统计学(本科)教学课件第九章相关分析和回归分析

合集下载

统计学第9章 相关分析和回归分析

统计学第9章 相关分析和回归分析

回归模型的类型
回归模型
一元回归
线性回归
10 - 28
多元回归
线性回归 非线性回归
非线性回归
统计学
STATISTICS (第二版)
一元线性回归模型
10 - 29
统计学
STATISTICS (第二版)
一元线性回归
1. 涉及一个自变量的回归 2. 因变量y与自变量x之间为线性关系


被预测或被解释的变量称为因变量 (dependent variable),用y表示 用来预测或用来解释因变量的一个或多个变 量称为自变量 (independent variable) ,用 x 表示
统计学
STATISTICS (第二版)
3.相关分析主要是描述两个变量之间线性关 系的密切程度;回归分析不仅可以揭示 变量 x 对变量 y 的影响大小,还可以由 回归方程进行预测和控制 4.回归系数与相关系数的符号是一样的,但 是回归系数是有单位的,相关系数是没 有单位的。
10 - 27
统计学
STATISTICS (第二版)
10 - 19
统计学
STATISTICS (第二版)
相关系数的经验解释
1. 2. 3. 4.
|r|0.8时,可视为两个变量之间高度相关 0.5|r|<0.8时,可视为中度相关 0.3|r|<0.5时,视为低度相关 |r|<0.3时,说明两个变量之间的相关程度 极弱,可视为不相关
10 - 20
10 - 6
统计学
STATISTICS (第二版)
函数关系
(几个例子)

某种商品的销售额 y 与销售量 x 之间的关系 可表示为 y = px (p 为单价)

统计学第九章相关与回归分析.ppt

统计学第九章相关与回归分析.ppt

y,并不完全等于

y
,二者之差:

e yy
则有: y a bx e
(把 e 称为残差,与总体误差ε相互对应。)
回归分析的主要任务,就是使样本回归模型尽可能接近于
真实的总体回归模型。
设有两个变量 x 和 y ,变量 y 的取值随变量 x 取 值的变化而变化,我们称 y 为因变量,x 为自变量; 反之亦然。一般来说,对于具有线性相关关系的两 个变量,可以用一条直线方程来表示它们之间的关 系,即:
3、回归分析的类型
回归分析
按回归变量 个数分
按回归形式分ຫໍສະໝຸດ 一元回归多元回归线形回归
非线性回归
把两种分类标志结合起来,有:一元线
性回归模型、一元非线性回归模型、多元线 性回归模型和多元非线性回归模型。其中, 一元线性回归模型是最基本、最简单的一种 回归模型。
二、一元线性回归分析
(一)、一元线性回归模型
(1)r的取值在-1到+1之间。 (2)r=+1,为完全正相关;r=-1为完全负相关。表明 变量之间为完全线性相关,即函数关系。 (3)r=0,表明两变量无线性相关关系。 (4)r>0,表明变量之间为正相关;r<0,表明变量之间 为负相关。
(5)r 的绝对值越接近于 1,表明线性相关关系越密切;r 越接 近于 0,表明线性相关关系越不密切。根据经验可将相关程度分为以 下几种情况:
相关图又称散点图,它是将相关表中的观测值在平 面直角坐标系中用坐标点描绘出来,以表明相关点的分 布状况。
通过相关图,可以大致看出两个变量之间有无相关 关系以及相关的形态、方向和密切程度。
例2:以例1表中资料为例,绘制相关图如下:
180

统计学相关与回归分析法PPT精选文档

统计学相关与回归分析法PPT精选文档
15
第二节 简单线性相关分析
相关关系的测定
是依据研究者的理论知识和实践经 定性分析 验,对客观现象之间是否存在相关
关系,以及何种关系作出判断。
定量分析
在定性分析的基础上,通过编制相 关表、绘制相关图、计算相关系数
等方法,来判断现象之间相关的方 向、形态及密切程度。
16
相关表和相关图
相关表
将现象之间的相互关系,用 表格的形式来反映。
方法上:相关分析通过编制相关表、绘制 相关图、计算相关系数;回归分析通过建立 回归模型。
14
局限性:
无法准确地判断客观现象内在联系的有无,及 确定何种现象为因,何种现象为果。
因此在应用相关和回归分析对客观现象 进行研究时,一定要注意把定性分析和 定量分析结合起来,在定性分析基础上 开展相关和回归的定量分析。
18
分组相关表
20个同类工业企业固定资产原值与平均每昼夜产量
平均每昼
固定资产原值(百万元)
夜产量
(吨)
35~40 40~45 45~50 50~55 55~60 60~65 65~70
fY
600~650
11
550~600
12
3
500~550
21
3
450~500
151
7
400~450
22
4
350~400
10
二、回归与回归分析
回归分析的概念和内容
用合适的数学模型来近似表达具有相 回归分析 关关系的变量间关系的具体形式。
内容:
对具有相关关系的变量,建立一个合适的 数学模型来近似表达变量之间关系的具体形 式。 评价所建立模型对实际现象的拟合程度。
11

统计学第9章 相关与回归分析

统计学第9章 相关与回归分析
系越弱
相关系数
(取值及其意义)
完全负相关
无线性相关
完全正相关
-1.0 -0.5
0
+0.5 +1.0
r
负相关程度增加 正相关程度增加
相关系数的性质
性质2:r具有对称性。即x与y之间的相关系数和y与x之间 的相关系数相等,即rxy= ryx
性质3:r数值大小与x和y原点及尺度无关,即改变x和y的 数据原点及计量尺度,并不改变r数值大小
一个人的收入水平同他受教育程度的关系 收入水平相同的人,他们受教育的程度也不可能不同,而受 教育程度相同的人,他们的收入水平也往往不同。因为收入 水平虽然与受教育程度有关系,但它并不是决定收入的惟一 因素,还有职业、工作年限等诸多因素的影响
农作物的单位面积产量与降雨量之间的关系 在一定条件下,降雨量越多,单位面积产量就越高。但产量 并不是由降雨量一个因素决定的,还有施肥量、温度、管理 水平等其他许多因素的影响
负相关:如商品流转的规模越大,流通费用水 平越低
相关关系的种类(三)
• 按相关的形式可分为
线性相关:当两种相关现象之间的关系大致呈 线性关系时,如人均消费水平与人均收入水平
非线性相关
相关关系的种类(四)
• 按所研究的变量多少可分为
单相关:两个变量的相关 复相关:一个变量对两个或两个以上其他变量,
回归模型的类型
回归模型
一元回归
多元回归
线性回归 非线性回归 线性回归 非线性回归
一元线性回归
1. 涉及一个自变量的回归 2. 因变量y与自变量x之间为线性关系
一个或若干个变量X取一 定值时,与之相对应的另 一个变量Y的值虽然不确 定,但却按某种规律在一 定范围内变化。

相关分析与回归分析 PPT

相关分析与回归分析 PPT
距离相关分析通过计算广义距离 度量样品或变量间得相似程度。
2022/9/20
26
距离相关分析一般不单独使用, 而就是作为聚类分析、因子分析等得 预处理过程。
距离相关分析根据统计量得不同, 分为不相似性测度和相似性测度。对 于不相似性测度,通过计算距离来表 示,距离越大,相似性越弱;对于相似性 测度,通过计算 Pearson 相关系
数据得采集也就是建立回归模型 得重要一环。
大多数建模竞赛题目会提供相关 数据,但这些数据可能包含了一些无 用得信息,个别数据缺失甚至失真。
在建模前,需要对数据进行适当
2022/9/20
45
处理。比如标准化,剔除个别过大或 过小得“野值”,用插值方法补齐空 缺数据等。 (3) 回归模型形式得确定
收集、处理好数据后,首先要确 定适当得数学模型来描述这些变量间 得统计关系。
显然,样品间得相关系数都接近
于1,很难辨别出其相似程度。
2022/9/20
31
例4 5名考官给10名应聘者得面
试分数如下,请问各考官评分得一致
性如何?哪位考官得可信度较小?各
应聘者分数得差异就是否明显?
解 若第1问改为:请问不同考官
对应聘者面试分数得影响就是否显著,
则勉强可用方差分析。因为考官给10
相关分析与回归分析
一、引 言
2022/9/20
2
在很多研究领域中,往往需要研
究事物间得关系。如收入与受教育程
度,子女身高与父母身高,商品销售额
与广告费用支出,农作物产量与施肥
量,上述两者间有关系吗?如果有关
系,又就是怎么样得关系呢?如何来
度量这种关系得强弱?
解决上述问题得统计方法就是相

统计学第九章相关分析

统计学第九章相关分析
复相关
4
第九章 相关分析
三、相关分析的主要内容:
(一) 确定现象之间有无关系,以及相关关系的表现形式 (二) 确定相关关系的密切程度 (三) 选择合适的数学模型 (四) 测量变量估计值的可靠程度 (五) 对计算出的相关系数进行显著检验
5
第九章 相关分析
第二节 相关图表和相关系数
一、相 关 图 表
3、回归分析中对于因果关系不甚明确的两个变量, 可以建立两个回归方程;而相关分析只能计算 出一个相关系数。
4、一种回归方程只能做一种推算,即只能给出自 变量的值来推算因变量的值,不能逆推。
22
第九章 相关分析
第四节 估 计 标 准 误 差
一、估计标准误的涵义:
根据直线回归方程,在知道了自变量的数值情 况下可以推算出因变量的数值,但是,推算出来的 因变量的数值不是精确的值,它与实际值之间有差 异。
n x2 x2 n y2 y2
7
第九章 相关分析
如果定义:
(x x)2 Lxx ( y y)2 Lyy (x x)(y y) Lxy
相关系数可以表示为:
Lxy
Lxx Lyy
8
第九章 相关分析
2、相关系数的性质
(1)相关系数有正负号,分别表示正相关和负 相关。
y2 104214, xy 4544.6
则相关系数为:

n xy x y
n x2 x2 n y2 y2
0.97
说明产量和生产费用之间存在高度正相关。
第九章 相关分析
第三节 回 归 分 析
一、回 归 分 析 的 意 义 回归分析是对具有相关关系的两个或两个以 上变量之间的数量变化的一般关系进行测定,确 立一个相应的数学表达式,以便从一个已知量来 推测另一个未知量,为估算预测提供一个重要的 方法。

第9章 相关分析与一元回归分析

第9章 相关分析与一元回归分析

郑州轻工业学院数学与信息科学系第九章:相关分析与一元回归分析概率统计教研组变量之间的关系可以分为函数关系和相关关系两类,函数关系表示变量间确定的对应关系,而相关关系则是变量间的某种非确定的依赖关系.相关分析主要是研究随机变量间相关关系的形式和程度,在相关关系的讨论中,两个变量的地位是同等的,所使用的测度工具是相关系数,而回归分析则侧重考察变量之间的数量伴随关系,并通过一定的数学表达式将这种数量关系描述出来,用于解决预测和控制等实际问题.本章主要学习相关分析和一元回归分析的有关概念、理论和方法.●【回归名称的来历】―回归”这一词最早出现在1885年,英国生物学家兼统计学家——弗朗西斯⋅高尔顿(Francis Galton )在研究遗传现象时引进了这一名词.他研究分析了孩子和父母身高关系后发现:虽然高个子的父母会有高个子的后代,但后代的增高并不与父母的增高等量.他称这一现象为“向平常高度的回归”.尔后,他的朋友麦尔逊等人搜集了上千个家庭成员的身高数据,分析出儿子的平均身高和父亲的身高x 大致为如下关系:(英寸) 93.33516.0ˆ+=y●【回归名称的来历】这表明:(1)父亲身高增加1英寸,儿子的身高平均增加0.516英寸.(2)高个子父辈有生高个子儿子的趋势,但儿子的平均身高要比于父辈低一些.如x =80,那么低于父辈的平均身高.(3)低个子父辈的儿子们虽为低个子,但其平均身高要比父辈高一些.如x =80,那么高于父辈的平均身高,01.75ˆ=y,01.75ˆ=y●【回归名称的来历】可见儿子的高度趋向于“回归”到平均值而不是更极端,这就是“回归”一词的最初含义.诚然,如今对回归这一概念的理解并不是高尔顿的原意,但这一名词却一直沿用下来,成为数理统计中最常用的概念之一.回归分析的思想早已渗透到数理统计学科的其他分支,随着计算机的发展和各种统计软件的出现,回归分析的应用越来越广泛.主要内容§9.1相关分析§9.2回归分析在大量的实际问题中,随机变量之间虽有某种关系,但这种关系很难找到一种精确的表示方法来描述.例如,人的身高与体重之间有一定的关系,知道一个人的身高可以大致估计出他的体重,但并不能算出体重的精确值.其原因在于人有较大的个体差异,因而身高和体重的关系,是既密切但又不能完全确定的关系.随机变量间类似的这种关系在大自然和社会中屡见不鲜.例如,农作物产量与施肥量的关系,商业活动中销售量与广告投入的关系,人的年龄与血压的关系,每种股票的收益与整个市场收益的关系,家庭收入与支出的关系等等这种大量存在于随机变量间既互相联系,但又不是完全确定的关系,称为相关关系.从数量的角度去研究这种关系,是数理统计的一个任务.这包括通过观察和试验数据去判断随机变量之间有无关系,对其关系大小作出数量上的估计,我们把这种统计分析方法称为相关分析.相关分析通常包括考察随机变量观测数据的散点图、计算样本相关系数以及对总体相关系数的显著性检验等内容.●9.1.1散点图散点图是描述变量之间关系的一种直观方法.我们用坐标的横轴代表自变量X ,纵轴代表因变量Y ,每组观测数据(x i ,y i )在坐标系中用一个点表示,由这些点形成的散点图描述了两个变量之间的大致关系,从中可以直观地看出变量之间的关系形态及关系强度.图9-1 不同形态的散点图(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图从散点图可以看出,变量间相关关系的表现形态大体上可分为线性相关、非线性相关、不相关等几种.就两个变量而言,如果变量之间的关系近似地表现为一条直线,则称为线性相关,如图9-1(a)和(b);(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图如果变量之间的关系近似地表现为一条曲线,则称为非线性相关或曲线相关;如图9-1(c);如果两个变量的观测点很分散,无任何规律,则表示变量之间没有相关关系,如图9-1(d).(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图在线性相关中,若两个变量的变动方向相同,一个变量的数值增加,另一个变量的数值也随之增加,或一个变量的数值减少,另一个变量的数值也随之减少,则称为正相关,如图9-1(a);(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图若两个变量的变动方向相反,一个变量的数值增加,另一个变量的数值随之减少,或一个变量的数值减少,另一个变量的数值随之增加,则称为负相关,如图9-1(b).(a)(b)(c)(d)●9.1.1散点图通过散点图可以判断两个变量之间有无相关关系,并对变量间的关系形态做出大致的描述,但散点图不能准确反映变量之间的关系密切程度.因此,为准确度量两个变量之间的关系密切程度,需要计算相关系数.●9.1.2相关系数相关系数是对两个随机变量之间线性关系密切程度的度量.若相关系数是根据两个变量全部数据计算的,称为总体相关系数.设X ,Y 为两个随机变量,由定义4.5知,当D (X )D (Y )≠0时,总体相关系数的计算公式为:其中Cov (X ,Y )为变量X 和Y 的协方差,D (X )和D (Y )分别为X 和Y 的方差.,),(Cov DY DX Y X XY =ρ●9.1.2相关系数设(x i ,y i ),i =1,2,…,n ,为(X ,Y )的样本,记,11∑==n i i x n x ,11∑==ni i y n y ,)(11122∑=--=n i i x x x n s ∑=--=ni i y y y n s 122)(11●9.1.2相关系数【定义9.1】若s x s y ≠0,称为{x i }和{y i }的相关系数(也可简称为样本相关系数).r xy 常简记为r .r xy 的性质:(1)|r xy |≤1(2)|r xy |=1时,(x i ,y i ),i =1,2,…,n 在一条直线上.∑∑==----==n i i in i i i y x xyxy y y x xy y x x s s s r 1221)()())((●9.1.2相关系数【定义9.2】当r>0时,称{x i}和{y i}正相关,当r xy<0时,xy}和{y i}负相关,当r xy=0时,称{x i}和{y i}不相关称{xi实际应用中,为了说明{x}和{y i}的相关程度,通常将相i关程度分为以下几种情况:当|r|≥0.8时,可视{x i}与{y i}为高度线性相关;xy0.5≤|r|<0.8时,可视{x i}与{y i}为中度线性相关;xy0.3≤|r|<0.5时,视{x i}与{y i}为低度线性相关;xy当|r|<0.3时,说明{x i}与{y i}的线性相关程度极弱.xy●9.1.2相关系数说明:(1)有时个别极端数据可能影响样本相关系数,应用中要多加注意.(2)r xy=0,只能说明{x i}与{y i}之间不存在线性关系,并不能说明{xi}与{y i}之间无其他关系.(3)一般情况下,总体相关系数ρXY是未知的,通常是将样本相关系数rxy 作为ρXY的估计值,于是常用样本相关系数推断两变量间的相关关系.这一点要和相关系数的显著性检验结合起来应用.9.1.2相关系数【例9-1】用来评价商业中心经营好坏的一个综合指标是单位面积的营业额,它是单位时间内(通常为一年)的营业额与经营面积的比值.对单位面积营业额的影响因素的指标有单位小时车流量、日人流量、居民年平均消费额、消费者对商场的环境、设施及商品的丰富程度的满意度评分.这几个指标中车流量和人流量是通过同时对几个商业中心进行实地观测而得到的.而居民年平均消费额、消费者对商场的环境、设施及商品的丰富程度的满意度评分是通过随机采访顾客而得到的平均值数据.9.1.2相关系数【例9-1】某市随机抽取20个商业中心有关数据图9-2 商业中心经营状况指标与数据9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:设各指标(变量)的变量名分别为:单位面积营业额:y,每小时机动车流量:x1,日人流量:x2,居民年消费额:x3,对商场环境的满意度:x4,对商场设施的满意度:x5,为商场商品丰富程度满意度:x6.(1)利用Excel分别作出y与x1,x2,…,x6的散点图.●9.1.2相关系数【例9-1】解:图9-3 y与x1,x2,…,x6的散点图可以看到,各散点图的散点分布和一条直线相比均有一定差别.●9.1.2相关系数【例9-1】解:图9-3 y与x1,x2,…,x6的散点图其中单位面积营业额(y)与日人流量(x2)、居民年消费额(x3)的线性关系相对较明显一些.●9.1.2相关系数【例9-1】解:图9-3 y与x1,x2,…,x6的散点图y与商场商品丰富程度满意度(x6)有一定的线性关系,而y与其余几个变量的线性关系较弱.●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(1)利用Excel分别作出y与x1,x2,…,x6的散点图.实验操作:编号y x1x2x3x4x5x61 2.50.51 3.9 1.947962 3.20.26 4.24 2.867463 2.50.72 4.54 1.618874 3.4 1.23 6.98 1.92610105 1.80.69 4.210.7184760.90.36 2.910.625657 1.70.13 1.43 1.884928 2.60.58 4.14 1.9971069 2.10.81 4.660.9685710 1.90.37 2.15 1.8749311 3.4 1.26 6.47 2.110101012 3.90.12 5.33 3.475671310.23 2.530.5652414 1.70.56 3.780.7774615 2.6 1.04 5.53 1.3107916 2.7 1.18 5.98 1.2887917 1.40.61 1.27 1.4867118 3.2 1.05 5.77 2.1671099.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.,x2,…,x6的相关系数解:(2)利用Excel分别计算y与x1A B C D E F G22y与x1y与x2y与x3y与x4y与x5y与x6230.41270.790480.794330.341240.450200.69749=CORREL($B2:$B21,C2:C21)计算准备9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x,x2,…,x6的相关系数1编号y x1x2x3x4x5x61 2.50.51 3.9 1.947962 3.20.26 4.24 2.867463 2.50.72 4.54 1.618874 3.4 1.23 6.98 1.92610105 1.80.69 4.210.7184760.90.36 2.910.625657 1.70.13 1.43 1.884928 2.60.58 4.14 1.9971069 2.10.81 4.660.9685710 1.90.37 2.15 1.8749311 3.4 1.26 6.47 2.110101012 3.90.12 5.33 3.475671310.23 2.530.5652414 1.70.56 3.780.7774615 2.6 1.04 5.53 1.3107916 2.7 1.18 5.98 1.2887917 1.40.61 1.27 1.4867118 3.2 1.05 5.77 2.16710919 2.9 1.06 5.71 1.7469920 2.50.58 4.11 1.85796y与x1y与x2y与x3y与x4y与x5y与x60.410.790.790.340.450.7计算结果●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x1,x2,…,x6的相关系数从相关系数的取值来看,单位面积营业额(y)与日人流量(x2)、居民年消费额(x3)接近高度相关;A B C D E F G 22y与x1y与x2y与x3y与x4y与x5y与x6 230.41280.79050.79430.34120.45020.69749●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x1,x2,…,x6的相关系数y与商场商品丰富程度满意度(x6)则属于中度相关;A B C D E F G 22y与x1y与x2y与x3y与x4y与x5y与x6 230.41280.79050.79430.34120.45020.69749●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x1,x2,…,x6的相关系数y与每小时机动车流量(x1)、对商场环境的满意度(x4)、对商场设施的满意度(x5)为低度相关;A B C D E F G22y与x1y与x2y与x3y与x4y与x5y与x6 230.41280.79050.79430.34120.45020.69749●9.1.3相关性检验设(xi ,yi),i=1,2,…,n,为(X,Y)的样本,相关性检验也就是检验总体X,Y的相关系数是否为0,通常采用费歇尔(Fisher)提出的t分布检验,该检验可以用于小样本,也可以用于大样本.检验的具体步骤如下:1)提出假设:假设样本是从不相关的两个总体中抽出的,即H0:ρXY= 0,H1:ρXY≠ 0如果否定了H就认为X,Y是相关的.●9.1.3相关性检验2)可以证明,当H 0成立时,统计量 因为H 0立时,|r xy |应该很小,从而T 的观测值应该取值较小,于是,在显著水平α下H 0的拒绝域是若T 的观测值记为t 0,衡量观测结果极端性的P 值:P = P {| T | ≥ | t 0|} = 2P {T ≥ | t 0 |})2(~122---=n t r n r T xyxy212xyxyr n r t --=)},2(|{|2/-≥n t t α●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性.解:在例9.1的Excel工作表中继续如下操作:A B C D E F G22y与x1y与x2y与x3y与x4y与x5y与x623r=0.41270.790480.794330.341240.450200.69749 =B23*SQRT(20-2)/SQRT(1-B23^2)24t= 1.9224 5.4756 5.5519 1.5402 2.1391 4.129625P=0.0705 3.36E-05 2.86E-050.14090.46390.0006 =TDIST(B24,20-2,2)计算准备●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性.解:在例9.1的Excel工作表中继续如下操作:编号y与x1x1x2x3x4x5x61 2.50.51 3.9 1.947962 3.20.26 4.24 2.867463 2.50.72 4.54 1.618874 3.4 1.23 6.98 1.92610105 1.80.69 4.210.7184760.90.36 2.910.625657 1.70.13 1.43 1.884928 2.60.58 4.14 1.9971069 2.10.81 4.660.9685710 1.90.37 2.15 1.8749311 3.4 1.26 6.47 2.110101012 3.90.12 5.33 3.475671310.23 2.530.5652414 1.70.56 3.780.7774615 2.6 1.04 5.53 1.3107916 2.7 1.18 5.98 1.2887917 1.40.61 1.27 1.4867118 3.2 1.05 5.77 2.16710919 2.9 1.06 5.71 1.7469920 2.50.58 4.11 1.85796y与x1y与x2y与x3y与x4y与x5y与x6r=0.412710.790480.794330.341240.45020.69749t= 1.92235 5.47556 5.54751 1.54023 2.13905 4.12956P=0.07053 3.4E-05 2.9E-050.14090.046390.00063计算结果●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性.解:在例9.1的Excel工作表中继续如下操作:检验结果来看,单位面积营业额(y)与日人流量(x2)、居民年消费额(x3)、商场商品的丰富程度满意度(x6)、A B C D E F G 22y与x1y与x2y与x3y与x4y与x5y与x6 23r=0.41270.790480.794330.341240.450200.69749 24t= 1.9224 5.4756 5.5519 1.5402 2.1391 4.1296 25P=0.0705 3.36E-05 2.86E-050.14090.46390.0006●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平α=0.05下,检验单位面积营业额与各变量之间的相关性. 解:在例9.1的Excel 工作表中继续如下操作:对商场设施的满意度(x 5)的相关系数显著不为0(P <α=0.05),即其相关性显著;A B C D E F G 22y 与x1y 与x2y 与x3y 与x4y 与x5y 与x623r =0.41270.790480.794330.341240.450200.6974924t = 1.9224 5.4756 5.5519 1.5402 2.1391 4.129625P =0.07053.36E-052.86E-050.14090.46390.0006●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性. 解:在例9.1的Excel 工作表中继续如下操作:而不能拒绝y 与每小时机动车流量(x 1)、对商场环境的满意度(x 4)相关系数为0的假设(P >0.05),即其相关性不显著.A B C D E F G 22y 与x1y 与x2y 与x3y 与x4y 与x5y 与x623r =0.41270.790480.794330.341240.450200.6974924t = 1.9224 5.4756 5.5519 1.5402 2.1391 4.129625P =0.07053.36E-052.86E-050.14090.46390.0006回归分析是针对两个或两个以上具有相关关系的变量,研究它们的数量伴随关系,并通过一定的数学表达式将这种关系描述出来,建立回归模型.回归分析中总假设因变量是随机变量,自变量可以是随机变量也可以是一般变量(可以控制或精确测量的变量),我们只讨论自变量为一般变量的情况.为简单起见,以后的所有随机变量及其观测值均用小写字母表示.如果设随机变量y是因变量,x1,x2,…,xn是影响y的自变量,回归模型的一般形式为:y= f (x1,x2,…,x n) + ε其中ε为均值为0的正态随机变量,它表示除x1,x2,…,x n之外的随机因素对y的影响.在回归分析中,当只有一个自变量时,称为一元回归分析;当自变量有两个或两个以上时,称为多元回归分析;f是线性函数时,称线性回归分析,所建回归模型称为线性回归模型;f是非线性函数时,称非线性回归分析,所建回归模型称为非线性回归模型.线性回归模型的一般形式为:其中,β0和βi (i =1,2,…,k )是未知常数,称为回归系数,实际中常假定ε~N (0,σ2).一元线性回归模型的一般形式为:由ε~N (0,σ2)的假定,容易推出y ~N (β0+β1x ,σ2). 本章主要讨论一元线性回归分析和可化为线性回归的一元非线性回归分析.它们是反映两个变量之间关系的简单模型,但从中可了解到回归分析的基本思想、方法和应用,22110εββββ+++++=k k x x x y ,110εββ++=x y ),0(~2σεN●9.2.1一元线性回归分析让我们用一个例子来说明如何进行一元线性回归分析. 为了研究合金钢的强度和合金中含碳量的关系,专业人员收集了12组数据如表9-1所示.表9-1 合金钢的强度与合金中含碳量的关系序号123456789101112含碳量x(%)0.100.110.120.130.140.150.160.170.180.200.210.23合金钢的强度y(107Pa)42.043.045.045.045.047.549.053.050.055.055.060.0 试根据这些数据进行合金钢的强度y(单位:107Pa)与合金中含碳量x(%)之间的回归分析.●9.2.1一元线性回归分析为了研究这些数据中所蕴含的规律性,首先在Excel中由12对数据作出散点图,如图9-7所示.图9-7 画散点图从图看到,数据点大致落在一条直线附近,这告诉我们变量x和y之间大致可看作线性关系.●9.2.1一元线性回归分析为了研究这些数据中所蕴含的规律性,首先在Excel中由12对数据作出散点图,如图9-7所示.图9-7 画散点图从图中还看到,这些点又不完全在一条直线上,这表明x和y的关系并没有确切到给定x就可以唯一确定y的程度.●9.2.1一元线性回归分析为了研究这些数据中所蕴含的规律性,首先在Excel中由12对数据作出散点图,如图9-7所示.图9-7 画散点图事实上,还有许多其它随机因素对y产生影响.●9.2.1一元线性回归分析如果只研究x 和y 的关系,可考虑建立一元线性回归模型:(9.1)其中ε是除含碳量x 外其它诸多随机因素对合金钢强度y 的综合影响,假定它是零均值的正态随机变量. 由(9.1)式,不难算得y 的数学期望:(9.2)该式表示当x 已知时,可以精确地算出E (y ).称方程(9.2)为y 关于x 的回归方程.,110εββ++=x y ),0(~2σεN x y E 10)(ββ+=●9.2.1一元线性回归分析现对变量x ,y 进行了n 次独立观察,得样本(x i ,y i )(i =1,2,…,n ).据(9.1)式,此样本可由方程(9.3)来描述.这里εi 是第i 次观测时ε的值,是不能观测到的 由于各次观测独立,εi 看作是相互独立与ε同分布的随机变量.即有y i = β0+ β1x i + εi , (9.4)εi 相互独立,且εi ~N (0,σ2),i =1,2,…,ni i i x y εββ++=10●9.2.1一元线性回归分析y i = β0+ β1x i + εi , (9.4)εi 相互独立,且εi ~N (0,σ2),i =1,2,…,n(9.4)给出了样本(x 1,y 1),(x 2,y 2),…,(x n ,y n )的概率性质.它是对理论模型进行统计推断的依据,也常称(9.4)式为一元线性回归模型.要建立一元线性回归模型,首先利用n 组独立观测数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )来估计β0和β1,以估计值和分别代替(9.2)式中的β0和β1,得到(9.5)x y 10ˆˆˆββ+=●9.2.1一元线性回归分析(9.5) 由于此方程的建立有赖于通过观察或试验积累的数据,所以称其为经验回归方程(或经验公式),经验回归方程也简称为回归方程,其图形称为回归直线.当给定x= x0时,称为拟合值(预测值或回归值).那么,如何利用n组独立观察数据来估计β0和β1呢?一般常用最小二乘估计法和最大似然估计法,下面只介绍β和β1的最小二乘估计法.xy1ˆˆˆββ+=●9.2.1一元线性回归分析1.参数β0和β1的最小二乘估计设对模型(9.1)中的变量x ,y 进行了n 次独立观察,得样本(x i ,y i )(i =1,2,…,n ).由(9.3)式知随机误差εi =y i –(β0+β1x i ).最小二乘法的思想是:由x i ,y i 估计β0,β1时,使误差平方和达到最小的,分别作为β0,β1的估计,并称和为β0和β1的最小二乘估计.∑=+-=n i i i x y Q 121010)]([),(ββββ。

统计学第九章 相关与回归分析

统计学第九章  相关与回归分析

第九章相关与回归分析Ⅰ. 学习目的和要求本章所要学习的相关与回归分析是经济统计分析中最常重要的统计方法之一。

具体要求:1.掌握有关相关与回归分析的基本概念;2.掌握单相关系数的计算与检验的方法,理解标准的一元线性回归模型,能够对模型进行估计和检验并利用模型进行预测;3.理解标准的多元线性回归模型,掌握估计、检验的基本方法和预测的基本公式,理解复相关系数和偏相关系数及其与单相关系数的区别;4.了解常用的非线性函数的特点,掌握常用的非线性函数线性变换与估计方法,理解相关指数的意义;5.能够应用Excel软件进行相关与回归分析。

Ⅱ. 课程内容要点第一节相关与回归分析的基本概念一、函数关系与相关关系当一个或几个变量取一定的值时,另一个变量有确定值与之相对应,这种关系称为确定性的函数关系。

当一个或几个相互联系的变量取一定数值时,与之相对应的另一变量的值虽然不确定,但仍按某种规律在一定的范围内变化。

这种关系,称为具有不确定性的相关关系。

变量之间的函数关系和相关关系,在一定条件下是可以互相转化的。

116117二、相关关系的种类按相关的程度可分为完全相关、不完全相关和不相关。

按相关的方向可分为正相关和负相关。

按相关的形式可分为线性相关和非线性相关。

按所研究的变量多少可分为单相关、复相关和偏相关。

三、相关分析与回归分析相关分析是用一个指标来表明现象间相互依存关系的密切程度。

回归分析是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。

通过相关与回归分析虽然可以从数量上反映现象之间的联系形式及其密切程度,但是无法准确地判断现象内在联系的有无,也无法单独以此来确定何种现象为因,何种现象为果。

只有以实质性科学理论为指导,并结合实际经验进行分析研究,才能正确判断事物的内在联系和因果关系。

四、相关图相关图又称散点图。

它是以直角坐标系的横轴代表变量X ,纵轴代表变量Y,将两个变量间相对应的变量值用坐标点的形式描绘出来,用来反映两变量之间相关关系的图形。

[课件]统计学 相关与回归分析PPT

[课件]统计学  相关与回归分析PPT
/上午11时26分
《统计学教程》
第9章 相关与回归分析
9.1 相关关系
《统计学教程》
第9章 相关与回归分析 9.1.1 相关关系的概念
9.1 相关关系
1. 变量的函数关系和相关关系 变量之间的数量关系可区分为确定性与不确定性两类。 数值型数据的确定性数量关系称为函数关系。函数关系遵循严格的因 果律。 如在国民经济核算中“国内生产总值= 消费+积累+ 进出口净额”,或 者“国内生产总值=固定资产折旧+劳动者报酬+企业盈利+生产税净额”, 反映的是国民经济核算中的数量衡等关系,这些都是变量之间确定性的 数量关系,即函数关系。 数值型数据的不确定性的数量关系称为统计关系,即相关关系。相关 关系也是一种客观存在的变量之间的数量关系,反映了变量之间的一种 不严格的数量依存关系。一般来说,相关关系遵循广义的因果律。 相关关系( Correlation)是指变量之间客观存在的不确定的数量关 系。
/上午11时26分
《统计学教程》
第9章 相关与回归分析
9.1 相关关系
2.相关分析与回归分析 相关关系是统计学研究的主要对象之一。在现代统计学中围绕相关关 系已经形成了两个重要的统计方法——相关分析和回归分析。 虽然,相关分析和回归分析都是以相关关系为研究对象,由于其研究 相关关系内容的侧重,和所反映相关关系特征的角度不同,两者存在以 下区别。 (1)描述的方式不同 相关分析主要采用相关系数来度量变量之间的相关关系。通过相关系 数数值的大小来度量相关关系的强弱。 回归分析要采用通过拟合回归模型来度量变量之间的相关关系。通过 回归模型来反映相关关系的具体形式。有回归模型的一般形式为
统计学 相关 与回归分析
《统计学教程》第9章 相关与回归分析

第九章 相关与回归分析 《统计学原理》PPT课件

第九章  相关与回归分析  《统计学原理》PPT课件

[公式9—4]
r xy n • xy
x y
[公式9—5]
返回到内容提要
第三节 回归分析的一般问题
一、回归分析的概念与特点
(一)回归分析的概念
现象之间的相关关系,虽然不是严格 的函数关系,但现象之间的一般关系值, 可以通过函数关系的近似表达式来反映, 这种表达式根据相关现象的实际对应资料, 运用数学的方法来建立,这类数学方法称 回归分析。
单相关是指两个变量间的相关关系,如 自变量x和因变量y的关系。
复相关是指多个自变量与因变量间的相关 关系。
(二)相关关系从表现形态上划分,可分为 直线相关和曲线相关
直线相关是指两个变量的对应取值在坐标 图中大致呈一条直线。
曲线相关是指两个变量的对应取值在坐 标图中大致呈一条曲线,如抛物线、指数曲线、 双曲线等。
0.578
a y b x 80 0.578 185 3.844
n
n7
7
yˆ 3.844 0.578x
二、估计标准误差 (一)估计标准误差的概念与计算 估计标准误差是用来说明回归直线方程 代表性大小的统计分析指标。其计算公式为:
Syx
y yˆ 2
n
[公式9—8]
实践中,在已知直线回归方程的情况下, 通常用下面的简便公式计算估计标准误差:
[例9—2] 根据相关系数的简捷公式计算有:
r
n xy x y
n x2 x2 n y2 y2
7 218018580
0.978
7 5003 1852 7 954 802
再求回归直线方程:
yˆ a bx
b
n xy x y
n x2 x2
7 2180 18580 7 50031852

回归及相关分析PPT课件

回归及相关分析PPT课件
或实际场景中。
05
相关分析
相关系数的计算
计算公式
相关系数r是通过两个变量之间的样本数据计算得出的,公式为r = (n Σxy - ΣxΣy) / (√(n Σx² - (Σx)²) * √(n Σy² - (Σy)²)),其中n是样本数量,Σx和Σy分别是x和y的样本总和,Σxy是x和y的样本乘积总和。
模型的评估与检验
模型的评估指标
模型的评估指标包括均方误差 (MSE)、均方根误差
(RMSE)、决定系数(R^2) 等,用于衡量模型的预测精度。
模型的检验方法
模型的检验方法包括残差分析、 正态性检验、异方差性检验等, 用于检查模型的假设是否成立。
模型的应用与推广
通过评估和检验模型,可以确定 模型在样本数据上的表现,并进 一步将其应用到更大范围的数据
回归及相关分析ppt课件
目 录
• 回归分析概述 • 一元线性回归分析 • 多元线性回归分析 • 非线性回归分析 • 相关分析
01
回归分析概述
回归分析的定义
01
回归分析是一种统计学方法,用 于研究自变量和因变量之间的相 关关系,并建立数学模型来预测 因变量的值。
02
它通过分析数据中的变量之间的 关系,找出影响因变量的重要因 素,并确定它们之间的数量关系 。
值。
模型的评估与检验
在估计多元线性回归模型的参 数后,需要对模型进行评估和 检验,以确保模型的有效性和 可靠性。
评估模型的方法包括计算模型 的拟合优度、比较模型的预测 值与实际值等。
检验模型的方法包括检验模型 的假设是否成立、检验模型的 残差是否符合正态分布等。
04
非线性回归分析
非线性回归模型
详细描述

统计学课件 第九章 相关分析与回归分析

统计学课件  第九章    相关分析与回归分析

变量间的关系
(函数关系)
函数关系的例子
某种商品的销售额(y)与销售量(x)之间的关 系可表示为 y = p x (p 为单价) 圆的面积(S)与半径之间的关系可表示为S = R2
企业的原材料消耗额(y)与产量(x1) 、单位产 量消耗(x2) 、原材料价格(x3)之间的关系可 表示为y = x1 x2 x3
4.52 -2.06
7
8 9 10 ∑
103
98 80 97 1107
3.0
2.9 2.7 3.2 44.0
59.29
161.29 942.49 187.69 2278.1
1.96
2.25 2.89 1.44 17.24
10.78
19.05 52.19 16.44 171.80
1107 110.7 N 10 ( X X ) 2 2278 1 . X2 227.81 N 10 Y 44 4.4 Y N 10 (Y Y ) 2 17.24 Y 2 1.724 N 10 ( X X )(Y Y ) 171.80 17.18 XY 2 N 10
(二)、相关表
• • • • • • • • 1、相关表的含义 相关表是指表明现象之间相关关系的表格。 2、相关表的种类 (1)、简单相关表(表10-1)。 (2)、单变量分组相关表(表10-2)。 (3)、双变量分组相关表(表10-3)。 3、相关表的作用 ——表明想象之间相关关系的方向。
• 例10-1
商品销售额(y)与广告费支出(x)之间的关系
粮食亩产量(y)与施肥量(x1) 、降雨量(x2) 、 温度(x3)之间的关系 收入水平(y)与受教育程度(x)之间的关系 父亲身高(y)与子女身高(x)之间的关系

统计学(本科)教学课件第九章相关分析和回归分析

统计学(本科)教学课件第九章相关分析和回归分析

二、回归分析与相关分析的关系
1.两者的区别 (1)相关分析的两个变量的地位对等,不做因果变
量区分。而回归分析则必须要确定自变量和因变 量。
(2)相关分析对两个变量x与y只能计算一个相关系 数。而回归分析以x为自变量,y为因变量, 可以建 立两个不同的回归方程。
(3)相关分析涉及的两个变量都是随机变量。而在 回归分析的两个变量中,自变量是给定的,因变 量则是随机的。
2.两者的联系
(1)相关分析是回归分析的基础。只有通过 相关分析,在确认两变量之间有较高的相 关程度之后,才可以进行回归分析。
(2)回归分析是相关分析的延续。相关分析 仅仅帮助我们认识了两变量之间的相关方 向和程度。而回归分析则是在此基础上将 两变量相关关系的方向和形态,以近似的 数学模型描绘出来,然后用此模型指导我 们进行回归预测。
(1)分析现象之间是否存在相关关系 并确定其相关形式;
(2)研究现象间相关关系的密切程度; (3)建立回归模型; (4)分析因变量估计值误差的程度;
第二节 回归分析
一、回归分析的概念
回归分析是指对具有相关关系的现象, 根据其相关形态,选择一个合适的数 学模型(回归方程),用来近似地表示 两个变量之间平均变化关系,并利用 这种关系进行推算和预测的一种统计 分析方法。
三、一元线性回归分析
一元线性回归模型是根据两变量的相关 方向和线性形态拟合地反映两个变量之 间平均变化关系的标准直线。当两变量 之间为单向因果关系时,线性回归模型 为=a+bx;当两变量之间互为因果关系 时,线性回归模型有两个:一是yx型, 即=a+bx;另一是xy型,即=c+dy。
步骤
(一)建立回归方程; (二)利用回归方程进行预测; (三)估计标准误差;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物与其他事物之间有没有联系,以及存在何种类型的联系。
(二)相关表 将相关变量的观察值依次对应排列而形成的统计表
称为相关表。 1.简单相关表 2.分组相关表 (三)相关图 (四)相关系数
四、相关分析的主要内容
(1)分析现象之间是否存在相关关系 并确定其相关形式;
(2)研究现象间相关关系的密切程度; (3)建立回归模型; (4)分析因变量估计值误差的程度;
第九章 相关分析和回归分析
第一节 相关分析 第二节 回归分析
第一节 相关分析
一、相关关系的含义 客观世界中,任何事物或现象都不是孤立存
在的,它总是和其他事物或现象相互联系、 相互制约的,事物之间的依存关系,根据其 相互依存和制约的程度不同可以概括为以下 两种:确定性的数量关系(函数关系)和随 机性的数量关系(相关关系):
对现象间存在的相关关系可从不同角度进行 分类:
1.按相关因素多少分为单相关和复相关; 2.按相关的表现形式分为线性相关和非线性
相关; 3.按相关的方向分为正相关和负相关; 4.按相关的程度分为完全相关、不相关和不
完全相关;
三、相关关系的判断
(一)定性判断 通过对这种质的规定性的认识,即定性认识,来判断一个事
步骤
(一)建立回归方程; (二)利用回归方程进行预测; (三)估计标准误差;
第二节 回归分析
一、回归分析的概念
回归分析是指对具有相关关系的现象, 根据其相关形态,选择一个合适的数 学模型(回归方程),用来近似地表示 两个变量之间平均变化关系,并利用 这种关系进行推算和预测的一种统计 分析方法。
二、回归分析与相关分析的关系
1.两者的区别 (1)相关分析的两个变量的地位对等,不做因果变
(2)回归分析是相关分析的延续。相关分析 仅仅帮助我们认识了两变量之间的相关方 向和程度。而回归分析则是在此基础上将 两变量相关关系的方向和形态,以近似的 数学模型描绘出来,然后用此模型指导我 们进行线性回归模型是根据两变量的相关 方向和线性形态拟合地反映两个变量之 间平均变化关系的标准直线。当两变量 之间为单向因果关系时,线性回归模型 为=a+bx;当两变量之间互为因果关系 时,线性回归模型有两个:一是yx型, 即=a+bx;另一是xy型,即=c+dy。
1.确定性的数量关系
确定性的数量关系又叫函数关系,它反映 了事物之间存在着严格的一一对应的数量 依存和制约关系。在这种关系体中,对于 某一事物变量(自变量)的每一个变动值, 都有另一事物变量(因变量)的确定的变动 值与之相对应。并且这种对应关系可以用 严密的数学表达式加以描述。
二、相关关系的类型
量区分。而回归分析则必须要确定自变量和因变 量。
(2)相关分析对两个变量x与y只能计算一个相关系 数。而回归分析以x为自变量,y为因变量, 可以建 立两个不同的回归方程。
(3)相关分析涉及的两个变量都是随机变量。而在 回归分析的两个变量中,自变量是给定的,因变 量则是随机的。
2.两者的联系
(1)相关分析是回归分析的基础。只有通过 相关分析,在确认两变量之间有较高的相 关程度之后,才可以进行回归分析。
相关文档
最新文档