定义、通项公式、性质及求和4. 数列的极限及其应用
三角函数
1. 三角函数的定义、诱导公式、同角关系式2. 三角函数的性质(周期性、奇偶性、单调性)3. 三角函数的图像与性质4. 三角恒等变换5. 解三角形(正弦定理、余弦定理、面积公式)
平面向量与解析几何
1. 向量的表示法(模长、坐标表示)2. 向量的加法、减法、数乘运算3. 向量的数量积、向量积、混合积4. 直线的方程(点斜式、斜截式、两点式)5. 圆的方程与性质6. 直线与圆的位置关系
导数及其应用
1. 导数的概念与运算2. 导数的几何意义3. 导数的应用(单调性判断、极值与最值问题、曲线的切线问题)4. 定积分的概念与运算5. 定积分的应用(平面图形的面积计算、体积计算)
概率与统计
1. 概率的基本概念(必然事件、不可能事件、随机事件)2. 概率的计算(等可能事件的概率、互斥事件的概率、独立事件的概率)3. 统计的基本概念(总体、个体、样本、样本容量)4. 统计方法(频率分布表、直方图、折线图)5. 概率与统计的应用(抽样调查、回归分析、独立性检验)
立体几何
1. 空间几何体的结构特征(柱体、锥体、球体)2. 空间几何体的表面积和体积3. 空间点、直线、平面的位置关系4. 空间向量的应用5. 三视图(正视图、侧视图、俯视图)
不等式与线性规划
1. 不等式的性质与解法(一元二规划的实际应用
高中数学知识点大全(一)

高中数学知识点大全(一)一、函数与极限1. 函数概念(1)函数的定义:设A、B是非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A。
(2)函数的表示法:解析法、表格法、图象法、分离法。
(3)函数的基本性质:单调性、奇偶性、周期性、对称性。
2. 基本初等函数(1)常数函数:y=c(c为常数)(2)幂函数:y=x^α(α为实数)(3)指数函数:y=a^x(a>0,且a≠1)(4)对数函数:y=log_ax(a>0,且a≠1)(5)三角函数:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数。
(6)反三角函数:反正弦函数、反余弦函数、反正切函数、反余切函数。
3. 函数的极限(1)数列的极限:设{a_n}是一个数列,如果存在实数A,对于任意给定的正数ε(无论多么小),总存在正整数N,使得当n>N时,|a_nA|<ε,那么就称A是数列{a_n}的极限,记作lim(n→∞)a_n=A。
(2)函数的极限:设函数f(x)在点x_0的某一去心邻域内有定义,如果存在实数A,对于任意给定的正数ε(无论多么小),总存在正数δ,使得当0<|xx_0|<δ时,|f(x)A|<ε,那么就称A是函数f(x)当x趋向于x_0时的极限,记作lim(x→x_0)f(x)=A。
(3)无穷小量与无穷大量:无穷小量是指极限为0的量,无穷大量是指极限为无穷的量。
(4)极限的运算法则:四则运算法则、复合函数的极限运算法则。
(5)极限存在的条件:夹逼定理、单调有界定理。
二、导数与微分1. 导数的概念(1)导数的定义:设函数y=f(x)在点x_0的某一邻域内有定义,如果极限lim(Δx→0)[f(x_0+Δx)f(x_0)]/Δx存在,那么就称这个极限为函数y=f(x)在点x_0处的导数,记作f'(x_0)。
高中数学知识点总结全(最新)

高中数学知识点总结全(最新)一、集合与函数概念1. 集合的基本概念集合的定义:集合是确定的、互不相同的对象的全体。
元素与集合的关系:属于(∈)、不属于(∉)。
集合的表示方法:列举法、描述法、图示法。
2. 集合的基本运算并集(∪):由两个集合的所有元素组成的集合。
交集(∩):由两个集合的共同元素组成的集合。
补集(C):全集中不属于某集合的元素组成的集合。
差集():由一个集合中不属于另一个集合的元素组成的集合。
3. 函数的概念函数的定义:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
函数的三要素:定义域、对应关系、值域。
4. 函数的性质单调性:增函数、减函数。
奇偶性:奇函数、偶函数。
周期性:存在一个非零常数T,使得对于定义域内的任意x,都有f(x+T) = f(x)。
最值:最大值、最小值。
二、基本初等函数1. 一次函数定义:形如y = kx + b(k≠0)的函数。
图像:一条直线。
性质:单调性(k>0时增,k<0时减)、截距(b为y 轴截距)。
2. 二次函数定义:形如y = ax² + bx + c(a≠0)的函数。
图像:一条开口向上或向下的抛物线。
性质:顶点(b/2a, c b²/4a)、对称轴(x = b/2a)、单调性、最值。
3. 指数函数定义:形如y = a^x(a>0且a≠1)的函数。
图像:过点(0,1),当a>1时单调递增,当0<a<1时单调递减。
性质:无界性、单调性、特殊点。
4. 对数函数定义:形如y = log_a(x)(a>0且a≠1)的函数。
图像:过点(1,0),当a>1时单调递增,当0<a<1时单调递减。
性质:定义域(x>0)、单调性、特殊点。
5. 三角函数正弦函数:y = sin(x),周期为2π,图像为波形曲线。
最全高中数学知识点总结归纳

最全高中数学知识点总结归纳一、数与代数1.1 数的基本概念自然数、整数、有理数、无理数、实数和复数的定义及其性质。
掌握实数的分类和复数的基本概念。
1.2 代数表达式理解并运用单项式、多项式、分式和根式的运算规则。
包括因式分解、公式法解方程、分式方程的解法等。
1.3 不等式掌握一元一次不等式、一元二次不等式、绝对值不等式及其解集的表示方法。
理解不等式的性质和解不等式的一般步骤。
1.4 函数函数的定义、性质、运算及常见函数(一次函数、二次函数、指数函数、对数函数、三角函数等)的图像和性质。
了解函数的极限和连续性概念。
1.5 序列与数列等差数列、等比数列的定义、通项公式和求和公式。
掌握无穷等比数列的和的计算方法。
1.6 排列组合与概率排列、组合的基本概念和公式。
概率的定义、性质及计算方法。
理解条件概率和独立事件的概念。
二、几何与测量2.1 平面几何点、线、面的基本性质。
掌握直线、圆、椭圆、双曲线、抛物线等基本图形的性质和方程。
2.2 空间几何空间直线和平面的位置关系。
柱面、锥面、旋转体等常见立体图形的性质和计算。
2.3 解析几何坐标系的建立和应用。
通过坐标和方程研究几何图形的性质,包括距离公式、斜率公式、圆的方程等。
2.4 三角学三角比的概念、三角函数的定义和性质。
掌握正弦定理、余弦定理及其在解三角形中的应用。
2.5 向量向量的基本概念、线性运算、数量积和向量积。
理解向量在几何和代数中的应用。
三、统计与概率3.1 统计基本概念数据的收集、整理和描述。
理解平均数、中位数、众数、方差、标准差等统计量的概念和计算方法。
3.2 概率分布离散型随机变量和连续型随机变量的概念。
熟悉二项分布、正态分布、均匀分布等常见概率分布的特点和公式。
3.3 抽样与估计抽样方法、样本容量的确定。
参数估计的基本概念和方法,包括点估计和区间估计。
3.4 假设检验假设检验的基本思想和步骤。
理解显著性水平、第一类错误和第二类错误的概念。
高考必背最完整的高中数学知识点

高考必背最完整的高中数学知识点一、代数1. 一次函数的性质:直线的斜率、截距和方程形式。
2. 二次函数的性质:顶点坐标、对称轴、开口方向和方程形式。
3. 幂函数与指数函数的性质。
4. 对数函数的性质:底数为正数时的定义、性质与常见公式。
5. 三角函数的基本概念:正弦函数、余弦函数和正切函数的周期、定义域、值域和图像。
6. 数列的概念及常见数列的通项公式和求和公式。
二、几何1. 平面几何基本概念:点、直线、平行和垂直关系。
2. 三角形的性质:角的度量、三角形类型和重要定理(如余弦定理和正弦定理)。
3. 圆的性质:圆周角、弧长和面积公式。
4. 球和立体几何的基本概念:体积、表面积和投影等。
三、概率与统计1. 概率的基本概念:事件、样本空间、概率以及概率的性质与计算。
2. 随机变量的概念及其分布函数和密度函数。
3. 统计的基本概念:总体、样本、参数和统计量。
4. 样本调查与统计分析的方法和步骤。
四、解析几何1. 向量的基本概念:向量的表示、向量的运算、向量的模和方向角。
2. 平面的方程:一般式、点法式、两点式和法向量式等。
3. 空间几何基本概念:点、直线、平面的关系与位置。
4. 空间直角坐标系:空间直角坐标系的建立与距离公式。
五、数学思维1. 基本解题方法和思维:分类讨论、递推法、数学归纳法等。
2. 数学证明的基本方法:直接证明、间接证明、反证法等。
3. 数学建模的基本流程和方法。
4. 数学问题的模型转化与解决策略。
以上是高考必背的最完整的高中数学知识点。
希望同学们在备考过程中认真复这些知识,做好各种题型的练,提高自己的数学水平,取得好成绩!加油!。
高中数学知识点总结完整版

高中数学知识点总结完整版一、代数1. 集合与函数- 集合的概念、表示法和运算- 函数的定义、性质和运算- 特殊函数:一次函数、二次函数、指数函数、对数函数、三角函数2. 代数式- 整式与分式- 多项式的性质和定理- 二次根式和完全平方式3. 方程与不等式- 一元一次方程、一元二次方程的解法- 不等式的性质和解集- 绝对值不等式的解法4. 序列与数列- 等差数列和等比数列的通项公式和求和公式- 数列的极限概念5. 函数图像- 函数图像的绘制和变换- 函数的极值和最值问题二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和相关公式2. 空间几何- 空间直线和平面的方程- 空间几何体(棱柱、棱锥、圆柱、圆锥、球)的性质和计算3. 解析几何- 坐标系的建立和应用- 曲线的方程和性质- 圆锥曲线(椭圆、双曲线、抛物线)三、概率与统计1. 概率- 随机事件的概率计算- 条件概率和独立事件- 排列组合的基本原理和公式2. 统计- 数据的收集和整理- 统计量(平均数、中位数、众数、方差、标准差)的计算 - 概率分布和正态分布四、数学思维与方法1. 逻辑推理- 命题逻辑、演绎推理- 归纳推理和类比推理2. 数学证明- 直接证明和间接证明- 反证法和数学归纳法3. 问题解决- 问题建模和数学建模- 问题解决的策略和方法五、微积分初步1. 导数- 导数的定义和几何意义- 常见函数的导数公式- 函数的极值和最值问题2. 微分- 微分的定义和应用- 线性近似和误差估计3. 积分- 不定积分的概念和性质- 定积分的基本概念和计算- 积分在几何和物理中的应用以上总结了高中数学的主要知识点,这些知识点构成了高中数学的基础框架,对于理解和掌握更高级的数学概念至关重要。
在实际学习过程中,学生应该通过大量的练习和思考,深化对这些知识点的理解和应用能力。
高中数学必考知识点大全

高中数学必考知识点大全
一、代数基础
1. 整式与分式
2. 多项式运算
3. 因式分解与公式运用
4. 二次根式与有理化
5. 分式方程与多项式方程
二、函数与方程
1. 一次函数与二次函数
2. 指数函数与对数函数
3. 三角函数及其应用
4. 参数方程与平面向量
5. 不等式与绝对值方程
三、数列与数学归纳法
1. 等差数列与等比数列
2. 通项公式与求和公式
3. 数列的极限与数列的应用
4. 数学归纳法的原理与应用
四、平面几何与立体几何
1. 相交线与平行线
2. 圆的性质与圆周角
3. 三角形的性质与判定
4. 四边形的性质与判定
5. 空间几何体的性质与计算
五、概率与统计
1. 随机事件的概率与计算
2. 排列与组合的计算
3. 概率模型与事件独立性
4. 统计图表与统计量
5. 抽样调查与统计推断
六、导数与微分
1. 函数的极限与连续性
2. 一元函数的导数计算
3. 导数的应用与函数图像
4. 高阶导数与曲线的凹凸性
5. 微分学在实际问题中的应用
七、数学证明与解题方法
1. 数学证明的基本思路
2. 数学归纳法与递推关系
3. 数学问题的建模与解决
4. 数学解题方法与策略
5. 数学解题的技巧与应用
综上所述,以上列举的是高中数学中的必考知识点大全。
熟练掌握这些知识点对于高中数学的学习和考试都具有重要意义。
希望同学们能够认真学习并掌握这些数学知识,为自己的学业打下坚实的基础。
祝愿大家在数学学习中取得优异的成绩!。
高中数学知识点大全(完整版)

高中数学知识点大全(完整版)1. 实数和复数:实数是数轴上的所有数,包括有理数和无理数;复数由实部和虚部组成,可以表示为a+bi的形式,其中a和b 为实数。
2. 幂和根:幂是指数运算,如a的n次幂表示为an;根是幂的逆运算,开x次方根表示为x√a。
3. 代数运算:加法、减法、乘法和除法是代数运算的基本运算,它们遵循相应的运算法则。
4. 贝叶斯定理:条件概率和全概率公式的应用,用于计算事件的概率。
5. 几何:包括平面几何和立体几何,涉及到图形的性质,如平行、垂直、相似、全等等。
6. 向量:具有大小和方向的量,在代数中用坐标表示,可以进行向量的加法、减法和数量乘法等运算。
7. 函数:函数是自变量与因变量之间的依赖关系,常见的函数有线性函数、二次函数、指数函数、对数函数等。
8. 三角函数:包括正弦、余弦、正切、余切等,广泛应用于几何、物理等领域。
9. 极限与连续性:极限是指当自变量趋近于某个特定值时,函数的变化趋势;连续性是指函数在其定义域上无断点。
10. 导数与微分:导数表示函数在某一点处的变化率,微分是导数的几何意义。
11. 积分与不定积分:积分表示函数在一定区间上的面积或曲线长度,不定积分是积分的逆运算。
12. 概率与统计:概率是描述随机事件发生的可能性,统计是收集、整理和分析数据的方法。
13. 矩阵与行列式:矩阵是一个按照一定规则排列的数的矩形阵列,行列式是矩阵的一种特殊表示形式。
14. 数列与数级数:数列是由一个或多个数按一定规律排列而成的序列,数级数是数列的无穷求和。
15. 数论:研究整数性质和整数之间的关系,包括质数、最大公约数、同余等。
16. 解析几何:利用坐标表示几何图形的性质和关系。
17. 空间几何:研究三维空间中图形的性质和关系。
18. 数学证明:用严密的推理和逻辑方法证明数学命题的正确性。
19. 数学建模:将实际问题转化为数学模型,利用数学方法进行求解和分析。
20. 科学计算:利用计算机和数值方法解决数学问题,如差值、插值、数值积分等。
高中数学知识点总结大全

高中数学知识点总结大全一、函数与方程1.函数的定义、性质及基本运算2.一次函数与二次函数的性质、图像和应用3.幂函数、指数函数、对数函数的性质、图像和应用4.三角函数的性质、图像和应用5.复合函数与反函数6.一元二次方程与根的性质7.一元二次不等式与根的性质8.一元二次方程与一元二次不等式的应用9.二元一次方程组与消元法10.二元一次方程组与解法、应用11.不等式方程组与解法、应用12.绝对值方程与绝对值不等式的解法、应用13.分式方程与分式不等式的解法、应用14.二次函数与一元二次方程不等式的关系二、平面几何1.直线及其性质、方程与斜率2.点与直线的位置关系3.线段与角的性质4.三角形内角和定理与外角和定理5.三角形的分类与性质6.相似三角形的性质、判定与应用7.斜率相等的直线8.圆的性质、方程和切线9.圆锥曲线的性质、方程与图像10.向量的概念、性质与基本运算11.向量共线、向量垂直及向量和的性质12.向量与直线的关系、向量的投影与正交投影13.向量的数量积、性质与应用14.向量的叉积、性质与应用三、解析几何1.二次函数的图像与性质2.二次函数与直线的位置关系3.椭圆和双曲线的性质、方程和图像4.平面直角坐标系与极坐标系5.极坐标系中曲线的方程和图像6.参数方程及其应用7.空间中的点、直线和平面的坐标表示8.空间平面与射影几何9.空间曲线的方程、轨迹及其性质10.空间曲面的方程和图像11.空间直线与曲面的位置关系四、概率与统计1.随机事件与样本空间2.概率的性质、计算及应用3.条件概率、独立事件与无关事件4.全概率公式与贝叶斯定理5.随机变量及其分布6.二项分布、泊松分布和正态分布7.统计量及其抽样分布8.抽样分布与区间估计9.假设检验及其应用五、数列与数列极限1.数列的概念与性质2.等差数列的通项公式及其应用3.等比数列的通项公式及其应用4.数列极限的概念、性质及其计算5.数列极限的判定方法6.函数极限与数列极限的关系六、微积分1.导数的概念、定义与计算2.导数的基本性质、应用与几何意义3.反函数与反函数的导数计算4.高阶导数、导数公式与导数计算5.参数方程与极坐标中的导数6.微分与微分近似7.隐函数的导数计算与相关公式8.微分中值定理、泰勒公式及其应用9.函数的极值与最值问题10.函数的单调性与曲线的凹凸性11.不定积分的概念与基本性质12.反常积分与定积分的定义与计算13.定积分的性质及其应用14.微积分的基本公式与积分计算15.微分方程的概念与基本解法16.微积分与几何的应用。
高中数学最常用知识点总结

高中数学最常用知识点总结一、函数1. 函数的定义和性质2. 初等函数和常用函数3. 一次函数4. 二次函数5. 三角函数6. 反比例函数7. 指数函数8. 对数函数9. 幂函数10. 复合函数二、数列与数学归纳法1. 等差数列2. 等比数列3. 通项公式4. 等差数列的性质5. 数学归纳法的运用三、集合1. 集合的概念和表示方法2. 集合的运算3. 集合的性质4. 集合的应用四、数学证明1. 数学证明的基本方法2. 数学证明的常见形式3. 数学证明的逻辑思维五、方程与不等式1. 一元一次方程2. 一元二次方程3. 一元高次方程4. 绝对值方程5. 一元一次不等式6. 一元二次不等式7. 一元高次不等式8. 二元一次方程9. 二元一次不等式10. 二元二次方程11. 二元二次不等式六、平面向量1. 平面向量的概念2. 平面向量的基本运算3. 平面向量的数量积和应用4. 平面向量的向量积和应用七、三角函数1. 三角函数的概念和性质2. 三角函数的基本关系3. 三角函数的图像和性质4. 三角函数的运算5. 三角函数的应用八、几何与解析几何1. 几何图形的基本性质2. 几何图形的相似性3. 几何图形的对称性4. 直线和圆的方程5. 曲线的方程6. 空间几何图形的体积和表面积7. 空间几何图形的位置关系九、数学建模和应用题1. 数学建模的基本方法2. 数学建模的案例分析3. 数学建模的数学工具4. 数学建模的应用领域总结:高中数学最常用的知识点包括函数、数列与数学归纳法、集合、数学证明、方程与不等式、平面向量、三角函数、几何与解析几何、数学建模和应用题等。
熟练掌握这些知识点,对于高中数学的学习和应试考试都有很大帮助。
希望同学们能够认真学习,勤于练习,提高数学能力,取得好成绩。
高中数学知识点全总结

高中数学知识点全总结1. 集合与简易逻辑- 集合的概念:集合是具有某种特定性质的事物的全体,用大写字母表示。
- 集合的表示法:列举法和描述法。
- 集合之间的关系:子集、真子集、相等。
- 集合的运算:并集、交集、差集、补集。
- 简易逻辑:命题、逻辑连接词、真值表、逻辑等价式。
2. 函数- 函数的概念:函数是定义域到值域的映射。
- 函数的表示法:解析式、图象、列表。
- 函数的性质:单调性、奇偶性、周期性。
- 基本初等函数:幂函数、指数函数、对数函数、三角函数。
- 函数的图像变换:平移、伸缩、对称。
3. 数列- 数列的概念:数列是一列按照一定规则排列的数。
- 数列的表示法:通项公式、递推公式。
- 等差数列:通项公式、求和公式。
- 等比数列:通项公式、求和公式。
- 数列的极限:极限的概念、性质、运算法则。
4. 三角函数- 三角函数的概念:正弦、余弦、正切。
- 三角函数的图像:周期性、奇偶性、单调性。
- 三角恒等变换:和差化积、积化和差、倍角公式、半角公式。
- 解三角形:正弦定理、余弦定理、三角形的解法。
5. 向量- 向量的概念:具有大小和方向的量。
- 向量的表示法:坐标表示、单位向量。
- 向量的运算:加法、减法、数乘、点积、叉积。
- 向量的应用:向量在几何中的应用、向量在物理中的应用。
6. 立体几何- 空间几何体:多面体、旋转体。
- 空间直线与平面:位置关系、方程、夹角。
- 空间向量:空间向量的坐标表示、运算。
- 空间几何体的体积:多面体、旋转体的体积计算。
7. 解析几何- 直线:直线的方程、位置关系、交点、平行与垂直。
- 圆:圆的方程、圆与直线的位置关系。
- 圆锥曲线:椭圆、双曲线、抛物线的定义、方程、性质。
- 参数方程与极坐标:参数方程的表示、极坐标的表示、转换。
8. 概率与统计- 随机事件:事件的分类、概率的计算。
- 离散型随机变量:概率分布、期望、方差。
- 连续型随机变量:概率密度函数、期望、方差。
高中数学必备知识点

高中数学必备知识点高中数学是一门重要的学科,对于我们的逻辑思维和解决问题的能力培养有着至关重要的作用。
以下是一些必备的知识点,希望能对同学们的学习有所帮助。
一、函数函数是高中数学的核心概念之一。
函数的定义为:给定一个非空数集 A 和 B,如果按照某个对应法则 f,对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 y 与之对应,那么就把对应关系 f 叫做定义在集合 A 上的函数。
常见的函数类型包括一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数等。
一次函数的表达式为 y = kx + b(k ≠ 0),其图像是一条直线。
二次函数的一般式为 y = ax²+ bx + c(a ≠ 0),它的图像是一条抛物线。
指数函数的表达式为 y = a^x(a > 0 且a ≠ 1),当 a > 1 时,函数单调递增;当 0 < a < 1 时,函数单调递减。
对数函数是指数函数的反函数,表达式为 y =logₐx(a > 0 且a ≠ 1)。
函数的性质包括单调性、奇偶性、周期性等。
研究函数的性质可以帮助我们更好地理解函数的变化规律。
二、三角函数三角函数包括正弦函数、余弦函数、正切函数等。
正弦函数 y = sin x,余弦函数 y = cos x,它们的周期都是2π。
正切函数 y = tan x,其周期为π。
三角函数的诱导公式、和差公式、倍角公式等是解决三角函数问题的重要工具。
在解决三角形相关问题时,正弦定理和余弦定理也经常用到。
正弦定理:a/sin A = b/sin B = c/sin C;余弦定理:a²= b²+ c² 2bc cos A 。
三、数列数列是按照一定顺序排列的一列数。
等差数列的通项公式为 an = a1 +(n 1)d,前 n 项和公式为 Sn =n(a1 + an)/2 。
等比数列的通项公式为 an = a1q^(n 1),前 n 项和公式为 Sn =a1(1 q^n)/(1 q)(q ≠ 1)。
高中数学必考知识点大全

高中数学必考知识点大全高中数学是学习数学的重要阶段,也是考试的重要内容。
掌握高中数学的必考知识点,对于学生能否在考试中取得好成绩至关重要。
下面将为大家详细介绍高中数学的必考知识点,希望对大家的学习有所帮助。
一、函数与方程1. 函数的概念与性质:函数的定义、自变量、函数值、定义域、值域、奇偶性、单调性等。
2. 一次函数与二次函数:一次函数的定义、图像、性质,二次函数的定义、图像、性质、顶点坐标、对称轴等。
3. 幂函数与指数函数:幂函数、指数函数的定义、图像、性质等。
4. 对数函数与指数方程:对数函数的定义、性质、指数方程的解法等。
5. 三角函数与三角方程:正弦函数、余弦函数、正切函数等三角函数的定义、性质,三角方程的解法等。
二、数列与数列求和1. 等差数列与等比数列:等差数列的通项公式、前n项和公式等,等比数列的通项公式、前n项和公式等。
2. 数列的递推公式:递推公式的推导与应用。
3. 数列极限:数列极限的概念、性质,极限存在与计算等。
4. 数列求和:等差数列、等比数列的前n项和公式等。
三、三角函数的应用1. 三角函数的周期性与图像:正弦函数、余弦函数的周期、图像、性质等。
2. 三角函数的和差化积公式:正弦函数、余弦函数的和差化积公式的推导与应用。
3. 三角函数的倍角、半角公式:正弦函数、余弦函数的倍角、半角公式的推导与应用。
4. 三角函数的积化和差公式:正弦函数、余弦函数的积化和差公式的推导与应用。
四、数与式1. 数与式的化简与运算:三角函数的平方、倒数关系等。
2. 分式与分式方程:分式的性质与运算,分式方程的解法等。
3. 指数运算与对数运算:指数运算的性质、指数方程与指数不等式的解法,对数运算的性质、对数方程与对数不等式的解法等。
五、平面几何与空间几何1. 平面几何的基本概念:点、线、面、角的定义、性质等。
2. 平面几何的证明与计算:证明题的基本方法与技巧,计算题的基本公式与应用等。
3. 空间几何的基本概念:立体的表面积与体积的计算公式等。
高考数学知识点总结(最新11篇)

高考数学知识点总结(最新11篇)高考数学知识点总结篇一1.“集合”与“常用逻辑用语”:强调了集合在表述数学问题时的工具性作用,突出了“韦恩图”在表示集合之间的关系和运算中的作用。
需要特别注意能够对含有一个量词的全称命题进行否定。
2.函数:对分段函数提出了明确的要求,要求能够简单应用;反函数问题只涉及指数函数和对数函数;注意函数零点的概念及其应用。
3.立体几何:第一部分强调对各种图形的识别、理解和运用,尤其是新课标高考新增加的三视图一定会重点考查。
第二部分的位置关系侧重于利用空间向量来进行证明和计算。
4.解析几何:初步了解用代数方法处理几何问题的思想,加强对椭圆和抛物线的理解和综合应用,重点掌握椭圆和抛物线与其他知识相结合的解答题。
5.三角函数:本部分的重点是“基本三角函数关系”、“三角函数的图象和性质”和“正、余弦定理的应用”。
6.平面向量:掌握向量的四种运算及其几何意义,理解平面向量数量积的物理意义以及会用向量方法解决某些简单的平面几何问题。
我们应注意平面向量与平面几何、解析几何、三角函数等知识的综合。
7.数列:了解数列是自变量为正整数的一类函数和等差数列与一次函数、等比数列与指数函数的关系。
能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。
8.不等式:要求会解一元二次不等式,用二元一次不等式组表示平面区域,会解决简单的线性规划问题。
会用基本不等式解决简单的最大(小)值问题。
9.导数:理解导数的几何意义,要求关注曲线的切线问题;能利用导数求函数的'单调性、单调区间;函数的极值;闭区间上函数的最大值、最小值。
10.算法:侧重“算法”的三种基本逻辑结构与“程序框图”的复习。
11.计数原理:强调对计数原理的“理解”,避免抽象地讨论计数原理,而且强调计数原理在实际中的应用,尤其是要注意与概率的综合。
要想成功就必须付出汗水。
12.概率与统计:高考对概率与统计的考查越来越趋向综合型、交汇型。
高中数学必修知识点总结

高中数学必修知识点总结一、集合。
1. 集合的概念。
- 集合是由一些确定的、不同的对象所组成的整体。
这些对象称为集合的元素。
例如,全体自然数组成一个集合,记为N={0,1,2,·s}。
- 元素与集合的关系:属于(∈)和不属于(∉)。
如果a是集合A中的元素,就说a∈ A;如果a不是集合A中的元素,就说a∉ A。
2. 集合的表示方法。
- 列举法:把集合中的元素一一列举出来,写在大括号内。
如{1,2,3}。
- 描述法:用确定的条件表示某些对象是否属于这个集合的方法。
一般形式为{xp(x)},其中x是集合中的代表元素,p(x)是元素x所具有的性质。
例如{xx > 0,x∈ R}表示所有大于0的实数组成的集合。
3. 集合间的基本关系。
- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记为A⊆ B(或B⊇ A)。
如果A⊆ B且A≠ B,则A是B的真子集,记为A⊂neqq B。
- 相等:如果A⊆ B且B⊆ A,那么A = B。
- 空集:不含任何元素的集合,记为varnothing。
空集是任何集合的子集,是任何非空集合的真子集。
4. 集合的基本运算。
- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B ={xx∈ A或x∈ B}。
- 补集:设U是全集,A⊆ U,则∁_U A={xx∈ U且x∉ A}。
二、函数。
1. 函数的概念。
- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
其中x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{yy = f(x),x∈ A}叫做函数的值域。
2. 函数的表示法。
- 解析法:就是用数学表达式表示两个变量之间的对应关系,如y = x^2+1。
高中数学知识点大全

高中数学知识点大全一、集合与函数概念1. 集合定义:集合是某些确定的、互不相同的对象的全体。
表示方法:列举法、描述法、图示法。
集合间的关系:子集、真子集、相等。
集合的运算:并集、交集、补集、差集。
常用数集:自然数集(N)、整数集(Z)、有理数集(Q)、实数集(R)。
2. 函数概念定义:函数是两个非空数集之间的映射,使得每一个自变量都有唯一的函数值与之对应。
表示方法:列表法、图象法、解析法。
函数的性质:单调性、奇偶性、周期性、最值。
3. 函数的基本类型一次函数:\( y = ax + b \),图象为直线。
二次函数:\( y = ax^2 + bx + c \),图象为抛物线。
指数函数:\( y = a^x \),\( a > 0 \且 a \neq 1 \)。
对数函数:\( y = \log_a x \),\( a > 0 \且 a \neq 1 \)。
三角函数:正弦函数、余弦函数、正切函数等。
二、立体几何1. 空间几何体多面体:棱柱、棱锥、棱台。
旋转体:圆柱、圆锥、圆台、球。
2. 点、线、面的位置关系点与线:点在直线上、点在直线外。
点与面:点在平面上、点在平面外。
线与线:相交、平行、异面。
线与面:线在面上、线与面相交、线与面平行。
面与面:相交、平行。
3. 空间几何体的表面积与体积棱柱:\( V = Sh \),\( S = 2S_{底} + S_{侧} \)。
棱锥:\( V = \frac{1}{3}Sh \),\( S = S_{底} + S_{侧} \)。
圆柱:\( V = \pi r^2 h \),\( S = 2\pi r(h + r) \)。
圆锥:\( V = \frac{1}{3}\pi r^2 h \),\( S = \pi r(l + r) \),其中 \( l = \sqrt{r^2 + h^2} \)。
三、解析几何1. 坐标系直角坐标系:由两条互相垂直的数轴构成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学必考知识点高中数学重点知识归纳原创肖博讲高中数学最后发布于2019-02-03 23:04:50对于高中生来说高考数学必考知识点有哪些,高中数学重点知识归纳有哪些重要,需要我们掌握?下面肖老师整理了高中数学必考知识点高中数学重点知识归纳。
高中数学重要知识点归纳1.必修课程由5个模块组成:必修1:集合,函数概念与基本初等函数(指数函数,幂函数,对数函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上所有的知识点是所有高中生必须掌握的,而且要懂得运用。
选修课程分为4个系列:系列1:2个模块选修1-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修1-2:统计案例、推理与证明、数系的扩充与复数、框图系列2: 3个模块选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何选修2-2:导数及其应用、推理与证明、数系的扩充与复数选修2-3:计数原理、随机变量及其分布列、统计案例选修4-1:几何证明选讲选修4-4:坐标系与参数方程选修4-5:不等式选讲2.高考数学必考重难点及其考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数,圆锥曲线高考相关考点:集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用数列:数列的有关概念、等差数列、等比数列、数列求通项、求和三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用平面向量:初等运算、坐标运算、数量积及其应用不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量排列、组合和概率:排列、组合应用题、二项式定理及其应用概率与统计:概率、分布列、期望、方差、抽样、正态分布导数:导数的概念、求导、导数的应用复数:复数的概念与运算高中数学易错知识点整理一.集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。
若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?二.不等式18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.三.数列24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。
)28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
四.三角函数29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)33.反正弦、反余弦、反正切函数的取值范围分别是34.你还记得某些特殊角的三角函数值吗?35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?36.函数的图象的平移,方程的平移以及点的平移公式易混:(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即.(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即.(3)点的平移公式:点按向量平移到点,则.37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)38.形如的周期都是,但的周期为。
39.正弦定理时易忘比值还等于2R.五.平面向量40.数0有区别,的模为数0,它不是没有方向,而是方向不定。
可以看成与任意向量平行,但与任意向量都不垂直。
41.数量积与两个实数乘积的区别:在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出.已知实数,且,则a=c,但在向量的数量积中没有.在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量.42.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。
六.解析几何43.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?44.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。
45.直线的倾斜角、到的角、与的夹角的取值范围依次是。
46.定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?47.对不重合的两条直线(建议在解题时,讨论后利用斜率和截距)48.直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。
49.解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达.(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列平行线,找到并求出最优解⑦应用题一定要有答。
)50.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?51.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?52.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?53.通径是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论?)54.在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).55.解析几何问题的求解中,平面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?七.立体几何56.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。
57.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?58.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见59.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大.60.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法.61.异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
62.你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?63.两条异面直线所成的角的范围:0°<α≤90°直线与平面所成的角的范围:0o≤α≤90°二面角的平面角的取值范围:0°≤α≤180°64.你知道异面直线上两点间的距离公式如何运用吗?65.平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。