偶联剂的种类及选择
偶联剂的种类特色及应用
偶联剂的种类、特点及应用偶联剂是一种重要的、应用领域日渐广泛的处理剂,主要用作高分子复合材料的助剂。
偶联剂分子结构的最大特点是分子中含有化学性质不同的两个基团,一个是亲无机物的基团,易与无机物表面起化学反应;另一个是亲有机物的基团,能与合成树脂或其它聚合物发生化学反应或生成氢键溶于其中。
因此偶联剂被称作“分子桥”,用以改善无机物与有机物之间的界面作用,从而大大提高复合材料的性能,如物理性能、电性能、热性能、光性能等。
偶联剂用于橡胶工业中,可提高轮胎、胶板、胶管、胶鞋等产品的耐磨性和耐老化性能,并且能减小NR用量,从而降低成本。
偶联剂的种类繁多,主要有硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、双金属偶联剂、磷酸酯偶联剂、硼酸酯偶联剂、铬络合物及其它高级脂肪酸、醇、酯的偶联剂等,目前应用范围最广的是硅烷偶联剂和钛酸酯偶联剂。
1 硅烷偶联剂硅烷偶联剂是人们研究最早、应用最早的偶联剂。
由于其独特的性能及新产品的不断问世,使其应用领域逐渐扩大,已成为有机硅工业的重要分支。
它是近年来发展较快的一类有机硅产品,其品种繁多,结构新颖,仅已知结构的产品就有百余种。
1945年前后由美国联碳(UC)和道康宁(DOW CORNING)等公司开发和公布了一系列具有典型结构的硅烷偶联剂; 1955年又由UC公司首次提出了含氨基的硅烷偶联剂;从1959年开始陆续出现了一系列改性氨基硅烷偶联剂;20世纪60年代初期出现的含过氧基硅烷偶联剂和60年代末期出现的具有重氮和叠氮结构的硅烷偶联剂,又大大丰富了硅烷偶联剂的品种。
近几十年来,随着玻璃纤维增强塑料的发展,促进了各种偶联剂的研究与开发。
改性氨基硅烷偶联剂、过氧基硅烷偶联剂和叠氮基硅烷偶联剂的合成与应用就是这一时期的主要成果。
我国于20世纪60年代中期开始研制硅烷偶联剂。
首先由中国科学院化学研究所开始研制Γ官能团硅烷偶联剂,南京大学也同时开始研制Α官能团硅烷偶联剂。
1.1 结构和作用机理硅烷偶联剂的通式为RNSIX(4-N),式中R为非水解的、可与高分子聚合物结合的有机官能团。
偶联剂的分类与用途小结
偶联剂的分类与用途小结偶联剂是一种常用的化学添加剂,可用于纺织、染料、皮革、医药、农药等各个领域。
根据具体的化学结构和功能,偶联剂可以分为缩聚型偶联剂、螯合型偶联剂和活性型偶联剂。
缩聚型偶联剂是通过与纤维材料中的活性基团反应而与其发生缩聚,从而形成偶联的化学键。
常见的缩聚型偶联剂有氨基硅烷、异氰酸酯和间苯二酚等。
它们可以增强纤维材料与染料、功能性涂层之间的结合力,提高纤维材料的色牢度、耐久性和抗污性能。
此外,缩聚型偶联剂还可以用于改善纤维材料的润湿性和提高染料的上染率。
螯合型偶联剂是通过与杂质或金属离子形成螯合络合物,从而抑制其对纤维材料的不良影响。
常见的螯合型偶联剂有胺类、羧酸类和两性电解质等。
它们可以与金属离子结合形成稳定的络合物,防止纤维材料的变色、劣化和腐蚀。
此外,螯合型偶联剂还可以用于纺织品的柔顺和抗静电处理,以及皮革和纸张的鞣制和稳定。
活性型偶联剂是通过与纤维材料表面的活性基团发生化学反应,从而与其形成共价键。
常见的活性型偶联剂有异氰酸酯、醇酯和醛基等。
它们可以使纤维材料表面具有亲水性和吸附性,提高染料和功能性分子在纤维材料上的分散和吸附效果。
此外,活性型偶联剂还可以用于纤维材料的防水、防油和抗静电处理。
总的来说,偶联剂在纺织、染料、皮革、医药、农药等领域中具有广泛的应用。
它们可以通过与纤维材料表面发生化学反应来改善纤维材料的性能,并增强纤维材料与染料、功能性涂层之间的结合力。
偶联剂的分类与用途的综述可以帮助我们更好地理解和应用这些化学添加剂,以满足不同领域的需求。
偶联剂的种类和特点及应用
偶联剂的种类和特点及应用偶联剂是指一类用于印染、造纸、水处理等领域的化工助剂,主要用于改善物质间的附着力,增强染料与纤维之间的相互作用,从而实现染色、粘合、防水和增强等效果。
下面将介绍几种常见的偶联剂的种类、特点和应用。
1.染料偶联剂染料偶联剂是一种能够帮助染料吸附到纤维上的化学品。
它们可以分为阳离子型、阴离子型和非离子型偶联剂。
阳离子型偶联剂常用于染色棉、羊毛等柔软纤维,而阴离子型偶联剂常用于染色涤纶、锦纶等合成纤维。
这些偶联剂可以提高染料在纤维上的附着力,增强染色的牢度和亮度。
2.粘合剂偶联剂粘合剂偶联剂是一种常用于纸张和纤维板等制品中的偶联剂。
它们可以在纤维表面形成一层均匀的涂层,提高纤维之间的附着力,增强材料的强度和耐久性。
粘合剂偶联剂具有良好的流动性和可溶性,能够提高产品的加工性能和终极性能。
3.防水偶联剂防水偶联剂主要用于纺织品、皮革和纸张等材料的防水处理。
它们可以在材料表面形成一层微细的涂层,防止水分渗透,并提高材料的防水性能和耐久性。
防水偶联剂可以广泛应用于户外服装、帐篷、雨伞、鞋子和包包等产品。
4.加强剂偶联剂加强剂偶联剂是一种常用于增强材料强度和耐久性的化学品。
它们可以在纤维表面形成一种保护性涂层,防止材料受到外部环境的损伤,并提高材料的耐磨性和抗拉强度。
加强剂偶联剂常用于橡胶制品、塑料制品和纤维增强材料等领域。
除了上述常见的种类外,偶联剂还可以根据不同的底材和应用领域进行特殊设计和定制。
例如,在水处理领域,偶联剂被用作一种能够将悬浮物和杂质结合在一起,形成沉淀物并提高水质净化效果的化学品。
总之,偶联剂作为重要的化工助剂,在印染、造纸、水处理等领域发挥着重要作用。
不同类型的偶联剂具有不同的特点和应用,可以根据具体需求选择合适的产品。
随着科技的不断进步,偶联剂的种类和应用还将不断发展和创新,为各行各业提供更好的解决方案。
偶联剂的种类特点及应用
偶联剂的种类特点及应用偶联剂是一类用于改善纤维染色和印刷的化学品,它们能够与纤维表面形成化学键,并将染料牢固地结合到纤维上。
偶联剂的种类繁多,不同的偶联剂适用于不同类型的纤维和染料。
下面将介绍几种常见的偶联剂的种类、特点及应用。
1.偶联剂EG(环氧偶联剂):环氧偶联剂是最常用的偶联剂之一,它的主要特点是具有良好的耐洗牢度和耐光性。
环氧偶联剂能够与纤维表面形成稳定的环氧结构,使染料牢固地结合到纤维上。
此外,环氧偶联剂还具有优异的耐酸碱性能和耐高温性能,适用于各种纤维的染色和印花。
在纺织行业中,环氧偶联剂常用于丝绸、尼龙等合成纤维的染色和印花工艺中。
2.偶联剂KH(硅烷偶联剂):硅烷偶联剂是一类短链有机硅化合物,具有良好的亲水性和涂敷性能。
硅烷偶联剂能够与纤维表面形成化学键,并且可以使纤维表面产生亲水性改善纤维的润湿性能。
此外,硅烷偶联剂还可以增强纤维的耐腐蚀性能和耐热性能,提高纤维的机械强度。
由于硅烷偶联剂具有优异的耐候性和抗污染性能,所以在户外纺织品和工业纺织品中得到广泛应用。
3.偶联剂AM(氨基甲酸酯偶联剂):氨基甲酸酯偶联剂是一类含氨基和甲酸酯基的有机化合物,具有很好的界面活性和胶黏性。
氨基甲酸酯偶联剂能够与纤维表面形成胶体颗粒,增加染料与纤维之间的粘附力。
此外,氨基甲酸酯偶联剂还具有良好的稳定性和耐酸碱性能,能够有效抑制染料的渗漏,提高染色的均匀度和色牢度。
在纺织印染行业中,氨基甲酸酯偶联剂常用于棉纤维和麻纤维的染色工艺中。
4.偶联剂GA(缩醛偶联剂):缩醛偶联剂是一类含缩醛基团的有机化合物,具有良好的酸碱稳定性和热稳定性。
缩醛偶联剂能够与纤维表面形成缩醛键,并将染料牢固地结合到纤维上。
此外,缩醛偶联剂还可以增加染料与纤维之间的反应活性,提高染色的效果和速度。
在化纤和醋酸纤维的染色和印花中,缩醛偶联剂常用于增加染料的亲和力和牢固度。
总之,偶联剂是一类重要的化学品,对于改善纤维染色和印花的效果起到关键作用。
(2024版)A10偶联剂
可编辑修改精选全文完整版第十章、偶联剂10.1 概述在聚合物中常常需要加入填料来得到复合材料以改善性能,降低成本。
而填料和高聚物分子在化学结构和物理形态上极不相同,它缺乏亲和性,也降低了制品的力学性能;另外,由于大量填充无机填料而导致聚合物复合材料的黏度显著提高,以至造成加工性能受到影响。
所以,在制备复合材料时,为使材料综合性能得到提高,就必须确保填料与聚合物界面间的亲和力,而偶联剂就是因具有良好的性能而广泛应用于复合材料中。
10.1.1 偶联剂的定义和分类:1、定义:顾名思义,偶联剂就是能把两种不同性质的物质,通过化学或物理的作用结合起来,也就是无机和有机物质界面间的桥梁。
象媒婆。
偶联剂是指能改善填料与聚合物之间界面特征的一类物质。
其分子结构中存在两种官能团:一种官能团可与高分子基体发生化学反应或至少有好的相容性;另一种官能团可与无机填料形成化学键。
如用硅烷处理无机底材,使其表面蒙上一层R基团取向朝外的硅烷外套,象难上漆的金属铜、镉锌等用硅烷偶联剂涂附后具有优异的附着力。
2、作用:(1)改善高分子材料与填料之间的界面性能(2)提高界面的粘合性(3)改善填充后或增强后高分子材料的性能。
3、分类:现在偶联剂的分类是按照化学结构分类的:(1)硅烷类偶联剂:是最早的偶联剂,美国联合碳化物公司(UCC)40年代开发和使用的。
现在也是用途最为广泛的偶联剂。
其通式为:R n SiX4 -n(涂料中常用硅烷偶联剂的通式为RSiX3,书上是错的)。
R是不能水解的反应性有机官能团(如乙烯基氯丙基、环氧基、胺基、巯基等),X 为可水解的基团(如烷氧基、卤素等)。
硅烷的偶联作用是排列整齐的硅烷系列分子层在聚合物和填料之间形成共价键桥。
硅烷偶联剂对含有极性基团的或引入极性基团的填充体系偶联效果明显,对非极性体系则效果不明显,对碳酸钙填充复合体系效果不佳。
(2)钛酸酯偶联剂:70年代后期由美国肯力齐(Kenrich)石油化学公司开发并生产的。
偶联剂正确选用参考
偶联剂正确选用参考引用jcx的偶联剂正确选用参考一、选用硅烷偶联剂的一般原则已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。
因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。
选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。
例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃多选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。
由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。
因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。
为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。
硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。
增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。
对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。
二、使用方法如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。
后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。
但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。
偶联剂种类
偶联剂种类1. 引言在化学领域中,偶联剂是一类用于连接两个或多个分子的化合物。
偶联剂的种类繁多,它们可用于合成小分子化合物、聚合物以及表面修饰等领域。
本文将介绍几种常见的偶联剂及其应用。
2. 二硫苯乙酸(DSS)二硫苯乙酸(DSS)是一种常见的偶联剂,它具有二硫化合物的特性。
其结构中含有两个硫原子,使得它能够与含有双键或烯烃基团的化合物发生偶联反应。
DSS通常被用于合成含硫醇的有机化合物,并广泛应用于多肽合成、荧光标记以及杂化化学反应等领域。
3. EDCEDC(1-乙基-3-二甲基氨基丙烷碳二亚胺)是一种常用的偶联剂,用于将羧酸与氨基化合物偶联。
其机理是通过活化羧酸,生成具有反应活性的中间体,然后与氨基化合物发生缩合反应。
EDC广泛应用于多肽合成、寡核苷酸合成以及荧光染料的偶联等领域。
4. NHSNHS(N-羟基琥珀酰亚胺)是一种常用的偶联剂,常与EDC配对使用。
EDC将羧酸活化后,NHS能够与活化羧酸快速反应,生成稳定的N-羟基琥珀酰胺中间体。
NHS可用于将氨基化合物与羧酸偶联,常用于蛋白质修饰、抗体标记以及药物合成等领域。
5. 光敏偶联剂光敏偶联剂是一类能够受到特定波长光照射后发生偶联反应的化合物。
光敏偶联剂包括光敏羧酸(PAA)、光敏硝基苯酚(PNB)及光敏双亚硝基苯酚(PANB)等。
它们常用于光化学合成、光控释放以及光敏修饰等领域。
光敏偶联剂具有响应灵敏、反应速率快的特点,因此在生物医学领域有着广泛的应用前景。
6. 双功能偶联剂双功能偶联剂是一类既具有偶联功能又具有其他特殊功能的化合物。
例如,带电荷的双功能偶联剂可以用于电化学阵列的构建;磁性双功能偶联剂可以用于磁性纳米颗粒的制备。
双功能偶联剂的引入,不仅可以实现分子的偶联,还能为分子赋予新的性质和功能,扩展了其应用领域和潜力。
7. 总结本文简要介绍了几种常见的偶联剂种类及其应用领域。
选择合适的偶联剂对于分子合成、药物研发等领域的研究具有重要意义。
有机硅偶联剂概述及其作用机理总结
有机硅偶联剂概述及其作用机理总结一、偶联剂概述偶联剂是一种具有特殊结构的有机硅化合物。
在它的分子中,同时具有能与无机材料(如玻璃、水泥、金属等)结合的反应性基团和与有机材料(如合成树脂等)结合的反应性基团。
常用的理论有化学键理论、表面浸润理论、变形层理论、拘束层理论等。
偶联剂作表面改性剂,用于无机填料填充塑料时,可以改善其分散性和黏合性。
二、偶联剂种类偶联剂主要有有机铬偶联剂、有机硅偶联剂和钛酸偶联剂。
胶黏剂中常选用有机硅偶联剂,其通式为RSiX3,其中R为有机基团,如-C6H5、-CH=CH2等,能与树脂结合;X为可以水解的基团,如-OCH3、-OC2H5、-Cl等。
三、偶联剂作用过程B•Arkles根据偶联剂的偶联过程提出了4步反应模型,即:①与硅原子相连的SiX基水解,生成SiOH;②Si-OH之间脱水缩合,生成含Si-OH的低聚硅氧烷;③低聚硅氧烷中的SiOH与基材表面的OH形成氢键;④加热固化过程中,伴随脱水反应而与基材形成共价键连接。
一般认为,界面上硅烷偶联剂水解生成的3个硅羟基中只有1个与基材表面键合;剩下的2个Si-OH,或与其他硅烷中的Si-OH缩合,或呈游离状态。
因此,通过硅烷偶联剂可使2种性能差异很大的材料界面偶联起来,从而提高复合材料的性能和增加黏结强度,并获得性能优异、可靠的新型复合材料。
硅烷偶联剂广泛用于橡胶、塑料、胶黏剂、密封剂、涂料、玻璃、陶瓷、金属防腐等领域。
现在,硅烷偶联剂已成为材料工业中必不可少的助剂之一。
硅烷偶联剂的作用和效果以被人们认识和肯定,但界面上极少量的偶联剂为什么会对复合材料的性能产生如此显著的影响,现在还没有一套完整的偶联机理来解释。
偶联剂在两种不同性质材料之间界面上的作用机理已有不少研究,并提出了化学键合和物理吸着等解释。
其中化学键合理论是最古老却又是迄今为止被认为是比较成功的一种理论。
四、偶联剂作用理论1.化学结合理论该理论认为偶联剂含有一种化学官能团,能与玻璃纤维表面的硅醇基团或其他无机填料表面的分子作用形成共价键;此外,偶联剂还含有一种别的不同的官能团与聚合分子键合,以获得良好的界面结合,偶联剂就起着在无机相与有机相之间相互连接的桥梁似的作用。
偶联剂的种类、特点及应用
偶联剂是一种重要地、应用领域日渐广泛地处理剂,主要用作高分子复合材料地助剂.偶联剂分子结构地最大特点是分子中含有化学性质不同地两个基团,一个是亲无机物地基团,易与无机物表面起化学反应;另一个是亲有机物地基团,能与合成树脂或其它聚合物发生化学反应或生成氢键溶于其中.因此偶联剂被称作“分子桥”,用以改善无机物与有机物之间地界面作用,从而大大提高复合材料地性能,如物理性能、电性能、热性能、光性能等.偶联剂用于橡胶工业中,可提高轮胎、胶板、胶管、胶鞋等产品地耐磨性和耐老化性能,并且能减小用量,从而降低成本.偶联剂地种类繁多,主要有硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、双金属偶联剂、磷酸酯偶联剂、硼酸酯偶联剂、铬络合物及其它高级脂肪酸、醇、酯地偶联剂等,目前应用范围最广地是硅烷偶联剂和钛酸酯偶联剂.硅烷偶联剂硅烷偶联剂是人们研究最早、应用最早地偶联剂.由于其独特地性能及新产品地不断问世,使其应用领域逐渐扩大,已成为有机硅工业地重要分支.它是近年来发展较快地一类有机硅产品,其品种繁多,结构新颖,仅已知结构地产品就有百余种.年前后由美国联碳()和道康宁( )等公司开发和公布了一系列具有典型结构地硅烷偶联剂年又由公司首次提出了含氨基地硅烷偶联剂;从年开始陆续出现了一系列改性氨基硅烷偶联剂世纪年代初期出现地含过氧基硅烷偶联剂和年代末期出现地具有重氮和叠氮结构地硅烷偶联剂,又大大丰富了硅烷偶联剂地品种.近几十年来,随着玻璃纤维增强塑料地发展,促进了各种偶联剂地研究与开发.改性氨基硅烷偶联剂、过氧基硅烷偶联剂和叠氮基硅烷偶联剂地合成与应用就是这一时期地主要成果.我国于世纪年代中期开始研制硅烷偶联剂.首先由中国科学院化学研究所开始研制Γ官能团硅烷偶联剂,南京大学也同时开始研制Α官能团硅烷偶联剂.结构和作用机理硅烷偶联剂地通式为(),式中为非水解地、可与高分子聚合物结合地有机官能团.根据高分子聚合物地不同性质应与聚合物分子有较强地亲和力或反应能力,如甲基、乙烯基、氨基、环氧基、巯基、丙烯酰氧丙基等.为可水解基团,遇水溶液、空气中地水分或无机物表面吸附地水分均可引起分解,与无机物表面有较好地反应性.典型地基团有烷氧基、芳氧基、酰基、氯基等;最常用地则是甲氧基和乙氧基,它们在偶联反应中分别生成甲醇和乙醇副产物.由于氯硅烷在偶联反应中生成有腐蚀性地副产物氯化氢,因此要酌情使用.近年来,相对分子质量较大和具有特种官能团地硅烷偶联剂发展很快,如辛烯基、十二烷基,还有含过氧基、脲基、羰烷氧基和阳离子烃基硅烷偶联剂等.等利用硅烷偶联剂对碳纤维表面进行处理,偶联剂中地甲基硅烷氧端基水解生成地硅羟基与碳纤维表面地羟基官能团进行键合,结果复合材料地拉伸强度和模量提高,空气孔隙率下降.早在年美国大学地等在一份报告中指出,在对烷基氯硅烷偶联剂处理玻璃纤维表面地研究中发现,用含有能与树脂反应地硅烷基团处理玻璃纤维制成聚酯玻璃钢,其强度可提高倍以上.他们认为,用烷基氯硅烷水解产物处理玻璃纤维表面,能与树脂产生化学键.这是人们第一次从分子地角度解释表面处理剂在界面中地状态.硅烷偶联剂由于在分子中具有这两类化学基团,因此既能与无机物中地羟基反应,又能与有机物中地长分子链相互作用起到偶联地功效,其作用机理大致分以下步:()基水解为羟基;()羟基与无机物表面存在地羟基生成氢键或脱水成醚键;()基与有机物相结合.应用在使用硅烷偶联剂时,为获得较佳地效果,需对每一个特定地应用场合进行试验预选.硅烷偶联剂一般要用水和乙醇配成很稀地溶液(质量分数为~)使用,也可单独用水溶解,但要先配成质量分数为地醋酸水溶液,以改善溶解性和促进水解;还可配成非水溶液使用,如配成甲醇、乙醇、丙醇或苯地溶液;也能够直接使用.硅烷偶联剂地用量与其种类和填料表面积有关,即硅烷偶联剂用量()[填料用量()×填料表面积()]硅烷最小包覆面积().如果填料表面积不明确,则硅烷偶联剂地加入量可确定为填料量地左右.颗粒状或粉状填料可用偶联剂溶液浸渍,然后用离心分离机或压滤机将溶液滤去,再将填料加热、干燥、粉碎.如果用来制造补强复合材料或玻璃钢,可用连续法先将玻璃纤维或玻璃布浸渍偶联剂溶液,然后干燥、浸树脂、干燥,再加热层压而成玻璃钢板.以上做法称为表面预处理法,都是先将无机材料或被粘物地表面用偶联剂溶液预处理,然后再与有机树脂接触、压合、粘合、成型,其中阳离子型硅烷偶联剂在兼具降低粘度和起偶联作用方面最有效.硅烷偶联剂地应用十分广泛,主要有以下几方面:用作表面处理剂,以改善室温固化硅橡胶与金属地粘合性能;用于无机填料填充塑料时,可以改善其分散性和粘合性;用作增粘剂,在水电站工程中提高水泥与环氧树脂地粘合性;用作密封剂,具有耐水、耐高温、耐气候等性能,用于氟橡胶与金属地粘合密封;用作单组分硅橡胶地交联剂;用作难粘材料聚烯烃(如)和特种橡胶(如硅橡胶、、、氟橡胶)地粘合促进剂.钛酸酯偶联剂钛酸酯偶联剂最早出现于世纪年代.年月美国石油化学公司报道了一类新型地偶联剂,它对许多干燥粉体有良好地偶联效果.此后加有钛酸酯偶联剂地无机物填充聚烯烃复合材料相继问世.目前钛酸酯偶联剂已成为复合材料不可缺少地原料之一.结构和作用机理()结构钛酸酯偶联剂按其化学结构可分为类:单烷氧基脂肪酸型、磷酸酯型、螯合型和配位体型.钛酸酯偶联剂地分子式为————′—),具有如下功能:①通过基与无机填料表面地羟基反应,形成偶联剂地单分子层,从而起化学偶联作用.填料界面上地水和自由质子()是与偶联剂起作用地反应点.②——能发生各种类型地酯基转化反应,由此可使钛酸酯偶联剂与聚合物及填料产生交联,同时还可与环氧树脂中地羟基发生酯化反应.③是与钛氧键连接地原子团,或称粘合基团,决定着钛酸酯偶联剂地特性.这些基团有烷氧基、羧基、硫酰氧基、磷氧基、亚磷酰氧基、焦磷酰氧基等.④′是钛酸酯偶联剂分子中地长链部分,主要是保证与聚合物分子地缠结作用和混溶性,提高材料地冲击强度,降低填料地表面能,使体系地粘度显著降低,并具有良好地润滑性和流变性能.⑤是钛酸酯偶联剂进行交联地官能团,有不饱和双键基团、氨基、羟基等.⑥反映了钛酸酯偶联剂分子含有地官能团数.()作用机理:年等提出钛酸酯偶联剂能在填料表面形成单分子膜.等提出偶联剂在填充体系中具有增塑作用和界面粘合作用.钛酸酯偶联剂能在无机物界面与自由质子()反应,形成有机单分子层.由于界面不形成多分子层及钛酸酯偶联剂地特殊化学结构,生成地较低表面能使粘度大大降低.用钛酸酯偶联剂处理过地无机物是亲水和亲有机物地.将钛酸酯偶联剂加入聚合物中可提高材料地冲击强度,填料添加量可达以上,且不会发生相分离.以上是单分子层理论,还有化学键理论、浸润效应和表面能理论、可变形层理论、约束层理论、酸碱反应理论等.钛酸酯偶联剂地作用机理较为复杂,到目前为止人们已进行了相当多地研究,提出了多种理论,但至今尚无完整统一地认识.应用钛酸酯偶联剂地预处理法有两种:①溶剂浆液处理法,即将钛酸酯偶联剂溶于大量溶剂中,与无机填料接触,然后蒸去溶剂;②水相浆料处理法,即采用均化器或乳化剂将钛酸酯偶联剂强制乳化于水中,或者先将钛酸酯偶联剂与胺反应,使之生成水溶性盐后,再溶解于水中处理填料.钛酸酯偶联剂可先与无机粉末或聚合物混合,也可同时与二者混合,但一般多采用与无机物混合法.在使用钛酸酯偶联剂时要注意以下几点:()用于胶乳体系中,首先将钛酸酯偶联剂加入水相中,有些钛酸酯偶联剂不溶于水,需通过采用季碱反应、乳化反应、机械分散等方法使其溶于水.()钛酸酯用量地计算公式为:钛酸酯用量[填料用量()×填料表面积()]钛酸酯地最小包覆面积().其用量通常为填料用量地,或为固体树脂用量地,最终由效能来决定其最佳用量.钛酸酯偶联剂用量一般为无机填料地~.()大多数钛酸酯偶联剂特别是非配位型钛酸酯偶联剂,能与酯类增塑剂和聚酰树脂进行不同程度地酯交换反应,因此增塑剂需待偶联后方可加入.()螯合型钛酸酯偶联剂对潮湿地填料或聚合物地水溶液体系地改性效果最好.()钛酸酯偶联剂有时可以与硅烷偶联剂并用以产生协同效果.但是,这两种偶联剂会在填料界面处对自由质子产生竞争作用.()单烷氧基钛酸酯偶联剂用于经干燥和煅烧处理过地无机填料时改性效果最好.碳酸钙在橡胶、塑料工业中是一种很重要地填料.通过钛酸酯偶联剂对其改性,可大大增强碳酸钙地用量,提高其对橡胶地补强作用.钛酸酯偶联剂还大量用于其它无机填料地表面改性中,特别是在磁性复合材料和磁性记录材料方面地应用,具有高填充性、耐热性,可提高磁性粒子与树脂地粘合性、弹性及磁性地稳定性;用于导电性复合材料或涂料中,通过利用铜粉作导电基质,可提高材料地分散性、耐湿性、致密性和导电性;加入、丙烯腈丁二烯苯乙烯共聚物()、、、、聚砜、聚酰胺、聚酰亚胺等树脂中,可降低燃烧时地发烟性能;用于绝缘电缆包皮,可改善其耐潮湿性及耐磨性.铝酸酯偶联剂铝酸酯偶联剂是由福建师范大学研制地一种新型偶联剂,其结构与钛酸酯偶联剂类似,分子中存在两活性基团,一类可与无机填料表面作用;另一类可与树脂分子缠结,由此在无机填料与基体树脂之间产生偶联作用.铝酸酯偶联剂在改善制品地物理性能,如提高冲击强度和热变形温度方面,可与钛酸酯偶联剂相媲美;其成本较低,价格仅为钛酸酯偶联剂地一半,且具有色浅、无毒、使用方便等特点,热稳定性能优于钛酸酯偶联剂.通过采用各种偶联剂对碳酸钙进行改性得出以下结论:经铝酸酯偶联剂改性地活性碳酸钙具有吸湿性低、吸油量少、平均粒径较小、在有机介质中易分散、活性高等特点;铝酸酯偶联剂地热稳定性优于钛酸酯偶联剂,基本上不影响原碳酸钙地白度;经铝酸酯偶联剂改性地活性碳酸钙广泛适用于填充和等塑料,不仅能保证制品地加工性能和物理性能,还可增大碳酸钙地填充量,降低制品成本.双金属偶联剂双金属偶联剂地特点是在两个无机骨架上引入有机官能团,因此它具有其它偶联剂所没有地性能:加工温度低,室温和常温下即可与填料相互作用;偶联反应速度快;分散性好,可使改性后地无机填料与聚合物易于混合,能增大无机填料在聚合物中地填充量;价格低廉,约为硅烷偶联剂地一半.铝锆酸酯偶联剂是美国化学公司在世纪年代中期研究开发地新型偶联剂,能显著降低填充体系地粘度,改善流动性,尤其可使碳酸钙乙醇浆料体系地粘度大大降低,而且易于合成,无三废排放,用途广泛,使用方法简单而有效,既兼备钛酸酯偶联剂地优点,又能像硅烷偶联剂一样使用,而价格仅为硅烷偶联剂地一半.根据用途及处理对象不同,可按桥联配位基选取不同地铝锆酸酯偶联剂.将铝锆偶联剂应用于电缆胶料中,极大地改善了胶料地加工性能,降低了成本.木质素偶联剂木质素是一种含有羟基、羧基、甲氧基等活性基团地大分子有机物,是工业造纸废水中地主要成分.对木质素地开发和应用,既可减少工业污染,又能增加其使用价值.木质素是在第二次世界大战中开始被人们所注意,战后被开发出来地.在橡胶工业中地应用主要以补强作用为主,以提高胶料地拉伸强度、撕裂强度及耐磨性;可在橡胶中大量填充,以节约生胶用量,并能在相同体积下得到质量更轻地橡胶制品.木质素偶联剂地价格比硅烷偶联剂便宜,并且是变废为宝,今后将会有良好地应用前景.锡偶联剂在工业生产溶聚丁苯橡胶()时常采用四氯化锡偶联活性,所得称为锡偶联.其特点是碳锡键在混炼过程中易受剪切和热地作用而发生断裂,导致相对分子质量下降,从而改善了胶料地加工性能;链末端锡原子活性高,可增强炭黑与胶料之间地相互作用,提高胶料地强度和耐磨性能,有利于降低滚动阻力和减小滞后损失.由于锡偶联剂地独特性能,使其越来越受到人们地关注.结束语除上述介绍地偶联剂外,还有锆偶联剂、磷酸酯偶联剂、稀土偶联剂等.随着复合材料地不断发展,对无机物地改性要求越来越多,偶联剂由于独特地表面改性效果而受到人们地广泛重视,今后地研究重点将放在适用范围广、一剂多能、改性效果更好、成本更低廉地新型偶联剂和相应地偶联技术上.。
偶联剂的种类特点及应用
偶联剂的种类特点及应用偶联剂是一类常用的有机化学品,广泛应用于染料、医药、橡胶、塑料等行业。
它们具有使染料分子与纤维或其他物质间产生化学键合的作用,从而将染料牢固地固定在材料表面的功能。
下面是几种常见的偶联剂以及它们的特点和应用:1.氨基偶联剂:氨基偶联剂是一种具有氨基官能团的有机化合物,它们能够与纤维表面上的一些活性基团(如羧基、酮基、羟基等)发生反应,形成牢固的偶联键。
氨基偶联剂具有较强的反应活性,可以在中性或微酸性条件下发挥良好的偶联效果。
在染料工业中,氨基偶联剂常用于染料与纤维间的偶联反应,提高染料的附着力和耐光、耐洗性能。
2.硅偶联剂:硅偶联剂是一类具有硅氢键或硅氧键的化合物,它们可以与无机材料(如玻璃、金属等)或有机材料(如橡胶、塑料等)发生化学结合,形成硅键,从而增加材料的表面活性和附着力。
硅偶联剂在涂料工业中常用于改善涂料对基材的粘附性能,提高涂层的耐候性和耐腐蚀性。
3.磷酸偶联剂:磷酸偶联剂是一类具有磷酸官能团的有机化合物,它们能够与金属表面上的氧化物或羟基发生反应,形成磷酸盐键,并在金属和有机物之间建立起良好的偶联效果。
磷酸偶联剂在涂料、橡胶等行业中常用于增强产品的粘附性、耐候性和抗氧化性能。
4.羧酸偶联剂:羧酸偶联剂是一类具有羧酸官能团的有机化合物,它们能够与纤维表面上的氨基或羟基反应,形成酯键或酰胺键,并将染料或其他有机物牢固地固定在纤维表面上。
羧酸偶联剂在染料工业中广泛应用,可以提高染色的牢固度和耐洗性。
以上所述只是几种常见的偶联剂种类,还有其他很多种类的偶联剂,如醛类偶联剂、异氰酸酯偶联剂、硫化物偶联剂等。
每种偶联剂都有其特定的化学性质和应用领域,可以根据具体的需求选择合适的偶联剂进行使用。
需要注意的是,在使用偶联剂时要控制好反应条件,以避免偶联剂的过量使用或反应过程中引发副反应。
此外,偶联剂的选择也需要根据具体的材料和工艺要求,进行系统的测试和研究,以获得最佳的偶联效果。
最全偶联剂介绍
最全偶联剂介绍偶联剂的种类繁多,主要有硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、金属复合偶联剂、磷酸酯偶联剂、硼酸酯偶联剂等。
目前应用范围最广的是硅烷偶联剂、钛酸酯偶联剂和铝酸酯偶联剂。
硅烷偶联剂系列γ―氨丙基三乙氧基硅烷国内牌号:KH-550;道康宁:Z-6011;日本信越:KBM-903。
主要用途:1、涂料、黏结剂和密封剂该氨基硅烷是一种优异的黏结促进剂,应用于丙烯酸涂料、黏结剂和密封剂。
对于硫化物、聚氨酯、RTV、环氧、腈类、酚醛树脂黏结剂和密封剂,氨基硅烷可改善颜料的分散性并提高与玻璃、铝和钢铁的黏结力。
2、玻璃纤维的增强在玻璃纤维增强的热固性与热塑性塑料中使用,此产品可大幅度提高在干湿态下的弯曲强度、拉伸强度和层间剪切强度并显著提高湿态电气性能。
在干湿态情况下使用这种硅烷时,玻璃纤维增强的热塑性塑料、聚酰胺、聚酯和聚碳酸酯在浸水以前和以后的抗弯曲强度和拉伸强度均有上升。
3、玻璃纤维和矿物棉绝缘材料将其加入酚醛树脂黏结剂中可提高防潮性及压缩后的回弹性。
4、矿物填料和树脂体系此产品能大幅度提高无机填料填充的酚醛树脂、聚酯树脂、环氧、聚酰胺、聚氨酯、聚碳酸酯等热塑性和热固性树脂的物理力学性能和电气性能,并改善填料在聚合物中的润湿性和分散性。
5、铸造应用此产品能提高酚醛黏合剂和铸造型砂的黏结力。
6、砂轮制造此产品有助于提高耐磨自硬砂和酚醛黏合剂的粘结性及耐水性。
7、工程塑料此产品极大的改善无机填料与树脂的相容性,增加其流动性能;并可以提高工程塑料的强度和韧性。
适用的树脂:酚醛、环氧、PA、PU、PC、PET、三聚氰胺、丙烯酸等。
γ―(2,3-环氧丙氧)丙基三甲氧基硅烷国内牌号:KH-560;道康宁:Z-6011、Z-6040;日本信越:KBM-403。
主要用途:1、环氧树脂电子灌封胶此产品可提高无机填料与环氧树脂的相容性,提高制品与基材的粘接力,从而提高环氧树脂的电子材料和包装物的电气性能。
2、玻璃纤维及玻璃钢此产品可提高复合材料湿态物理机械强度、湿态电气性能;并改善玻璃纤维的集束性、保护性和加工工艺。
偶联剂的种类特点及应用
偶联剂的种类特点及应用偶联剂是一类能够在染料分子中引入长碳链或含有活性金属原子的有机功能团的化合物。
它们在染料分子中的引入可以改变染料的染色性能、增强染料与纺织品的亲和力,并使染料分子更加稳定。
下面将介绍常见的几种偶联剂及其特点和应用。
1.二甲酰胺类偶联剂:二甲酰胺类偶联剂是应用最广泛的一类偶联剂。
它们能够将染料分子与纤维中的胺基或氨基结合,形成偶联物,从而增加染料与纤维的结合力和耐久性,并提高染色效果。
这类偶联剂具有较强的亲和性和对多种类型纤维的广泛适用性,因此广泛用于维纶、尼龙、丙纶、腈纶等合成纤维的染色。
2.重氮化合物类偶联剂:重氮化合物类偶联剂是指含有重氮基团的化合物。
它们主要通过与纤维中的酚类、芳香胺类等位点发生偶联反应,形成偶联物。
重氮化合物类偶联剂具有强大的亲和性和亲水性能,能够在染料分子中引入极性或离子性基团,从而提高染料的溶解性和亲水性,改善染料与纺织品间的亲和力,适用于棉纤维、麻纤维等天然纤维的染色。
3.金属络合物类偶联剂:金属络合物类偶联剂是指含有活性金属原子的化合物,如铜、铁等。
它们能够与染料分子中的可配位基团形成金属络合物,从而增强染料与纤维的结合力和耐久性。
金属络合物类偶联剂具有很强的亲和性和对多种类型纤维的广泛适用性,能够提高染料的溶解度和稳定性,并改善染色效果。
常用于棉纤维、涤纶、镍铜纤维等的染色。
4.硅涂覆剂:硅涂覆剂是一类含有有机硅结构的化合物。
它们能够在染料分子表面形成一层薄膜,增加染料与纺织品间的亲和力和染料的稳定性,从而实现染料的均匀染色和耐久性。
硅涂覆剂常用于织物的抗污、防水和抗晒等特殊染整处理中。
总的来说,不同类型的偶联剂在染料分子中的引入能够增强染料与纤维的结合力和耐久性,改善染色效果和稳定性,增加染料的溶解度和亲水性,从而提高染色的均匀性和色牢度。
它们在纺织品染色、印花和织物处理等方面均有广泛应用。
偶联剂
硅烷偶联剂
化学结构式: RnSiX4-n
R为非水解的、可与高分子聚合物结合的有机官能
团。可为:甲基、乙烯基、氨基、环氧基、巯基、
丙烯酰氧丙基等。
X为可水解基团,遇水溶液、空气中的水分或无机
物表面吸附的水分均可引起水解,与无机物表面
填充体系。
其他类型偶联剂-有机铬类偶联剂 由不饱和有机酸与三价铬原子形成配价型金属络合物。 在玻璃纤维增强塑料中,具有较好的使用效果。
有机铬偶联剂成本低,但品种单调,适用范围和偶联效
果不及硅烷偶联剂和钛酸酯类偶联剂,更主要的原因是
铬离子毒性及由此带来的环境污染问题,导致目前的用
量在逐渐减少。
KH560(γ-缩水甘油醚氧丙基三甲氧基硅烷 )
CH2-CHCH2OC3H6Si(OCH3)3
溶解性:溶于水,同时发生水解反应,水解反应放出甲醇。 溶于醇、丙酮和在5%以下的正常使用水平溶于大多数脂肪族
O
酯。
KH-560是一种含环氧基的偶联剂,用于多硫化物和聚氨酯的
嵌缝胶和密封胶,用于环氧树脂的胶粘剂、填充型或增强型
偶联剂的选用原则
偶联剂加入量。硅烷偶联剂的用量可为填料的1%左右; 钛酸酸类用量一般为填料的0.25~2%。 一些表面活性剂会影响钛酸酯偶联剂用的发挥,如HSt 等,因此它们必须在填料、偶联剂、树脂充分混合后加 入。
大多数钛酸酯类偶联剂易与酯类增塑剂发生酯交换反应, 因此,此类偶联剂需待偶联剂加入后方可加入。
常见偶联剂-KH550(γ-氨丙基三乙氧基硅烷 ) 溶解性:可溶于有机溶剂,但丙酮、四氯化碳不适宜作 释剂;可溶于水。在水中水解,呈碱性。
主要应用于矿物填充的酚醛、聚酯、环氧、聚酰胺、碳
偶联剂说明【2024版】
可编辑修改精选全文完整版偶联剂的品种与性能为了提高塑料的某些性能并降低成本,有效的办法是填充改性。
但在树脂中添加无机填料后溶融指数会大大降低,以致无法注射成型而且表观性能也不佳,所以如何能在聚合物中添加多量的填料而塑料制品又有良好的表观质量,这一问题是很受人们重视的。
使用偶联剂能解决上述问题。
偶联剂也称表面处理剂,实际上是一种增加无机填料与有机聚合物之间亲和力的有机物质。
大多数无机填料属亲水性,与聚合物难以相容,如果不经过偶联处理它们会造成相间分离。
但是经过各种偶联处理后能使填料表面的亲水性变成亲有机物性,偶联剂在填料和聚合物之间通过物理的和化学的作用使它们紧密相连从而达到良好的机械强度。
另一方面无机填料不论经过硅烷、钛酸酯还是其它偶联剂处理后,其聚集的颗粒直径大多有明显减小,例如沉淀碳酸钙用高级脂肪酸处理后聚集粒径即能减小五分之四,故可提高填料在聚合物中的分散性,使填料聚合物体系的流动性得以改善,这些因素都有利于改进制品的机械性能、表观质量和加工性能。
偶联剂大致可分为硅烷系、太酸酯系、铬络合物系(如杜邦公司的商品V olan,甲基丙烯酸氯化铬)及其它高级脂肪酸、醇、酯等几类。
但主要是前面种。
硅烷偶联剂历史较久,至今仍是玻璃纤维等含硅无机材料的主要表面处理剂。
钛酸酯偶联剂是七十年代新产品,主要用来处理含钙、钡等非硅无机填料。
选用偶联剂的基本原则是,酸性填料应使用含碱性官能团的偶联剂,而碱件填料应该用含酸性官能团的偶联剂(一)硅烷偶联剂1.γ—氨丙基三甲氧基硅烷(A—143)比重1.08,沸点196℃,闪点88℃,25℃时的折射率为1.42,最小包覆面积394米2/克,适用于聚酰胺。
2.乙烯基三氯硅烷(A—150)比重1.26,沸点90.6,闪点15℃,25℃时的折射率为1.42,最小包覆面积485的米2/克,适用于聚乙烯、聚苯乙烯等。
3.乙烯基三乙氧基硅烷(A—151)比重1.26,沸点90.6,闪点15℃,25℃时的折射率为1.42,最小包覆面积411米2/克,适用于聚乙烯、聚丙烯及热固性树脂。
偶联剂简介——精选推荐
偶联剂偶联剂(coupling agent):能提高树脂与固体表面黏合强度的助剂。
常用的偶联剂有硅烷、钛酸酯、磷酸酯、铬络合物等类型。
在塑料配混中,改善合成树脂与无机填充剂或增强材料的界面性能的一种塑料添加剂。
又称表面改性剂。
它在塑料加工过程中可降低合成树脂熔体的粘度,改善填充剂的分散度以提高加工性能,进而使制品获得良好的表面质量及机械、热和电性能。
其用量一般为填充剂用量的0.5~2%。
偶联剂一般由两部分组成:一部分是亲无机基团,可与无机填充剂或增强材料作用;另一部分是亲有机基团,可与合成树脂作用。
简介偶联剂是一类具有两不同性质官能团的物质,其分子结构的最大特点是分子中含有化学性质不同的两个基团,一个是亲无机物的基团,易与无机物表面起化学反应;另一个是亲有机物的基团,能与合成树脂或其它聚合物发生化学反应或生成氢键溶于其中。
因此偶联剂被称作“分子桥”,用以改善无机物与有机物之间的界面作用,从而大大提高复合材料的性能,如物理性能、电性能、热性能、光性能等。
偶联剂用于橡胶工业中,可提高轮胎、胶板、胶管、胶鞋等产品的耐磨性和耐老化性能,并且能减小NR 用量,从而降低成本。
偶联剂在复合材料中的作用在于它既能与增强材料表面的某些基团反应,又能与基体树脂反应,在增强材料与树脂基体之间形成一个界面层,界面层能传递应力,从而增强了增强材料与树脂之间粘合强度,提高了复合材料的性能,同时还可以防止其它介质向界面渗透,改善了界面状态,有利于制品的耐老化、耐应力及电绝缘性能。
分类按偶联剂的化学结构及组成分为有机铬络合物、硅烷类、钛酸酯类和铝酸化合物四大类:铬络合物偶联剂铬络合物偶联剂开发于50年代初期,由不饱和有机酸与三价铬离子形成的金属铬络合物,合成及应用技术均较成熟,而且成本低,但品种比较单一。
硅烷偶联剂硅烷偶联剂的通式为RSiX3,式中R代表氨基、巯基、乙烯基、环氧基、氰基及甲基丙烯酰氧基等基团,这些基团和不同的基体树脂均具有较强的反应能力,X代表能够水解的烷氧基(如甲氧基、乙氧基等)。
怎么样正确的选择偶联剂?
怎么样正确的选择偶联剂?在有机合成中,偶联剂是一种重要的化学试剂,它可以将两个有机分子通过化学键连接起来。
偶联剂通常被用于合成新的有机分子,或者用于构建配合物。
但是,具体如何选择偶联剂呢?在本文中,我们将探讨如何正确选择偶联剂。
偶联剂的种类在有机合成中,常用的偶联剂有以下几种:1.亚胺类亚胺偶联剂是最常用的偶联剂之一,其通过与活性酰卡宾和烯丙基等活性中间体反应,形成共轭系统的新化合物。
常见的亚胺偶联剂包括DMAP、PPh3、DABCO等。
亚胺偶联剂通常适用于酯化、醚化、酰化等反应中。
2.烷基金属偶联剂烷基金属偶联剂是通过钯、镍和铜等金属催化剂促进的反应而实现分子间结合的。
常见的烷基金属偶联剂包括Grignard试剂、鋰试剂、铜试剂等。
烷基金属偶联剂通常适用于碳–碳键的构建。
3.金属催化剂金属催化剂是通过金属离子催化反应,将两个有机分子连接起来。
常见的金属催化剂包括钯催化剂、铜催化剂、铑催化剂等。
金属催化剂通常用于构建碳–氧键、碳–氮键和碳–硫键等。
4.硫酸酯类硫酸酯偶联剂是由硫酸酯基团和有机基团组成的化合物。
硫酸酯偶联剂通常用于酯化反应。
如何选择偶联剂选择正确的偶联剂对于合成新物质非常重要。
以下是几个影响选择偶联剂的因素:1. 反应条件选择偶联剂应考虑反应条件,并选择相应的偶联剂。
例如,如果反应需要使用惰性溶剂,则应选择不会被溶剂污染的偶联剂。
2. 原料的官能团应根据反应物的官能团选择偶联剂。
例如,如果反应物具有羰基官能团,则应选择适用于酯化和醛化反应的偶联剂。
3. 反应的特定性应选择适用于特定反应的偶联剂。
例如,如果需要构建碳–碳键,则应选择适用于此类反应的偶联剂。
4. 反应的目的应选择适用于特定反应目的的偶联剂。
例如,如果需要保持原料的立体化学构型,则应选择适用于保留立体构型的偶联剂。
结论选择正确的偶联剂对于有机合成非常重要。
选择偶联剂应考虑反应条件、原料的官能团、反应的特定性和反应的目的。
怎样选用偶联剂?
怎样选用偶联剂在选用偶联剂之前,应首先测定所用填充剂的含湿性,根据含湿状态和前述各类钛酸酯的特性决定具体品种,干燥填充剂宜用单烷氧基型,潮湿填充剂可选螯合型或单烷氧基焦磷酸型。
在选用偶联剂时还应考虑聚合物的熔点,结晶度、分子量、极性、芳香性、脂脚性、共聚结构等,对于热固性聚合物还要考虑到其固化温度和固化机理。
填充剂的形状、比表面、湿含量、酸碱性、化学组成等都可影响偶联效果。
一般粗粒子填充剂偶联效果不及细粒子好但对超微细(如CaCO3≥2000目)填充剂效果则有相反现象。
偶联剂的用量,一般为处理物重量的0.5--3%,推荐使用量为0.8---1.5%。
其用量与效果并非是正比关系,量太多则偶联剂过剩反而使性能下降,(在塑料中使拉伸、抗冲击等指标下降,在涂料中,会使附着力大为降低等)量太少,则因包复不完全,效果不显著。
所以在应用时要试验出最佳用量,做到既经济又有效。
由于钛酸酯偶联剂用量少,为使其发挥应有的效果,必须使它在填料(或颜料等处理物)中均匀地分散,否则,达不到偶联效果。
使用方法:1、混合法:就是把聚合物、填料或颜料及其它助剂和偶联剂直接混合,此法比较简便,不要增加设备和改变原加工工艺,缺点是分散不够理想,因其它助剂与偶联剂有竞争反应。
2、预处理法:先把填料或颜料用偶联剂进行预处理,然后再和聚合物及其它助剂进行加工混合。
此法有许多优点,特别适用于聚合物组份比较复杂或加工温度比较高的某些工程塑料,可以防止不必要的副反应发生,偶联剂和填料进行预处理后其分解点就大为提高。
本法又可以分为:①干混合法:为了使少量钛酸酯均匀地包复在颜、填料表面,一般加入少量稀释剂,和偶联剂的用量比在1比1的情况下,就能够使少量的钛酸酯均匀分布在填料表面,不用稀释剂就不能均匀的包复好填料,此稀释剂可采用原工艺配方中的溶剂、润滑剂。
如在塑料工业可选用白油(液体石蜡),在橡胶工业选用机油,在涂料工业选用200#溶剂油或异丙醇等,其处理设备,一般选用高速捏合机,即填料在高速搅出料备用(注意冷却,否则容易引起局部过热使填料变色而且填充性能下降)。
偶联剂比较
常见偶联剂与钛酸酯偶联剂对比
以下是目前市场上常见的几种偶联剂产品。
1、硅烷偶联剂
2、钛酸酯偶联剂
3、铝酸酯偶联剂
4、锆酸酯偶联剂
5、铝钛复合系列
6、其它系列(硼酸型、铝锆复合型等)
一、硅烷偶联剂与钛酸酯偶联剂的比较:
硅烷类偶联剂仅对含硅元素的填料有效,而钛偶联剂则对多种填料均适用,同时对适用树脂范围也广,而且它的作用并不限于使复合材料的强度提高,还能赋于一定程度的挠屈性,详情见表1,2,3 。
表1.1 钛酸酯偶联剂和硅烷偶联剂的比较
表1.2 钛酸酯和硅烷化学结构的比较
表1.3 偶联剂应用于填料效果的比较
二、钛酸酯偶联剂、锆酸酯偶联剂与铝酸酯偶联剂的比较
铝的反应活性比钛、锆大,由于活性强的,一般在贮存时也会发生反应,故贮存期短。
锆偶联剂的耐热性大于钛及铝偶联剂。
详情见表1.4
表1.4 钛酸酯、锆酸酯、铝酸酯偶联剂的比较
综合上面的比较,以及目前国内、国外市场广泛应用的多为钛系偶联剂,既销售面广,同时销售量也大,其主要特点如下:
1、使用范围广(塑料、橡胶、涂料、油墨、磁材料、颜料、填充料);
2、品种多(美国肯利奇Kenrich公司公布的便有近六十个牌号,国内目前也有数十个牌号);
3、贮存稳定(如水溶性品种可存放数年);
4、价格适中(绝对低于硅系,略高于铝系)。
偶联剂种类、分类、特点、应用大全---硅烷、钛酸酯、铝酸酯
偶联剂种类、分类、特点、应⽤⼤全---硅烷、钛酸酯、铝酸酯偶联剂的种类、特点及其应⽤。
硅烷偶联剂可⽤作表⾯处理剂、增粘剂、密封剂等;钛酸酯偶联剂按其结构可分为单烷氧基脂肪酸型、单烷氧基磷酸酯型、螯合型和配位体型;铝酸酯偶联剂具有⾊浅、⽆毒、使⽤⽅便、热稳定性能优异等特点;双⾦属偶联剂具有加⼯温度低、偶联反应速度快、分散性好、价格低廉等优点;⽊质素偶联剂主要以补强作⽤为主;锡偶联剂有利于改善胶料的加⼯性能、降低滚动阻⼒、减⼩滞后损失。
偶联剂是⼀种重要的、应⽤领域⽇渐⼴泛的处理剂,主要⽤作⾼分⼦复合材料的助剂。
偶联剂分⼦结构的最⼤特点是分⼦中含有学性质不同的两个基团,⼀个是亲⽆机物的基团,易与⽆机物表⾯起化学反应;另⼀个是亲有机物的基团,能与合成树脂或其它聚合物发⽣化学反应或⽣成氢键溶于其中。
因此偶联剂被称作“分⼦桥”,⽤以改善⽆机物与有机物之间的界⾯作⽤,从⽽⼤⼤提⾼复合材料的性能,如物理性能、电性能、热性能、光性能等。
偶联剂⽤于橡胶⼯业中,可提⾼轮胎、胶板、胶管、胶鞋等产品的耐磨性和耐⽼化性能,并且能减⼩NR⽤量,从⽽降低成本。
偶联剂的种类繁多,主要有硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、双⾦属偶联剂、磷酸酯偶联剂、硼酸酯偶联剂、铬络合物及其它⾼级脂肪酸、醇、酯的偶联剂等,⽬前应⽤范围最⼴的是硅烷偶联剂和钛酸酯偶联剂偶联剂按化学结构⼀般可分为:硅烷偶联剂、酸酯偶联剂及其他类偶联剂。
⼀般来说,偶联剂两端的官能团分别与填料的分散相和基质聚合物进⾏反应。
因填料不同,偶联效果差别很⼤,例如硅烷偶联剂对于⼆氧化硅、三氧化⼆铝、玻璃纤维、陶⼟、硅酸盐、碳化硅等有显著效果,对滑⽯粉、粘⼟、氢氧化铝、硅灰⽯、铁粉、氧化铝等效果稍差些,对⽯棉、⼆氧化钛、三氧化⼆铁等效果不太⼤,对碳酸钙、⽯墨、炭⿊、硫酸钡、硫酸钙等效果很⼩。
表⾯具有硅醇基的填料,硅烷偶联剂的偶联效果⼤,⽽对于钙、镁、钡的碳酸盐、硫酸盐、亚硫酸盐等,硅烷偶联剂的偶联效果则不太明显。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偶联剂的作用众所周知偶联剂是一类具有两性结构的物质,它的
分子中的一部分基团能与无机粉体表面的化学基团反应,形成牢
固的化学键,而另一部分的基团则有亲有机物的性质,能与高聚物基团的反应产生物理缠绕,从而促进无机粉体和有机高聚物界面
结合,将两种结构
其种类有硅烷偶联剂(KH550、560、570等)钛酸酯偶联剂(ND Z101、201、磷酸酯、钛酯酸等)
各偶联剂的缺点:实验还发现KH-550 比较容易产生自聚, 这种硅醇之间的相互缩合会显著降低硅烷界面偶联活性, 从而影响填料-树脂界面的有效结合; KH-550主碳链较短, 不易与基体分子链产生缠结结合, 也是界面结合不良的原因之一。
KH-560 不易发生自聚而降低硅氧基的活性,所以其硅氧基与填料的结合会比KH-550 更加有效。
由于KH-560 和KH-550 最终都会缩聚成聚合物, 因而随着界面处理剂用量的增加, 不会像使用小分子处理剂那样使复合材料的热导率大幅下降。
化学名称及分子式
化学名称:γ-缩水甘油醚氧丙基三甲氧基硅烷
分子式:CH2CH(O)CH2O(CH2)3Si(OCH3)3
结构式:
分子量:236.3376
物理性质:
物理形态:液体。
颜色:无色透明。
沸点:290℃。
折光率:(nD25) 1.4260-1.4280,密度(ρ25℃)1.065-1.072。
溶解性:溶于水,同时发生水解反应,水解反应释放甲醇。
溶于醇、丙酮和在5%以下的正常使用水平溶于大多数脂肪族酯。
应用范围:
KH-560是一种含环氧基的偶联剂,用于多硫化物和聚氨酯的嵌缝胶和密封胶,用于环氧树脂的胶粘剂、填充型或增强型热固性树脂、玻璃纤维胶粘剂和用于无机物填充或玻璃增强的热塑料性树脂等。