第五章 连锁遗传和性连锁《遗传学》
连锁遗传和性连锁培训讲义

连锁遗传和性连锁培训讲义连锁遗传和性连锁遗传是遗传学中的两个重要概念,对于理解遗传现象和进行遗传研究非常关键。
本文将以连锁遗传和性连锁遗传为主题,给你们讲解这两个概念的基本原理和实验方法。
一、连锁遗传连锁遗传是指基因在染色体上的相对位置较靠近,因此往往以相同的方式继承给子代。
这种情况下,这些基因很有可能同时或几乎同时被传递给后代,而不会发生重组。
连锁遗传的现象主要体现在同一条染色体上的基因。
连锁遗传现象的发现主要源于第一位将此现象描述清楚的科学家摩尔根。
摩尔根通过对果蝇的遗传分析发现,有些基因表现出无法纷合的特点,而是以固定的方式遗传给后代。
这些基因被称为连锁基因。
连锁基因一般存在于同一条染色体上的不同位点,由于它们的位置紧密相连,所以会一起被遗传。
如何确定基因是否连锁?科学家们通过实验进行了一系列的研究,总结出了一些判断规则。
首先,科学家会选择有明显特征突变的果蝇进行实验,比如有不同翅膀颜色等特征,然后进行交配。
如果交配后的后代都表现出相同的突变特征,那么可以初步认定这些基因连锁。
接下来,科学家还可以通过对大量后代进行进一步观察和实验,确认基因是否真正连锁。
根据连锁遗传的原理,科学家可以通过研究连锁基因,确定基因在染色体上的相对位置,进一步揭示遗传规律。
二、性连锁遗传性连锁遗传是指某些基因只存在于性染色体上,而不在常染色体上。
这意味着这些基因表现出与性别相关的遗传模式,仅仅由父(母)亲传给子代。
性连锁遗传的发现也得益于果蝇的研究。
早期的实验发现,果蝇的性别是由染色体决定的,雄果蝇具有XY染色体,而雌果蝇具有XX染色体。
由于染色体有性别差异,并且染色体上的基因也存在性别差异,因此某些基因只存在于性染色体上,只能由父(母)亲传给子代。
性连锁遗传可以通过观察后代的性别来确定基因的遗传方式。
如果某个基因属于性连锁遗传,我们可以观察到这个基因只出现在某一性别的个体中。
比如,对于雄性连锁遗传的基因,只有雄性个体表现出突变特征,而雌性个体则没有。
连锁遗传和性连锁

连锁遗传和性连锁连锁遗传和性连锁是进化中的重要概念之一,它们描述了基因在染色体上的分布和遗传方式。
本文将详细讨论这两个概念及其相关性,以及它们在遗传研究中的重要性。
首先,我们来了解连锁遗传。
连锁遗传是指基因位于同一染色体上的现象,这些基因在遗传过程中往往以固定的方式一起传递给后代,因为它们很少会发生重组。
当两个基因在同一染色体上时,它们通常一起随着染色体的移动而传递给后代。
因此,这两个基因的连锁度很高。
连锁遗传在基因图谱绘制和基因定位上起着重要的作用。
通过观察某个物种或家族的连锁关系,我们可以确定某些基因之间的相对位置,并进一步理解它们如何在遗传过程中相互作用。
这有助于研究人们对某些特定属性的遗传方式。
例如,在果蝇中,人们发现单倍型连锁遗传与眼色的相关性,这对于进一步研究进化和表型相关性非常重要。
然而,连锁遗传并不是永久的。
当发生基因重组时,位于同一染色体上的基因可以通过交叉互换的方式发生重新组合。
这就是我们接下来要讨论的性连锁。
性连锁是指基因位于性染色体上的现象。
在人类中,性连锁通常指的是X染色体和Y染色体上的基因。
由于在性染色体上的重组发生率相对较低,因此性连锁基因通常以非常高的连锁度相互关联。
这也是为什么许多性连锁疾病在男性中更为普遍的原因,因为男性只有一个X染色体,而女性有两个。
性连锁在遗传研究中有着重要的意义。
通过研究性连锁疾病,我们可以更好地了解疾病的发生机制。
例如,血友病是一种X 连锁遗传疾病,主要影响男性。
这是因为男性只有一个X染色体,一旦携带异常的血友病基因,就无法通过正常的X染色体来抵消它的效应。
另一方面,雌雄同体动物往往没有性连锁遗传。
这是因为它们的性别由其他方式决定,例如环境因素或基因的互作。
然而,在一些雌雄同体动物中,我们仍然可以观察到连锁遗传的存在,这与某些性染色体的非性别决定角色有关。
总结一下,连锁遗传和性连锁是遗传学中重要的概念。
连锁遗传指基因在染色体上的分布和传递方式,而性连锁则是指基因位于性染色体上的连锁遗传。
遗传学

第五章连锁遗传和性连锁(一) 名词解释:1.交换:指同源染色体的非姊妹染色单体之间的对应片段的交换,从而引起相应基因间的交换与重组。
2.交换值(重组率):指同源染色体的非姊妹染色单体间有关基因的染色体片段发生交换的频率。
3.基因定位:确定基因在染色体上的位置。
主要是确定基因之间的距离和顺序。
4.符合系数:指理论交换值与实际交换值的比值,符合系数经常变动于0—1之间。
5.干扰(interference):一个单交换发生后,在它邻近再发生第二个单交换的机会就会减少的现象。
6.连锁遗传图(遗传图谱):将一对同源染色体上的各个基因的位置确定下来,并绘制成图的叫做连锁遗传图。
7.连锁群(linkage group):存在于同一染色体上的基因群。
8.性连锁(sex linkage):指性染色体上的基因所控制的某些性状总是伴随性别而遗传的现象,又称伴性遗传(sex-linked inheritance)。
9.性染色体(sex-chromosome):与性别决定有直接关系的染色体叫做性染色体。
10.常染色体(autosome):性染色体以外其他的染色体称为常染色体。
同配性别11.限性遗传(sex-limited inheritance):是指位于Y染色体(XY型)或W染色体(ZW型)上的基因所控制的遗传性状只限于雄性或雌性上表现的现象。
12.从性遗传(sex-influenced inheritance):常染色体上基因所控制的性状,在表现型上受个体性别的影响,只出现于雌方或雄方;或在一方为显性,另一方为隐性的现象。
13.交叉遗传:父亲的性状随着X染色体传给女儿的现象。
14.连锁遗传:指在同一同源染色体上的非等位基因连在一起而遗传的现象。
(二) 是非题:1.雄果蝇完全连锁是生物界少见的遗传现象。
这仅指X染色体上的连锁群而言。
因为它的X染色体只有一条,所以,不会发生交换。
(-)2.基因连锁强度与重组率成反比。
(+)3.基因型+ C/Sh +的个体在减数分裂中有6%的花粉母细胞在Sh和C之间形成一个交叉,那么,所产生的重组型配子++和 Sh C 将各占3%。
连锁遗传与性连锁培训讲义

连锁遗传与性连锁培训讲义连锁遗传与性连锁培训讲义一、引言连锁遗传和性连锁是生物学中一种重要的遗传现象,对于理解基因组的组织、基因的定位以及遗传病的传播具有重要意义。
本次培训将介绍连锁遗传和性连锁的定义、机制以及实际应用。
二、连锁遗传1. 定义连锁遗传是指两个或多个基因在染色体上的相对位置固定,它们在遗传上有着密切的联系,总是以相同的方式遗传给下一代的现象。
2. 机制连锁遗传的现象是由于两个或多个基因位点间的共位性导致的。
共位基因位点是指位于同一染色体上,距离足够近而不发生重组的遗传标记。
3. 实例连锁遗传现象最早是由托马斯·亨特·摩尔根和他的研究小组在果蝇实验中发现的。
他们观察到两对基因座A和B会同时遗传给下一代,而不会与其他染色体上的基因发生重组。
三、性连锁1. 定义性连锁是指基因位于性染色体上,并且由于性染色体的特殊性导致这些基因在遗传上的性别特异性。
2. 机制性连锁是由于性染色体在雄性和雌性个体中的差异造成的。
对于雄性个体,由于它们有XY染色体,因此只需要一个突变的等位基因就会表现出突变的特征。
而对于雌性个体,由于它们有XX染色体,需要两个突变的等位基因才会表现出突变的特征。
3. 实例最典型的性连锁现象是人类的遗传性状血友病。
血友病是一种由于凝血因子基因突变引起的疾病,该基因位于X染色体上,因此主要影响雄性个体。
四、连锁遗传和性连锁的应用1. 基因组定位连锁遗传和性连锁的现象可以帮助科学家在基因组中定位特定基因的位置。
通过分析连锁遗传的数据,可以确定不同基因位点之间的相对距离,这对于构建基因组图谱和寻找遗传病基因具有重要意义。
2. 遗传病研究连锁遗传和性连锁的现象使得研究人员可以更好地理解基因突变和遗传病的传播方式。
通过分析家系中的连锁遗传模式,可以确定遗传病的致病基因,并为疾病的预防、治疗提供参考。
3. 种群遗传学研究连锁遗传和性连锁的概念对于种群遗传学研究也具有重要意义。
连锁遗传与性连锁

calico cats
(黑黄斑)
英国
血友病的遗传
正常女性X+X+ × 患者XhY
↓ X+Xh
X+Y
正常女 正常男
X+Xh × X+Y ↓
X+X+ X+Xh X+Y 1 :1 :1 :1
XhY
色盲、血友病, 都是由男人通过 女儿遗传给外孙 的半数。
男人患病基因不 传给儿子,只传 给女儿,但女儿 不表现血友病, 却能生下患病的 外孙。代与代之 间出现明显的不 连续现象。
性连锁
基因位于Chr.上,sex chr.当然也会有基因存在。
sex chr.上也有一些控制其它性状的的基因存在。
位于sex chr.上的基因所控制的性状在遗传方式上 自然与常chr.上的基因所控制的性状有所不同。其 表现总是与性染色体的动态联系在一起。
称为性连锁遗传(sex-linked inheritance)。
有色饱满 有色凹陷 无色饱满 无色凹陷 4032 149 152 4035 8368
重组率=301/8368=%
相关概念 相引组合 coupling phase 相斥组合 repulsion phase
自交法
a+b+c+d=1
d d2
假设F2代共1000株, 双隐性个体10株
d2= d= Rf=a+d=
例
• 玉米籽粒:有色C>无色c ,饱满(Sh) >凹陷sh,非糯性Wx>对糯性(wx)。
• 为了明确这三对基因是否连锁,曾有人 做过三个两点测验。
第1个测验
有色饱满CCShSh × ccshsh无色凹陷 ↓
有色饱满 CcShsh × ccshsh无色凹陷
连锁遗传和性连锁(12)PPT

相引相中,pr+vg+连锁在一条染色体上,而prvg连锁在
另一条染色体,两亲本的同源染色体所载荷的基因分别
是
和
,其F1就应是
,那么,
F1在减数分裂时,来自父母双方的两条同源染色体 pr+ vg+ 和pr vg就被分配到不同的配子中去。
(三) 完全连锁和不完全连锁
完全连锁 (complete linkage): 如果连锁基因的杂种F1(双杂合体)只产生两种亲 本类型的配子,而不产生非亲本类型的配子,就 称为完全连锁。
二、 交换值的测定
(一)、测交法
测交后代(Ft)的表现型的种类和比例直接反映被测个体 (如F1)产生配子的种类和比例。
由图5-7的测交结果可以求得: 重组型配子数 = 149 + 152 = 301 总配子数 = 4032 + 149 + 152 + 4035 = 8368
交换值 =
×100 = 3.6%
摩尔根提出了遗传学中的第三个遗传规律—连锁遗传规 律以及连锁与交换的遗传机理,并创立基因论(theory of the gene)。
摩尔根(T. H. Morgan, 1866-1945)
第一节 连锁与交换
一、连锁
(一) 性状连锁遗传的发现
性状连锁遗传现象是贝特森和庞尼特(Bateson. 和 Punnett, 1906)在香豌豆的两对性状杂交试验中首先发现的。
↓
F1
pr+prvg+vg × prprvgvg(测交)
↓
Ft
pr+prvg+vg
157
prprvgvg
146pr+prv Nhomakorabeavg965
遗传学:朱军第三版:第05章连锁遗传和性连锁.

(一)、香豌豆(Lathyrus odoratus)两对相对性状杂交 试验
花 色 : 紫花(P) 对 红花(p) 为显性;
花粉粒形状:长花粉粒(L) 对
圆花粉粒(l)
为显性。
1. 紫花、长花粉粒×红花、圆花粉粒 2. 紫花、圆花粉粒×红花、长花粉粒
试验结果分析:
1.F1产生的四种类型配子比例不等于1:1:1:1;
2.亲本型配子比例高于50%,重组型配子比例低于50%; 3.亲本型配子数基本相等,重组型配子数也基本相等。
15/481
测交:相引相
16/481
测交:相斥相
有色凹陷 无色饱满 亲本表现型 C C shsh ccShSh 亲本基因型 F1 表 现 型 有色饱满 C cShsh F1 基 因 型 Ft 表 现 型 有色饱满 有色凹陷 无色饱满 无色凹陷 Ft 基 因 型 C cShsh C cshsh ccShsh ccshsh Ft 个 体 数 638 21379 21096 672 48.8 48.2 1.5 比 例 (%) 1.5
13/481
(一)、每对相对性状是否符合分离规律?
性状 花色 相引相 花粉粒 形状 花色 相斥相 花粉粒 形状 F2表现型 紫花(显) 红花(隐) 长花粉粒(显) 圆花粉粒(隐) 紫花(显) 红花(隐) 长花粉粒(显) 圆花粉粒(隐) F2个体数 4831+390=5221 1338+393=1731 4831+393=5224 1338+390=1728 226+95=321 97+1=98 226+97=323 95+1=96 F2分离比例 3:1 3:1 3:1 3:1
精编第五章连锁遗传和性连锁 (2)资料

1. 果蝇眼色与翅长连锁遗传:相引相
P
pr+pr+vg+vg+×prprvgvg
↓
F1
pr+prvg+vg × prprvgvg (测交)
↓
Ft
pr+prvg+vg 1339
prprvgvg
1195
pr+prvgvg
151
prprvg+vg
154
2. 果蝇眼色与翅长连锁遗传:相斥相
P
pr+pr+vgvg×prprvg+vg+
↓
F1
pr+prvg+vg × prprvgvg(测交)
↓
Ft
pr+prvg+vg
157
prprvgvg
146
pr+prvgvg
965
prprvg+vg
1067
3. 结果:
F1形成四种类型的配子; 但比例显然不符合1:1:1:1, 且亲本类型配子明显多
于重组型配子;
两种亲本型配子数大致相等,两种重组型配子数 也大致相等。
4. 连锁遗传现象的解释:
连锁遗传规律:连锁遗传的相对性状是由位于同一对染
色体上的非等位基因间控制,具有连锁关系,在形成配子 时倾向于连在一起传递;交换型配子是由于非姊妹染色单 体间交换形成的。因此,在产生的四种配子中,大多数为 亲型配子,少数为重组型配子,而且其数目分别相等,均 为1:1。
相引相中,pr+vg+连锁在一条染色体上,而prvg连锁在
以相引组
为例 ,其F1为
:
可见,两对连锁基因之间发生交换的孢母细胞的百分数,恰恰是 重组型配子(又称交换型配子)百分数的2倍。
朱军遗传学答案

遗传学参考答案第二章遗传的细胞学基础(参考答案)一、解释下列名词:染色体:细胞分裂时出现的,易被碱性染料染色的丝状或棒状小体,由核酸和蛋白质组成,是生物遗传物质的主要载体,各种生物的染色体有一定数目、形态和大小。
染色单体:染色体通过复制形成,由同一着丝粒连接在一起的两条遗传内容完全一样的子染色体。
着丝点:即着丝粒。
染色体的特定部位,细胞分裂时出现的纺锤丝所附着的位置,此部位不染色。
细胞周期:一次细胞分裂结束后到下一次细胞分裂结束所经历的过程称为细胞周期(cell cycle)。
同源染色体:体细胞中形态结构相同、遗传功能相似的一对染色体称为同源染色体(homologous chromosome)。
两条同源染色体分别来自生物双亲,在减数分裂时,两两配对的染色体,形状、大小和结构都相同。
异源染色体:形态结构上有所不同的染色体间互称为非同源染色体,在减数分裂时,一般不能两两配对,形状、大小和结构都不相同。
无丝分裂:又称直接分裂,是一种无纺锤丝参与的细胞分裂方式。
有丝分裂:又称体细胞分裂。
整个细胞分裂包含两个紧密相连的过程,先是细胞核分裂,后是细胞质分裂,核分裂过程分为四个时期;前期、中期、后期、末期。
最后形成的两个子细胞在染色体数目和性质上与母细胞相同。
单倍体:指具有配子染色体数(n)的个体。
联会:减数分裂中同源染色体的配对。
联会复合体——减数分裂偶线期和粗线期在配对的两个同源染色体之间形成的结构,包括两个侧体和一个中体。
胚乳直感:又称花粉直感。
在3n胚乳的性状上由于精核的影响而直接表现父本的某些性状。
果实直感:种皮或果皮组织在发育过程中由于花粉影响而表现父本的某些性状二、可以形成:40个花粉粒,80个精核,40个管核;10个卵母细胞可以形成:10个胚囊,10个卵细胞,20个极核,20个助细胞,30个反足细胞。
三、(1)叶(2)根 (3)胚乳 (4)胚囊母细胞 (5)胚(6)卵细胞(7)反足细胞(8)花药壁(9)花粉管核(1)叶:20条;(2)根:20条;(3)胚乳:30条;(4)胚囊母细胞:20条;(5)胚:20条;(6)卵细胞:10条;(7)反足细胞:10条;(8)花药壁:20条;(9)花粉管核:10条四、如果形成的是雌配子,那么只形成一种配子ABC或A’B’C’或A’ BC或A B’C’或A B’ C 或A’ B C’ 或AB C’ 或A’B’ C ;如果形成的是雄配子,那么可以形成两种配子ABC和A’B’C’或A B’ C 和A’ B C’ 或A’ BC和A B’C’ 或AB C’ 或和A’B’ C 。
《遗传学》朱军版习题及答案

《遗传学(第三版)》朱军主编课后习题与答案目录第一章绪论 (1)第二章遗传的细胞学基础 (2)第三章遗传物质的分子基础 (6)第四章孟德尔遗传 (9)第五章连锁遗传和性连锁 (12)第六章染色体变异 (15)第七章细菌和病毒的遗传 (21)第八章基因表达与调控 (27)第九章基因工程和基因组学 (31)第十章基因突变 (34)第十一章细胞质遗传 (35)第十二章遗传与发育 (38)第十三章数量性状的遗传 (39)第十四章群体遗传与进化 (44)第一章绪论1.解释下列名词:遗传学、遗传、变异。
答:遗传学:是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。
同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。
遗传:是指亲代与子代相似的现象。
如种瓜得瓜、种豆得豆。
变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。
如高秆植物品种可能产生矮杆植株:一卵双生的兄弟也不可能完全一模一样。
2.简述遗传学研究的对象和研究的任务。
答:遗传学研究的对象主要是微生物、植物、动物和人类等,是研究它们的遗传和变异。
遗传学研究的任务是阐明生物遗传变异的现象及表现的规律;深入探索遗传和变异的原因及物质基础,揭示其内在规律;从而进一步指导动物、植物和微生物的育种实践,提高医学水平,保障人民身体健康。
3.为什么说遗传、变异和选择是生物进化和新品种选育的三大因素?答:生物的遗传是相对的、保守的,而变异是绝对的、发展的。
没有遗传,不可能保持性状和物种的相对稳定性;没有变异就不会产生新的性状,也不可能有物种的进化和新品种的选育。
遗传和变异这对矛盾不断地运动,经过自然选择,才形成形形色色的物种。
同时经过人工选择,才育成适合人类需要的不同品种。
因此,遗传、变异和选择是生物进化和新品种选育的三大因素。
4. 为什么研究生物的遗传和变异必须联系环境?答:因为任何生物都必须从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。
动物遗传学-第五章 连锁遗传.

3 干扰与符合 ①. 在染色体上,一个交换的发生是否影响另一个交
换的发生? 根据概率理论,如单交换的发生是独立的,则 双交换 = 单交换×单交换
=0.184×0.035×100% = 0.64%
实际双交换值只有0.09%,说明存在干扰。 ②. 表示干扰程度通常用符合系数表示:
符合系数C = 实际双交换值/理论双交换值 = 0.09 / 0.64 = 0.14 0,干扰严重。 符合系数常变动于 0-1 之间。干涉度I=1-C ③. 符合系数等于1时,无干扰,两个单交换独立发 生;
如此可测定第四、五对等基因,逐步定位。 但两对连锁基因间距离超过5个遗传单位,则两点 测定法就不够准确,且必须进行三次杂交和三次 测交,工作量大,故多用三点测验法。
2、三点测验 Aa、Bb、Cc
通过一次杂交和一次用隐性个体测交,同时确 定三对基因在染色体上的位置。
特点: (1).纠正两点测验的缺点,使估算的交换值更为准确; (2). 通过一次试验可同时确定三对连锁基因的位置。
∴ sh一定在中间。
(2) 确定基因之间的距离: 估算交换值确定基因之间的距离。 由于每个双
交换都包括两个单交换,估计两个单交换值时, 应分别加上双交换值: 双交换值=((4+2)/6708) 100% = 0.09% wx-sh间单交换=(((601+626)/6708) 100%) + 0.09% = 18.4% sh-c 间单交换=(((116+113)/6708) 100%) +0.09% = 3.5% ∴ 三对连锁基因在染色体上的位置和距离确定如下:
第二节 交换值及其测定
一 交换值:严格地讲是指同源染色体的非姊妹 染色单体间有关基因的染色体片段发生交换 的频率。
遗传学-第5章-连锁遗传分析

雌蝇全部为红眼 雄蝇全部为白眼
试验结果表明白眼雄蝇是纯合体,且只有一个白眼基因。
假设:果蝇的白眼基因w在X性染色体上,而Y 染色 体上不含有其等位基因 可合理解释上述遗传现象。
雌蝇♀:2 A + X X 雄蝇♂: 2 A + X Y
(1) 白眼(♂) × 红眼 (♀)
红绿色盲(color blindness):不能分辨红色和绿色。控制 红色和绿色色盲的两个基因均为隐性,位于X染色体上且紧 密连锁,所以就把它们合在一起,用符合b表示。
P: 正常母亲 色盲父亲 P X+Xb × X+Y
X+X+ × XbY
携带女性 正常男性
↓
↓
X+Xb
X+Y
F1 X+X+ X+Y
X+Xb
雄性性腺分化而不向卵巢分化,其他所有的分化都是由其 激素作用和性腺作用产生的次级效应。
人群中,不正常的个体----性反转(sex reveral) 少数46XX男性
46XY女性 如何说明他们的性别表现?
寻找TDF基因
分子观察:
在XX男性中,其中一条X染色体顶部含有Y染色体靠近短臂 顶部的一个小片段。
X染色体上70%的基因与疾病有关,在医学遗传学中具 有重要地位。
电子显微镜下的人类X染色体和Y染色体
性别决定(Sex Determination)
不同的生物性别决定的机制不同,可分为四类: (1)性染色体; (2)环境因子; (3)性指数(性染色体(X)和常染色体组数A的比 ); (4)基因型。
摩尔根在纯种红眼果蝇群体中发现个别白眼个体(突变产生)。 (1) 白眼(♂) × 红眼 (♀) ↓ F1全部为红眼 ↓ 近亲繁殖 F2 红:白 = 3:1
第五章连锁遗传和性连锁2

。 红色面包霉的无性世代是单倍体 染色体上各显性或隐性 基因均可从其表现型上直接表现出来,便于观察和分析。 一次只分析一个减数分裂的产物,方法简便。
•红色面包霉的生活史
•比德尔由于在红色面 ••包杰霉出的成生果化而研获究诺中贝取尔得奖的
•(1).红色面包霉的遗传(n=7) :
•第一个试验: •紫花:红花 •长花粉:短花粉
(4831+390):(1338+393)=5221:1731≈3:1 (4831+393):(1338+390)=5224:1728≈3:1
•第二个试验: •紫花:红花 •长花粉:短花粉
(226+95):(97+1)=321:98≈3:1 (226+97):(95+1)=323:96≈3:1
其中: (1)、(2)非交换型; (3) ~ (6)交换,都是由于着丝点与+/-等位基因之间发生了交换,其交换均 在同源染色体的非姐妹染色单体间发生的,即发生于四线期(粗线期)。
<
50%。
重组率(交换值)
:重组型的配子百分数称为重组率。
当两对基因为连锁遗传时,其重组率总是<50。
•2.相斥组:
•有色、凹陷CCshsh
×
无色、饱满ccShSh
•
↓
•
F 有色饱满 1
×
无色凹陷
•
CcShsh
ccshsh
•配子
CSh
Csh
cSh
csh
csh
•Ft
CcShsh Ccshsh ccShsh ccshsh
+ + + 和 sh wx c 为双交换配子类型 其它均为单交换配子类型
遗传学名词解释(答案)

名词解释第一章绪论遗传学:是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。
同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。
遗传:是指亲代与子代相似的现象。
如种瓜得瓜、种豆得豆。
变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。
如高秆植物品种可能产生矮杆植株,一卵双生的兄弟也不可能完全一样。
第二章遗传的细胞学基础染色质:是指染色体在细胞分裂的间期所表现的形态,呈纤细的丝状结构,含有许多基因的自主复制核酸分子。
染色体:在细胞分裂时期,在细胞核中容易被碱性染料染色、具有一定数目和形态结构的的杆状体。
(染色体:指任何一种基因或遗传信息的特定线性序列的连锁结构。
)染色单体:由染色体复制后并彼此靠在一起,由一个着丝点连接在一起的姐妹染色单体。
姐妹染色单体:二价体中的同一各染色体的两个染色单体,互称姐妹染色单体,它们是间期同一染色体复制所得。
非姐妹染色单体:单体二价体的不同染色体之间的染色单体互称非姐妹染色单体,它们是同源染色体这些间期各自复制所得。
联会:减数分裂中,同源染色体的配对过程。
同源染色体:大小,形态和结构相同,功能相似的一对染色体。
非同源染色体:形态和结构不同的各对染色体互称为非同源染色体。
有丝分裂:包含两个紧密相连的过程:核分裂和质分裂。
即细胞分裂为二,各含有一个核。
分裂过程包括四个时期:前期、中期、后期、末期。
在分裂过程中经过染色体有规律的和准确的分裂,而且在分裂中有纺锤丝的出现,故称有丝分裂。
减数分裂:又称成熟分裂,是在性母细胞成熟时,配子形成过程中所发生的一种特殊的有丝分裂。
它使体细胞染色体数目减半。
它含两次分裂,第一次是减数的,第二次是等数的。
双受精:授粉后,一个精核(n)与卵细胞(n)受精结合为合子(2n),将来发育成胚。
同时另一精核(n)与两个极核(n+n)受精结合为胚乳核(3n),将来发育成胚乳。
连锁遗传与性连锁

连锁遗传与性连锁引言连锁遗传是遗传学中的一个重要概念,它描述了基因在染色体上的分布模式及其遗传方式。
在连锁遗传中,某个基因与其他基因紧密相连,它们以连锁的方式遗传给后代。
而性连锁则是指基因的连锁分布与性别有关,即某些基因仅存在于性染色体上。
本文将介绍连锁遗传的基本概念和机制,并进一步探讨性连锁在遗传学中的意义。
连锁遗传的基本概念在遗传学中,连锁遗传是指两个或多个基因存在于同一染色体上,并且它们倾向于一起遗传给后代。
这是因为在染色体复制和分裂的过程中,这些基因通常作为一个整体进行传递。
连锁遗传是基于体细胞(非性细胞)的染色体遗传机制。
相对而言,性细胞(精子和卵子)的染色体遗传机制则是基于性连锁的。
关于性连锁将在后文中详细介绍。
连锁遗传的基本机制是重组。
在染色体复制和分裂过程中,有时会出现染色体断裂和重连的现象,这会导致两个连锁基因中的一部分发生交换。
这个过程就是重组。
重组的发生概率受到基因之间的距离影响,相距越远的基因发生重组的概率越高。
连锁遗传通过连锁分析来研究。
连锁分析是通过观察某个性状与基因连锁的关系来判断基因间是否存在连锁关系。
通过观察家族中某一性状的分布和基因之间的连锁方式,可以推断基因在染色体上的相对位置。
性连锁的基本概念性连锁是基于性染色体的连锁遗传。
在人类和其他哺乳动物中,雌性有两个X 染色体,而雄性有一个X染色体和一个Y染色体。
性连锁就是指基因存在于性染色体上,并且遵循性连锁的遗传规律。
在性连锁中,X染色体上的基因表现出不同的遗传模式。
对于雌性来说,X染色体的基因按照常规的连锁遗传方式进行遗传,与非性染色体上的基因一样。
而对于雄性来说,X染色体上的基因遵循特殊的遗传规律。
雄性只有一个X染色体,所以如果其中的一个基因有突变,那么这个突变就必然会表现出来。
因此,雄性是X连锁遗传疾病(比如血友病和色盲)的高风险人群。
而对于雌性来说,由于有两个X染色体,即使其中一个X染色体上的基因有突变,另一个正常的基因仍然可以弥补,所以她们患病的风险相对较低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章连锁遗传和性连锁
本章习题
1.试述交换值、连锁强度和基因之间距离三者的关系。
答:交换值是指同源染色体的非姐妹染色单体间有关基因的染色体片段发生交换的频率,或等于交换型配子占总配子数的百分率。
交换值的幅度经常变动在0~50%之间。
交换值越接近0%,说明连锁强度越大,两个连锁的非等位基因之间发生交换的孢母细胞数越少。
当交换值越接近50%,连锁强度越小,两个连锁的非等位基因之间发生交换的孢母细胞数越多。
由于交换值具有相对的稳定性,所以通常以这个数值表示两个基因在同一染色体上的相对距离,或称遗传距离。
交换值越大,连锁基因间的距离越远;交换值越小,连锁基因间的距离越近。
2.试述连锁遗传与独立遗传的表现特征及细胞学基础。
答:独立遗传的表现特征:如两对相对性状表现独立遗传且无互作,那么将两对具有相对性状差异的纯合亲本进行杂交,其F1表现其亲本的显性性状,F1自交F2产生四种类型:亲本型:重组型:重组型:亲本型,其比例分别为9:3:3:1。
如将F1与双隐性亲本测交,其测交后代的四种类型比例应为1:1:1:1。
如为n对独立基因,则F2表现型比例为(3:1)n的展开。
独立遗传的细胞学基础是:控制两对或n对性状的两对或n对等位基因分别位于不同的同源染色体上,在减数分裂形成配子时,每对同源染色体上的每一对等位基因发生分离,而位于非同源染色体上的基因之间可以自由组合。
连锁遗传的表现特征:如两对相对性状表现不完全连锁,那么将两对具有相对性状差异的纯合亲本进行杂交,其F1表现其亲本的显性性状,F1自交F2产生四种类型:亲本型、重组型、重组型、亲本型,但其比例不符合9:3:3:1,而是亲本型组合的实际数多于该比例的理论数,重组型组合的实际数少于理论数。
如将F1与双隐性亲本测交,其测交后代形成的四种配子的比例也不符合1:1:1:1,而是两种亲型配子多,且数目大致相等,两种重组型配子少,且数目也大致相等。
连锁遗传的细胞学基础是:控制两对相对性状的两对等位基因位于同一同源染色体上形成两个非等位基因,位于同一同源染色体上的两个非等位基因在减数分裂形成配子的过程中,各对同源染色体中非姐妹染色单体的对应区段间会发生交换,由于发生交换而引起同源染色体非等位基因间的重组,从而打破原有的连锁关系,出现新的重组类型。
由于F1植株的小孢母细胞数和大孢母细胞数是大量的,通常是一部分孢母细胞内,一对同源染色体之间的交换发生在某两对连锁基因相连区段内;而另一部分孢母细胞内该两对连锁基因相连区段内不发生交换。
由于后者产生的配子全是亲本型的,前者产生的配子一半是亲型,一半是重
组型,所以就整个F1植株而言,重组型的配子数就自然少于1:1:1:1的理论数了。
3.大麦中,带壳(N)对裸粒(n)、散穗(L)对密穗(l)为显性。
今以带壳、散穗与裸粒、密穗的纯种杂交,F1表现如何?让F1与双隐性纯合体测交,其后代为:带壳、散穗201株,裸粒、散穗18株,带壳、密穗20株,裸粒、密穗203株。
试问,这两对基因是否连锁?交换值是多少?要使F2出现纯合的裸粒散穗20株,至少要种多少株?
答:F1表现为带壳散穗(NnLl)。
F2不符合9:3:3:1的分离比例,亲本组合数目多,而重组类型数目少,所以这两对基因为不完全连锁。
交换值% =((18+20)/(201+18+20+203))×100%=8.6%
F1的两种重组配子Nl和nL各为8.6% / 2=4.3%,亲本型配子NL和nl各为(1-8.6%)/2=45.7%;
在F2群体中出现纯合类型nnLL基因型的比例为:
4.3%×4.3%=18.49/10000,
因此,根据方程18.49/10000=20/X计算出,X=10817,故要使F2出现纯合的裸粒散穗20株,至少应种10817株。
4.在杂合体ABy//abY内,a和b之间的交换值为6%,b和y之间的交换值为10%。
在没有干扰的条件下,这个杂合体自交,能产生几种类型的配子?在符合系数为0.26时,配子的比例如何?
答:这个杂合体自交,能产生ABy、abY、aBy、AbY、ABY、aby、Aby、aBY 8种类型的配子。
在符合系数为0.26时,其实际双交换值为:0.26×0.06×0.1×100=0.156%,故其配子的比例为:ABy42.078:abY42.078:aBy2.922:AbY2.922:ABY4.922:aby4.922:Aby0.078:aBY0.078。
5.a和b是连锁基因,交换值为16%,位于另一染色体上的d和e也是连锁基因,交换值为8%。
假定ABDE和abde都是纯合体,杂交后的F1又与双隐性亲本测交,其后代的基因型及其比例如何?
答:根据交换值,可推测F1产生的配子比例为(42%AB:8%aB:8%Ab:42%ab)×(46%DE:4%dE:4%De:46%de),故其测交后代基因型及其比例为:
AaBbDdEe19.32:aaBbDdEe3.68:AabbDdEe3.68:aabbDdEe19.32:
AaBbddDEe1.68:aaBbddEe0.32:AabbddEe0.32:aabbddEe1.68:
AaBbDdee1.68:aaBbDdee0.32:AabbDdee0.32:aabbDdee1.68:
AaBbddee19.32:aaBbddee3.68:Aabbddee3.68:aabbddee19.32。
6.a、b、c 3个基因都位于同一染色体上,让其杂合体与纯隐性亲本测交,得到下列结果:
试求这3个基因排列的顺序、距离和符合系数。
答:根据上表结果,++c和ab+基因型的数目最多,为亲本型;而+b+和a+c 基因型的数目最少,因此为双交换类型,比较二者便可确定这3个基因的顺序,a基因位于中间。
则这三基因之间的交换值或基因间的距离为:
ab间单交换值=((3+5+106+98)/1098)×100%=19.3%
ac间单交换值=((3+5+74+66)/1098)×100%=13.5%
bc间单交换值=13.5%+19.3%=32.8%
其双交换值=(3+5/1098)×100%=0.73%
符合系数=0.0073/(0.193×0.135)=0.28
这3个基因的排列顺序为:bac;ba间遗传距离为19.3%,ac间遗传距离为13.5%,bc间遗传距离为32.8%。
7.已知某生物的两个连锁群如下图,试求杂合体AaBbCc可能产生的类型和比例。
答:根据图示,bc两基因连锁,bc基因间的交换值为7%,而a与bc连锁群独立,因此其可能产生的配子类型和比例为:
ABC23.25:Abc1.75:AbC1.75:Abc23.25:
aBC23.25:aBc1.75:abC1.75:abc23.25
8.纯合的匍匐、多毛、白花的香豌豆与丛生、光滑、有色花的香豌豆杂交,产生的F1全是匍匐、多毛、有色花。
如果F1与丛生、光滑、白花又进行杂交,后代可望获得近于下列的分配,试说明这些结果,求出重组率。
匍、多、有6% 丛、多、有19%
匍、多、白19% 丛、多、白6%
匍、光、有6% 丛、光、有19%
匍、光、白19% 丛、光、白6%
答:从上述测交结果看,有8种表型、两类数据,该特征反映出这3个基因有2个位于同一染色体上连锁遗传,而另一个位于不同的染色体上独立遗传。
又
从数据的分配可见,匍匐与白花连锁,而多毛为独立遗传。
匍匐与白花的重组值为24%。
假定其基因型为:匍匐AA、多毛BB、白花cc,丛生aa、光滑bb、有色花CC。
则组合为:
AABBcc×aabbCC
↓
AaBbCc×aabbcc
↓
AaBbCc6:AaBbcc19:aaBbCc19:aaBbcc6:AabbCc6:Aabbcc19:aabbCc19:aabbcc6 9.基因a、b、c、d位于果蝇的同一染色体上。
经过一系列杂交后得出如下交换值:
基因交换值
a与c40%
a与d25%
b与d5%
b与c10%
试描绘出这4个基因的连锁遗传图。
答:其连锁遗传图为:
10.脉孢菌的白化型(al)产生亮色子囊孢子,野生型产生灰色子囊孢子。
将白化型与野生型杂交,结果产生:
129个亲型子囊-孢子排列为4亮4灰,
141个交换型子囊----孢子排列为2:2:2:2或2:4:2
问al基因与着丝点之间的交换值是多少?
答:交换值=[141/(141+129)] ×100%×1/2=26.1%
11.果蝇的长翅(Vg)对残翅(vg)是显性,该基因位于常染色体上;红眼(W)对白眼(w)是显性,该基因位于X染色体上。
现让长翅红眼的杂合体与残翅白眼的纯合体交配,所产生的基因型如何?
答:假如杂合体为双杂合类型,则有两种情况:
(1) ♀vgvgXwXw ×VgvgXWY ♂
↓
VgvgXWXw vgvgXWXw VgvgXwY vgvgXwY
(2) ♀VgvgXWXw ×vgvgXwY ♂
↓
VgvgXWXw VgvgXwXw vgvgXWXw vgvgXwXw
VgvgXWY VgvgXwY vgvgXWY vgvgXwY。