一次函数复习讲义

合集下载

一次函数专题复习ppt课件

一次函数专题复习ppt课件

关运费的信息如右表
A地
B地
(1)设从A地运到乙地x台机 甲地 乙地 400元/台 600元/台
求总运费y(元)关于x的函数关系式;
(2)若要求总运费不超过11000元,有几种方案?
(3)在(2)问的条件下,指出总运费最低的调运方 案,最低的运费是多少?
5、一次函数y=kx+b(k ≠ 0)的性质: ⑴当k>0时,y随x的增大而___增__大____。 ⑵当k<0时,y随x的增大而___减__小____。 ⑶根据下列一次函数y=kx+b(k ≠ 0)的草图回答出各图
中k、b的符号:
k_>__0,b__>_0
k__>_0,b_<__0
k_<__0,b_>__0 k_<__0,b_<__0
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
例3. 某公司在A、B两地分别有库存机器16台和12台。
现要运往甲、乙两地,其中甲地15台,乙地13台。有
(__bk__3,、0一)的次_函一__数条__y直_=_k线_x_+_b。(k≠0)的图象是过点(0,__b_),
4、正比例函数y=kx(k≠0)的性质: ⑴当k>0时,图象过一__、__三__象限;y随x的增大而_增__大_。 ⑵当k<0时,图象过二__、__四__象限;y随x的增大而_减__小_。
答:最低运费是10300元。
达标测试
1、在下列函数中, x是自变量, y是x的函数, 那些是一

一次函数复习总结讲义

一次函数复习总结讲义

一次函数复习总结讲义一次函数复习总结讲义一次函数1、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x 的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

*判断A是否为B的函数,只要看B取值确定的时候,A是否有唯一确定的值与之对应2.一次函数的定义:形如y=kx+b(k≠0,k、b为常数),则y是x 的一次函数.特别地,当b=0时,形如y=kx(k≠0,k为常数)的一次函数叫做正比例函数.3.一次函数的图象:⑴一次函数的图象特征:一次函数y=kx+b的图象经过点和点(0,b)的一条直线.正比例函数y=kx的图象是经过点(0,0)和(1,k)的一条直线.直线y=kx与y=kx+b(k≠0)的位置关系:当b>0时,直线y=kx+b可由直线y=kx(k≠0)沿y轴向上平移b个单位长度而得;当b5、一次函数与一元一次方程的关系任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.6、一次函数与二元一次方程(组)(1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y=axc 图象相同.bba1xb1yc1的解可以看作是两个一次函数y=a1c(2)二元一次方程组x1和a2xb2yc2b1b1y=a2xc2的图象交点.b2b2例1若一次函数y=2xm29+m-2的图象经过第一、第二、三象限,求m的值.例2鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长的对应数值:鞋长16192427鞋码22283844(1)分析上表,“鞋码”与鞋长之间的关系符合你学过的哪种函数?(2)设鞋长为x,“鞋码”为y,求y与x之间的函数关系式;(3)如果你需要的鞋长为26cm,那么应该买多大码的鞋?建立函数模型解决实际问题例3某块试验田里的农作物每天的需水量y(千克)与生长时间x(天)之间的关系如折线图所示.这些农作物在第10天、第30天的需水量分别为20xx千克、3000千克,在第40天后每天的需水量比前一天增加100千克.(1)分别求出x≤40和x≥40时y与x之间的关系式;(2)如果这些农作物每天的需水量大于或等于4000千克时,需要进行人工灌溉,那么应从第几天开始进行人工灌溉?基础训练1.下列各点中,在函数y=2x-7的图象上的是()A.(2,3)B.(3,1)C.(0,-7)D.(-1,9)2.已知两个一次函数y1=-b11x-4和y2=-x+的图象重合,则一次函数y=ax+b的图象所2aa2经过的象限为()A.第一、二、三象限B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限3.(20xx年杭州市)已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图像经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限4.点P1(x1,y1),点P2(x2,y2)是一次函数y=-4x+3图象上的两个点,且x1y2B.y1>y2>0C.y111.小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量筒中水面升高_______cm;(2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量筒中至少放入几个小球时有水溢出?应用与探究12.土地利用现状通过国土资源部验收,我市在节约集约用地方面已走在全国前列,1996~20xx年,市区建设用地总量从33万亩增加到48万亩,相应的年GDP从295亿元增加到985亿元.宁波市区年GDP为y(亿元)与建设用地总量x(万亩)之间存在着如图所示的一次函数关系.(1)求y关于x的函数关系式.(2)据调查20xx年市区建设用地比20xx年增加4万亩,如果这些土地按以上函数关系式开发使用,那么20xx年市区可以新增GDP多少亿元?(3)按以上函数关系式,我市年GDP每增加1亿元,需增建设用地多少万亩?(精确到0.001万亩)同步练习1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()2.下列各图给出了变量x与y之间的函数是:()yyyyooooxxxxCBDA3.一次函数y=ax+b,若a+b=1,则它的图象必经过点()A、(-1,-1)B、(-1,1)C、(1,-1)D、(1,1)y4.已知函数y=3x+1,当自变量增加m时,相应的函数值增加()A.3m+1B.3mC.mD.3m-1A5.将直线y=3x向下平移5个单位,得到直线;将直线y=-x-5向上平移5个单位,得到直线.6.下图可以用来所映这样一个实际情境,一艘船从甲地航行到乙地,到达O乙地后旋即返回,这里横坐标表示航行时间,纵坐标表示船只与甲地的距离.船只从甲地到乙地的速度___从乙地到甲地的速度(填"<"">""=")7.若直线yxa和直线yxb的交点坐标为(m,8),则ab____________.8.如图,直线L:y1x2与2Bxx轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动。

一次函数 复习讲义

一次函数 复习讲义

一次函数复习讲义一、知识要点1.一次函数的概念:函数(,为常数)叫做的一次函数。

2.一次函数的图像:3.一次函数的性质:4.解析式的确定:确定一次函数解析式的常用方法是待定系数法,它的一般步骤如下:(1)写出函数解析式的一般形式:(),其中k ,b 是待定系数。

(2)把自变量与函数的对应值代入函数解析式中,得到关于待定系数k ,b 的方程或方程组。

(3)解方程或方程组求出待定系数k ,b 的值,从而写出一次函数的解析式。

注:已知两直线:)0(111≠+=k b x k y 和)0(222≠+=k b x k y ,且21b b ≠,则2121//l l k k ⇔=5.一次函数y =kx +b (k ≠0)和二元一次方程Ax +By =C 之间在A ≠0且B ≠0的条件下是可以互相转化的。

二、考点解读例1.下列函数关系式中,哪些y 是x 的一次函数?哪些是正比例函数?(1)y x -=12(2)x y 23-=(3)x y 32=(4)32-=x y (5)x y 32-=(6)023=+y x 例2.若函数()213m y m x =-+是一次函数,求m 的值,并写出解析式。

例3.直线经过第一、二、四象限,求m 的取值范围。

例4.根据下列条件写出相应的解析式:(1)直线5+=kx y 经过点)1,2(--(2)一次函数中,当1=x 时,3=y ,当1-=x 时,7=y 。

例5.已知一次函数图像过点(-2,3)和点(3,-2),求函数解析式,画出函数图像并求:(1)图像与x 轴、y 轴的交点坐标.(2)图像与两坐标轴围成的三角形面积.例6.已知一次函数n x m y -+-=4)32(满足下列条件,分别求出字母n m ,的取值范围.(1)使得y 随x 的减小而增大;(2)使得函数图像与y 轴交点在x 轴下方;(3)使函数经过第二、三、四象限.例7.如图,L 1反映了某公司产品的销售收入与销售量的关系,L 2反映了该公司的销售成本与销售量的关系.观察图像,回答下列问题.(1)当销售量分别为2吨和6吨时,销售收入与销售成本分别为多少元?(2)当销售量为多少吨时,销售收入等于销售成本?(3)当销售量为多少吨时,该公司赢利(收入大于成本)?当销售量为多少吨时,该公司亏损(收入小于成本)?(4)写出L 1和L 2对应的函数表达式.例8.m 为何值时,直线与的交点在第三象限?分析:本题有一定的难度,先求出两直线的交点,再由此交点在第三象限,知其横纵坐标均为负,进而求出m 的取值范围.2 (吨)例9.如图所示,已知正比例函数x y 21-=和一次函数b x y +=,它们的图像都经过点P (a ,1),且一次函数图像与y 轴交于Q 点。

中考一次函数复习课课件

中考一次函数复习课课件

1. 在下列函数中,满足x是自变量,y是因变 量,b是不等于0的常 数,且是一次函数的是( )
2. 直线y=2x+6与x轴交点的坐标是( )
3.A在(下0,列-函3数)中是B一(次0,函3数)且图C象(过3,原0点)的是D((-)—92 ,1)
4. 直线 y=x+4与 x轴交于 A,与y轴交于B, O为原点,则△AOB的 面积为( )
解析式,得到关于待定系数的方程或方程组; (3)解方程或方程组,求出待定系数的值,进而写出函数
解析式.
考题再现
1. 已知y-1与x成正比,当x=2时,y=9;那么当y=-15时,
x的值为
(B )
A. 4
B. -4
C. 6
D. -6
2. 如图3-2-2,直线l经过点A(4,0),B(0,3).求直线l
A.12 B.24 C.6 D.10 5. 若函数 y=(m—2)x+5-m是一次函数,则m满足的条件是 __________. 6. 若一次函数y=kx—3经过点(3,0),则k=__, 该图象还经过点( 0, )和( ,-2) 7. 一次函数y=2x+4的图象如图所示,根据图象可知, 当x_____时,y>0;当y>0时,x=______.
的函数表达式.
解:∵直线l经过点 A(4,0),B(0,3), ∴设直线l的解析式为:y=kx+b,有

∴直线l的解析式为
.
3. 已知一次函数y=kx-4,当x=2时,y=-3.
(1)求一次函数的解析式; (2)将该函数的图象向上平移6个单位,求平移后的图象 与x轴交点的坐标.
解:(1)由已知得:-3=2k-4. 解得k= . ∴一次函数的解析式为y= x-4. (2)将直线y= x-4向上平移6个单位后得到的直线是: y= x+2. ∵当y=0时,x=-4,

2024年中考数学一轮复习考点精讲课件—一次函数的图象与性质

2024年中考数学一轮复习考点精讲课件—一次函数的图象与性质

的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.
4)一次函数与正比例函数有着共同的性质:
①当k>0时,y的值随x值的增大而增大;②当k<0时,y的值随x值的增大而减小.
考点二 一次函数的图象与性质
1. 正比例函数y= kx中,|k|越大,直线y= kx越靠近y轴;反之,|y|越小,直线y= kx越靠近x轴.
C.3
D.−3或3
∴9 = 2 ,∴ = ±3,又∵正比例函数 = 的图象经过第二、
∴ < 0,∴ = −3,故选:B.
【对点训练1】(2023·浙江杭州·统考一模)已知 − 与 − 1成正比例,且当 = −2时, = 3.若关
于的函数图象经过二、三、四象限,则m的取值范围为(
用待定系数法求一次函数表达式的一般步骤:
1)设出函数的一般形式y=kx(k≠0)或y=kx+b(k≠0);
2)根据已知条件(自变量与函数的对应值)代入表达式得到关于待定系数的方程或方程组;
3)解方程或方程组求出k,b的值;
4)将所求得的k,b的值代入到函数的一般形式中,从而得到一次函数解析式.
考点二 一次函数的图象与性质
两点即可,
图象确定
b
k
1)画一次函数的图象,只需过图象上两点作直线即可,一般取(0,b),(− ,0)两点;
2)画正比例函数的图象,只要取一个不同于原点的点即可.
考点二 一次函数的图象与性质
三、k,b的符号与直线y=kx+b(k≠0)的关系


在直线y=kx+b(k≠0)中,令y=0,则x=− ,即直线y=kx+b与x轴交于(− ,0)
综上所述,0 > 1 > 2

一次函数复习PPT课件

一次函数复习PPT课件

基础知识 基础练习
提升、归纳
典例解析
课内练习
课堂小结
反思纠错
正比例函数
定义
函数y=kx(k≠0)叫做正比例函数
k>0
y
k<0
y
图像
o
x
o
x
图像是经过原点(0,0)的一条直线
性质
图像在一、三象限内,y随x的 增大而增大
图像在二、四象限内,y随x的 增大而减小
一次函数
定义
函数y=kx+b(k,b都是常数,且k≠0)叫做一次函数
(1)、函数y=kx+b的图像不通过第四象限,则( )
A.k>0 b>0 B.k>0 b<0
C.k>0 b=0 D.k>0 b≥0
y
解:函数y=kx+b的图像不通过第四象限,
即如图,所以k>0,b>0,
o
x
因此选A这样做对吗?为什么?
(2)已知函数y=kx+b的图像经过点(0,-4)且
与两坐标轴围成的三角形的面积为8,求它的解析式。
在第一轮复习中,我们会发现,有一些错误 是学生的共性。如何让他们在以后的第二轮复习 中不错或少错,是非常值得我们研究的问题,如 果一味把正确的解法抛给他们,尽管暂时学生会 理解它,但时间一长,往往会所剩无几。如果把 学生经常出现的错误适时展现出来,让他们自己 来纠错,这样印象会深刻得多,自然到达更有效 的教学。
教师讲完第二题,接着问学生:①当x取什么值时,y1>y2 ?②当 x____时,y1>0 ?
通过两条直线的位置关系,以及直线与x轴的位置关系来解决问① ②,较好地体现了函数、方程与不等式之间的关系,突出了新课程重 视基础,关注联系与综合的特点。
练一练
(1)一次函数y=3x-4的图像不经过的象限( )

中考复习课件一次函数复习课件

中考复习课件一次函数复习课件
总结词
考查基础概念
题目1
若函数$y = kx + b$经过点$(2, -1)$和$( - 3,4)$,求$k$和$b$ 的值。
题目2
已知一次函数$y = kx + b$的 图象经过第一、二、四象限, 求$k$的取值范围。
题目3
若一次函数$y = kx + b$的图 象经过点$(0,2)$,且与坐标轴 围成的三角形面积为4,求函数
中考复习课件一次函 数复习ppt课件
• 一次函数概述 • 一次函数的解析式 • 一次函数的图象与性质 • 一次函数的应用题 • 复习题与答案
目录
01
一次函数概述
定义与性质
总结词:基础概念
详细描述:一次函数是数学中基础且重要的函数类型,其解析式为 y=kx+b,其 中 k 和 b 是常数,k ≠ 0。它具有线性性质,即随着 x 的变化,y 会以固定的斜 率 k 变化。
一次函数图象
总结词:直观表达
详细描述:一次函数的图象是一条直线,其斜率为 k,y 轴上的截距为 b。根据 k 和 b 的不同取值,直线会有不同的位置和 倾斜角度。
一次函数的应用
总结词:实际运用
详细描述:一次函数在实际生活中有广泛的应用,如路程与速度、时间的关系,商品销售与价格的关 系等。掌握一次函数的性质和图象对解决实际问题具有重要意义。
截距式
总结词
截距式是一次函数的一种特殊表示形式,通过与坐标轴的交点来表示函数。
详细描述
截距式为x/a+y/b=1,其中a和b分别是函数与x轴和y轴的截距。通过截距式可 以确定一次函数与坐标轴的交点位置。
03
一次函数的图象与性质
一次函数的图象
一次函数图象是一条直线

一次函数的全章复习课件

一次函数的全章复习课件

例如,速度、加速度和时间的关系,重力 等。
一次函数在工程学中的应用
例如,机械运动、流体力学等。
一次函数在日常生活中的应用
例如,时间与速度的关系、距离与速度的 关系等。
一次函数在数学问题中的应用
一次函数在代数问题中的应用
例如,解一元一次方程、一元一次不等式等。
一次函数在几何问题中的应用
例如,求直线方程、求两点之间的距离等。
解得 k = 3, b = -2。所以解析式 为 y = 3x - 2。
THANKS
感谢观看

对于一次函数,解析式可以用来 表示 $k$ 和 $b$ 的值,进而确
定函数的图像和性质。
通过解析式可以计算出任意自变 量 $x$ 对应的函数值 $y$。
解析式与函数图像的关系
解析式是绘制函数图像的基础。 通过解析式可以确定函数的开口方向、顶点坐标和对称轴等特性。
解析式与函数图像的对应关系是一一对应的,即一个解析式对应一个确定的图像。
y = 3x - 2
答案
解答题
题目
已知一次函数 y = kx + b,当 x = 1 时,y = -2;当 x = -1 时,y = 4。 求 k 和 b 的值。
答案
k = -3, b = 1
选择题解析
01
02
03
04
对于选项A,y = 2x,是一次 函数也是正比例函数,不符合
题意。
对于选项B,y = 3 - 5x,是 一次函数但不是正比例函数,
虽然一次函数在微积分中不是主要研 究对象,但其在导数和积分中的应用 仍不可忽视。
一次函数与三角函数
三角函数可以看作是周期性的一次函 数,两者在图像和性质上有许多相似 之处。

一次函数专题复习ppt课件

一次函数专题复习ppt课件
y=0时
y=kx+b
方程kx+b=0直线 与的y 1k1
x
b1
y k b 交点 x
2
2
2
y=kx+b
y>0时
y<0时
方程 组
y k b 1
x
1
1 的解
y 2
k
2
x
b2
kx+b>0
kx+b<0
已知y=(m-2)x-(m-4)是y关于x的一次函数。 (1)求m的取值范围
(2) 若2<m<4,函数图像经过哪几个象限?
本节课你学会了哪些方法? 学会了哪些知识?
1、(2015•陕西)设正比例函数y=mx的图像经过点A(m, 4),且y随x的增大而减小,则m=() A、2 B、-2 C、4 D、-4 2、(2016•陕西)已知一次函数y=kx+5和y= x+7,假设k>0,
<0,则这两个一次函数图像交点在() A、第一象限 B、第二象限 C、第三象限 D、第四象限
(6) 若此函数图像经过点(2,5),请画出此一次
函数图像,根据图像回答下列问题:
y
① 求出一次函数与两坐标轴的交点;
② 不解方程求出(m-2)x-(m-4)=0时方
程的解;
③ 求不等式(m-2)x-(m-4)>-1的解;
O
x
④ 求出图像与两坐标轴围成的面积。
(7)一次函数y=kx+b与(6)中一次函数交点坐标为(1, y),与y轴交点坐标为(0,4)
5、(2016•陕西)昨天早晨7点,小明乘车从家出发,去西安参加中学生科 技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中, 他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象. 根据下面图象,回答下列问题: (1)求线段AB所表示的函数关系式; (2)已知昨天下午3点时,小明距西安112千米,求他何时到家?

第四章 一次函数 讲义 2024--2025学年北师大版八年级数学上册

第四章  一次函数 讲义  2024--2025学年北师大版八年级数学上册

北师大版八年级上册第四单元一次函数讲义知识点清单:知识点一.函数的概念知识点二.函数关系式知识点三.函数自变量的取值范围知识点四.函数的图象知识点五.函数的表示方法知识点六.一次函数的定义知识点七.正比例函数的定义知识点八.一次函数的性质知识点九.一次函数图象与系数的关系知识点十.一次函数图象上点的坐标特征知识点十一.一次函数图象与几何变换知识点十二.待定系数法求一次函数解析式知识点十三.待定系数法求正比例函数解析式知识点十五.根据实际问题列一次函数关系式知识点十四.一次函数与一元一次方程知识点十六.一次函数的应用知识点十七.一次函数综合题知识点一.函数的概念1.下列曲线中表示y是x的函数的是()A .B .C.D.知识点二.函数关系式2.小明一家自驾车到离家500km的某景点旅游,出发前将油箱加满油.下表记录了行驶路程x(km)与油箱余油量y(L)之间的部分数据:行驶路程x(km)050100150200…油箱余油量y(L)4541373329…下列说法不正确的是()A.该车的油箱容量为45LB.该车每行驶100km耗油8LC.油箱余油量y(L)与行驶路程x(km)之间的关系式为y=45﹣8xD.当小明一家到达景点时,油箱中剩余5L油知识点三.函数自变量的取值范围3.在函数y=中,自变量x的取值范围是.4.函数y=中,自变量x的取值范围是.知识点四.函数的图象5.如图是某汽车从A地去B地,再返回A地的过程中汽车离开A地的距离与时间的关系图,下列说法中错误的是()A.A地与B地之间的距离是180千米B.前3小时汽车行驶的速度是40千米/时C.汽车中途共休息了5小时D.汽车返回途中的速度是60千米/时知识点五.函数的表示方法6.某校七年级数学兴趣小组利用同一块长为1米的光滑木板,测量小车从不同高度沿斜放的木板从顶部滑到底部所用的时间,支撑物的高度h(cm)与小车下滑时间t(s)之间的关系如下表所示:支撑物高度h(cm)10203040506070小车下滑时间t(s) 4.23 3.00 2.45 2.13 1.89 1.71 1.59根据表格所提供的信息,下列说法中错误的是()A.支撑物的高度为40cm,小车下滑的时间为2.13sB.支撑物的高度h越大,小车下滑时间t越小C.若小车下滑的时间为2s,则支撑物的高度在40cm至50cm之间D.若支撑物的高度每增加10cm,则对应的小车下滑的时间每次至少减少0.5s知识点六.一次函数的定义7.函数①y =5x ;②y =2x ﹣1;③;④;⑤y =x 2﹣2x +1,是一次函数的有()A .1个B .2个C .3个D .4个8.已知y =3x m ﹣1+5是y 关于x 的一次函数,则m 的值为.知识点七.正比例函数的定义9.若函数y =﹣7x +m ﹣2是正比例函数,则m 的值为()A .0B .1C .﹣2D .210.若y 关于x 的函数y =﹣7x +2+m 是正比例函数,则m =.知识点八.一次函数的性质11.若直线y =kx +b 经过第一、二、四象限,则函数y =bx ﹣k 的大致图象是()A .B .C .D .12.若点A (x 1,﹣1),B (x 2,﹣2),C (x 3,3)在一次函数y =﹣2x +m (m 是常数)的图象上,则x 1,x 2,x 3的大小关系是()A .x 1>x 2>x 3B .x 2>x 1>x 3C .x 1>x 3>x 2D .x 3>x 2>x 113.已知函数y =(2m +1)x +m ﹣3(1)若函数图象经过原点,求m 的值;(2)若函数的图象平行直线y =3x ﹣3,求m 的值;(3)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.14.(1)如图所示,∠AOB =α,∠AOB 内有一点P ,在∠AOB 的两边上有两个动点Q 、R (均不同于点O ),现在把△PQR 周长最小时∠QPR 的度数记为β,则α与β应该满足关系是.(2)设一次函数y =mx ﹣3m +4(m ≠0)对于任意两个m 的值m 1、m 2分别对应两个一次函数y 1、y 2,若m 1m 2<0,当x =a 时,取相应y 1、y 2中的较小值P ,则P 的最大值是.知识点九.一次函数图象与系数的关系15.已知一次函数y=(a﹣2)x+1,y随着自变量x的增大而增大,则a的取值范围为.知识点十.一次函数图象上点的坐标特征16.一次函数y=mx+m2(m≠0)的图象过点(0,4),且y随x的增大而增大,则m的值为()A.﹣2B.﹣2或2C.1D.217.关于x的一次函数y=﹣4x+8的图象,下列说法不正确的是()A.直线不经过第三象限B.直线经过点(1,4)C.直线与x轴交于点(2,0)D.y随x的增大而增大18.直线y=﹣x+4与x轴、y轴分别交于点A、B,M是y轴上一点,若将△ABM沿AM折叠,点B恰好落在x轴上,则点M的坐标为.19.如图,直线y=﹣2x+2与x轴交于点A,与y轴交于点B.(1)求点A,B的坐标.=2S△AOB,求点C的坐标.(2)若点C在x轴上,且S△ABC20.如图,在平面直角坐标系中,点P的坐标为(3,2),若直线y=﹣2x﹣4与x轴、y轴分别交于A、B 两点,连接PA、PB.(1)求点A、点B的坐标;(2)求△PAB的面积.21.如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.22.如图,在平面直角坐标系中,点C(﹣3,0),直线y=﹣分别交x轴、y轴于点A、B.(1)求点A、B的坐标;(2)若点P从点C出发,以每秒1个单位的速度沿射线CB运动,连接AP.设△ABP的面积为S,点P的运动时间为t秒,求S与t的函数关系式,并写出自变量t的取值范围.知识点十一.一次函数图象与几何变换23.将直线y=2x+1向右平移2个单位后所得图象对应的函数表达式为()A.y=2x+5B.y=2x+3C.y=2x﹣2D.y=2x﹣324.将一次函数y=﹣2x的图象沿y轴向下平移4个单位长度后,所得图象的函数表达式为()A.y=﹣2(x﹣4)B.y=﹣2x+4C.y=﹣2(x+4)D.y=﹣2x﹣425.在平面直角坐标系中,若将一次函数y=﹣2x+6的图象向下平移n(n>0)个单位长度后恰好经过点(﹣1,﹣2),则n的值为.26.如图,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1平移到直线l2,直线l2与x轴交于点C,点A与点C,点B与点D分别是平移前后的对应点,若线段AB在平移过程中扫过的图形面积为20,求点D的坐标.知识点十二.待定系数法求一次函数解析式27.已知一次函数y=kx+b(k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则一次函数的解析式为()A.y=x+2B.y=﹣x+2C.y=x+2或y=﹣x+2D.y=﹣x+2或y=x﹣228.如图,若点P(﹣2,4)关于y轴的对称点在一次函数y=x+b的图象上,则b的值()A.﹣2B.2C.﹣6D.629.已知某直线经过点A(0,2),且与两坐标轴围成的三角形面积为2.则该直线的一次函数表达式是.30.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y 轴于点D.(1)求一次函数的解析式;(2)求点C和点D的坐标;(3)求△AOB的面积.31.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;=2,求点C的坐标.(2)若直线AB上的点C在第一象限,且S△BOC知识点十三.待定系数法求正比例函数解析式32.正比例函数y=kx经过点(1,3),则k=.33.已知y与x成正比例,且当x=3时,y=4.(1)求y与x之间的函数解析式;(2)当x=﹣1时,求y的值.知识点十四.一次函数与一元一次方程34.如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x的方程kx+b=4的解是()A.x=1B.x=2C.x=3D.x=435.一次函数y=kx+b的图象与x轴交于点A(﹣3,0),则关于x的方程﹣kx+b=0的解为()A.x=3B.x=﹣3C.x=0D.x=236.已知直线y=﹣3x与y=kx+2相交于点P(m,3),则关于x的方程kx+2=﹣3x的解是()A.x=﹣1B.x=1C.x=2D.x=337.如图一次函数y=kx+2的图象分别交y轴,x轴于点A、B,则方程kx+2=0的解为()A.x=0B.x=2C.D.38.如图是一次函数y=ax+b的图象,则关于x的方程ax+b=1的解为()A.0B.2C.4D.639.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,关于x的方程x+5=ax+b的解是.知识点十五.根据实际问题列一次函数关系式40.已知等腰三角形的周长是20cm,底边长y(cm)是腰长x(cm)的函数关系式为,自变量x的取值范围是.知识点十六.一次函数的应用41.甲、乙两船沿直线航道AC匀速航行.甲船从起点A出发,同时乙船从航道AC中途的点B出发,向终点C航行.设t小时后甲、乙两船与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图.下列说法:①乙船的速度是40千米/时;②甲船航行1小时到达B处;③甲、乙两船航行0.6小时相遇;④甲、乙两船的距离不小于10千米的时间段是0≤t≤2.5.其中正确的说法的是()A.①②B.①②③C.①②④D.①②③④42.声音在空气中传播的速度(简称声速)v(m/s)与空气温度t(℃)满足一次函数的关系(如表格所示),则下列说法错误的是()A.温度越高,声速越快B.当空气温度为20℃时,声速为342m/sC.声速v(m/s)与温度t(℃)之间的函数关系式为D.当空气温度为40℃时,声速为350m/s43.甲、乙两个草莓采摘园为吸引顾客,在草莓售价相同的条件下,分别推出下列优惠方案:进入甲园,顾客需购买门票,采摘的草莓按六折优惠;进入乙园,顾客免门票,采摘草莓超过一定数量后,超过的部分打折销售,活动期间,某顾客的草莓采摘量为x千克,若在甲园采摘需总费用y1元,在乙园采摘需总费用y2元.y1、y2与x之间的函数图象如图所示,则下列说法中错误的是()A.乙园草莓优惠前的销售价格是30元/千克B.甲园的门票费用是60元C.乙园超过5千克后,超过部分的价格按五折优惠D.顾客用280元在甲园采摘草莓比到乙园采摘草莓更多44.某中学开展春季越野赛,小明、小颖两名同学同时从起点出发,他们所跑的路程y(千米)与时间x(分)之间的关系如图所示,小刚由图示得出下列信息:①在比赛中小明的速度始终比小颖快,所以小明先到达终点;②比赛开始20分钟时,小明和小颖第一次相遇;③越野赛全程为6千米;④小明最后冲刺速度为0.3千米/分钟.在小刚得出的信息中正确的有(填序号即可).45.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系,根据图象可知,下列结论:①两车出发后4小时相遇;②动车的速度是普通列车速度的2倍;③两车相遇后,普通列车还需行驶6小时到达目的地;④C点的坐标是(5,1000),其中正确的有.(填所有正确结论的序号)46.某工厂的销售部门提供两种薪酬计算方式:薪酬方式一:底薪+提成,其中底薪为3000元,每销售一件商品另外获得15元的提成;薪酬方式二:无底薪,每销售一件商品获得30元的提成.设销售人员一个月的销售量为x (件),方式一的销售人员的月收入为y 1(元),方式二的销售人员的月收入为y 2(元).(1)请分别写出y 1、y 2与x 之间的函数表达式;(2)哪种薪酬计算方式更适合销售人员?47.甲、乙两家体育用品商店出售相同的乒乓球和乒乓球拍,乒乓球每盒定价20元,乒乓球拍每副定价100元.现两家商店都搞促销活动,甲店每买一副球拍赠两盒乒乓球,乙店按八折优惠.某俱乐部需购球拍4副,乒乓球x (x ≥10)盒.(1)若在甲店购买付款y 甲(元),在乙店购买付款y 乙(元),分别写出:y 甲,y 乙与x 的函数关系式.(2)若该俱乐部需要购买乒乓球30盒,在哪家商店购买合算?48.科学调查结果显示:当中学生电子产品日平均使用时间小于30分钟时,近视率较低.使用时长从30分钟到1小时的过程中,近视率会急剧上升,研究发现近视率y 是日平均使用时长x (分钟)的一次函数,当日平均使用时长为30分钟时,近视率为10%,当日平均使用时间为60分钟时,近视率为70%.(1)求y 与x 之间的函数表达式;(2)当日平均使用时间为40分钟时,近视率是多少?49.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA 表示货车离甲地的距离y (千米)与时间x (小时)之间的函数关系;折线BCD 表示轿车离甲地的距离y (千米)与时间x (时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)求线段CD 对应的函数表达式;(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.知识点十七.一次函数综合题50.如图,直线l1:y=2x+6与过点B(3,0)的直线l2交于点C(﹣1,m),且直线l1与x轴交于点A,与y轴交于点D.(1)求直线l2的解析式;(2)若点M是直线l2上的点,且在y轴左侧,过点M作MN⊥直线x=1于点N,点Q在直线x=1上,要使△MNQ≌△AOD,求所有满足条件的点Q的坐标.51.【阅读理解】已知M,N为平面内不重合的两点.给出以下定义:将M绕N顺时针旋转α(0°<α<360°)的过程记作变换(N,α).例如:在平面直角坐标系xOy中,已知点M(1,0),N(2,0),则M经过变换(N,90°)后所得的点B的坐标为(2,1).【迁移应用】如图,在平面直角坐标系xOy中,直线y=2x+b分别与x轴,y轴交于点A(﹣1,0),B,设A经过变换(B,180°)后得到C.(1)求点C的坐标;(2)过C作CD⊥x轴于D,点E是线段CD上一动点,设E经过变换(B,90°)后得到点F,连接BE,BF.ⅰ)若△ABF的面积为3,求点F的坐标;ⅱ)设点M是y轴上一动点,当以A,B,F,M(四点为顶点的四边形为平行四边形时,求点M的坐标.52.如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).(1)求直线AB的解析式和点B的坐标;(2)求△ABP的面积(用含n的代数式表示);=2时,以PB为边在第一象限作等腰直角三角形BPC,求点C的坐标.(3)当S△ABP53.如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x 轴以及y=x+1的图象分别交于点C,D,且点D的坐标为(1,n).(1)则k=,b=,n=;(2)求四边形AOCD的面积;(3)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形,请求出点P的坐标.54.如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.55.如图1,已知函数y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为,求点M的坐标;②连接BM,如图2,若∠BMP=∠BAC,求点P的坐标.56.(1)认识模型:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)应用模型:①已知直线y=﹣2x+4与y轴交于A点,与x轴交于B点,将线段AB绕点B顺时针旋转90度,得到线段CB,求点C的坐标;②如图3,矩形ABCO,O为坐标原点,B的坐标为(5,4),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x﹣3上的一点,点Q是平面内任意一点.若四边形ADPQ 是正方形,请直接写出所有符合条件的点D的坐标.57.如图,直线l1:y=﹣x+3与x轴相交于点A,直线l2:y=kx+b经过点(3,﹣1),与x轴交于点B(6,0),与y轴交于点C,与直线l1相交于点D.(1)求直线l2的函数关系式;(2)点P是l2上的一点,若△ABP的面积等于△ABD的面积的2倍,求点P的坐标;(3)设点Q的坐标为(m,3),是否存在m的值使得QA+QB最小?若存在,请求出点Q的坐标;若不存在,请说明理由.58.如图,直线y=﹣x+3与x轴、y轴分别交于点A、B,点P在x轴上运动,连接PB,将△OBP沿直线BP折叠,点O的对应点记为O′.(1)若点O′恰好落在直线AB上,求OP的长.(2)若Q是直线AB上的一个动点,当△AOQ的面积为10时,求Q的坐标.(3)在x轴上是否存在点C,使得△ABC为等腰三角形?若存在,直接写出点C的坐标,若不存在,说明理由.(4)若C是y=﹣x+3上的动点,当△ABC是以BC为底的等腰三角形,求出点C的坐标.59.问题提出(1)如图1,在等腰直角△ABC中,∠BAC=90°,AB=AC,P为高AE上的动点,过点P作PH⊥AC于H,则的值为;问题探究(2)如图2,在平面直角坐标系中,直线y=﹣x+2与x轴、y轴分别交于点A、B.若点P是直线AB上一个动点,过点P作PH⊥OB于H,求OP+PH的最小值.问题解决(3)如图3,在平面直角坐标系中,长方形OABC的OA边在x轴上,OC在y轴上,且B(6,8).点D在OA边上,且OD=2,点E在AB边上,将△ADE沿DE翻折,使得点A恰好落在OC边上的点A′处,那么在折痕DE上是否存在点P使得EP+A′P最小,若存在,请求最小值,若不存在,请说明理由.60.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求出点A、点B的坐标;(2)求△COB的面积;(3)在y轴右侧有一动直线平行于y轴,分别于l1、l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出满足条件的点Q的坐标;若不存在,请说明理由.。

八年级数学《一次函数》复习PPT课件

八年级数学《一次函数》复习PPT课件
y=1.5x-6
∴ X=2 y=-3
点C的坐标为:(2, -3)
∴S△ADC=
1 2
AD
yc
=
4.5
④ 点P(6,3)
(4)y= -2x-2中相互平行的有
_______ y=x+3和y=x-2
和_____ y= -2x+1和y= -2x-2
124、复习用待定系数法求一次函数的解析式
温馨提示: 从文字中获取信息,确定函数表达式:y=kx+b,注意图象形状、 位置与x、y轴交点,尤其与y轴交点纵坐标即为b的值。如有两种函 数关系还应关注其交点。
当b=0时,一次函数y=kx+b变为y=kx(k为常数,k≠0)y叫x的正比例函数。
2、一次函数的图象 一次函数的图象;一次函数y=kx+b(k≠0)是经过点(0,b)和( bk,0)的一条直线。 正比例函数的图象:正比例函数y=kx(k≠0)是经过点(0,0)和(1,k)的一条直线
3、一次函数的性质:
(4)将求出的待定系数代回所求的函数解析式,得到所求函数的解析式。
二、考点题型 1:一次函数的概念 (1)考纲要求:理解一次函数、正比例函数的意义 (2)考点:一次函数、正比例函数解析式的特征 (3)题型举例:一次函数的定义【思考题1】关于x的函
数y=(m-2)x m2 3 +2+m是一次函数,则m=__-_2_
k>0时,y随x增大而增大,并且b>0时函数的图象经过一、二、三象限;b<0时函数图象

过一、三、四象限;当b=0时,函数的图象经过一、三象限。
K<0时;y随x增大而减小,并且b>0时,函数的b 图象经过一、二、四象限;当b<0时,函

一次函数复习 课件(共30张PPT)

一次函数复习 课件(共30张PPT)

当k<0时,图象过二、四象限;y随x的增大而减少。
y=kx
5、有下列函数:①y=2x+1, ②y=-3x+4,③y=0.5x,④y=x-6; 其中过原点的直线是___③_____; 函数y随x的增大而增大的是___①___④____; 函数y随x的增大而减小的是____②_______; 图象在第一、二、三象限的是___①_____ 。
x 50 y 250
60 70 80 … 200 150 100 …
《一次函数》复习
三、正比例函数
1、形如 y=kx (k是常数,k≠0)的函数,叫做正比例函数, 其中k叫比例函数。 2、(1)正比例函数y=kx( k是常数,k≠0)的图象是一条经 过 原点的直线,也称它为 直线y=kx ;
(2)画y=kx的图象时,一般选 原 点和_(__1_,__k)
往往需要复杂的计算才能得出。
《一次函数》复习 巩固练习
1、甲车速度为20米/秒,乙车速度为25米/ 秒.现甲车在乙车前面500米,设x秒后两车之间的 距离为y米.求y随x(0≤x≤100)变化的函数解析 式,并画出函数图象.
解:由题意可知: y=500-5x 0≤x≤100 用描点法画图:
x … 10 20 30 40 y … 450 400 350 300
9、若函数y=(2m+6)x2+(1-m)x是正比例函数,则其解
析式是 y=4x ,该图象经过第一、三象限,y随x
的增大而 增大 ,当x1<x2时,则y1与y2的关
是 y1<y2

解:∵函数y=(2m+6)x2+(1-m)x是正比例函数
∴2m+6=0,1-m≠0 ∴m=-3
y

一次函数复习讲义

一次函数复习讲义

考点一象限内和坐标轴上点坐标特征【例1】 如果点()12P m m -,在第四象限,那么m 的取值范围是( ) A .210<<m B .021<<-m C .0<m D .21>m 【例2】 若点(2)A n ,在x 轴上,则点(21)B n n -+,在( )A.第一象限B.第二象限C.第三象限D.第四象限【例3】 若点()a b ,在第三象限,则点(132)a b -+-,在( )A.第一象限B.第二象限C.第三象限D.第四象限考点二 特殊点坐标的特征【例4】 若点2(2)P m m -,在第二,四象限的角平分线上,则点1()m m -,关于y 轴的对称点的坐标是__________【例5】 已知两点(3)A m -,、(4)B n ,,且AB x ∥轴,则m 、n 满足的条件为____________ 【例6】 已知点(324)N a a --,到x 轴的距离等于到y 轴的距离的2倍,则a 的值为___________考点三 对称点坐标的特征【例7】 点()21P -,关于y 轴对称的点的坐标为( )A .()21--,B .()21,C .()21-,D .()21-,【例8】 在平面直角坐标系中,点()23P -,关于原点对称点P '的坐标是________. 【例9】 已知点P (1a +,21a -)关于x 轴的对称点在第一象限,则a 的取值范围为___________.考点四 点的坐标与两点间距离【例10】 在平面直角坐标系中,已知线段AB 的两个端点分别是()41A --,,()11B ,,将线段AB 平移后得到线段A B '',若点A '的坐标为()22-,,则点B '的坐标为( ) A .()43,B .()34,C .()12--,D .()21--,【例11】 已知点(35)A ,、(11)B -,,那么线段AB 的长度为( ) A.4 B. C. D.5【例12】 已知直线3y x =+与抛物线223y x x =-++交于A 、B 两点,在线段AB 上有一动点P ,过一次函数点P 作PQ x ⊥轴交抛物线于点Q ,则线段PQ 的最大值为( )A.32B.94C.12D.14考点五 函数的唯一性【例13】 下列各选项中,不是函数的是( )AO y xBx yOCxyO DxyO【例14】 下列关于变量x 、y 的关系式:①321x y +=;②6y x =;③22x y ⋅=,其中表示y 是x 的函数的个数是( )A.0个B.1个C.2个D.3个考点六 自变量的取值范围【例15】 函数3113y x x =-+-的自变量x 的取值范围是___________ 【例16】 函数117x y x--=-的自变量的取值范围是___________ 【例17】 已知等腰三角形的周长为20,设底边长为y ,腰长为x ,则y 与x 的函数关系式为________,自变量的取值范围是_________【例】(2014•四川泸州,第14题,3分)使函数y=+有意义的自变量x 的取值范围是 _____考点七 函数图象信息题【例18】 某污水处理厂的一个净化水池设有2个进水口和1个出水口,三个水口至少打开一个.每个进水口进水的速度由图甲给出,出水口出水的速度由图乙给出.某一天0点到6点,该水池的蓄水量与时间的函数关系如图丙所示.通过对图象的观察,小亮得出了以下三个论断: ⑴0点到3点只进水不出水;⑵3点到4点不进水只出水, ⑶4点到6点不进水也不出水.其中正确的是( )A .⑴B .⑶C .⑴⑶D .⑴⑵⑶甲 乙 丙60506543201211020时间(小时)时间(小时)时间()出水量(立方米)进水量(立方米)O O O【例19】小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()A.12分钟B.15分钟C.25分钟D.27分钟考点八正比例函数与一次函数的定义【例20】已知1(2)mym x-=+是正比例函数,则m的值是__________【例21】已知函数221(1)my m x mn-=-+是一次函数,则m、n【例22】下列函数:①8y x=-;②8yx=-;③2(1)(3)y x x x=---;④13xy-=-;⑤221y x=+。

一次函数总复习整理ppt课件

一次函数总复习整理ppt课件
技能要求:能从函数图象中读取信息,完成问题。
图象信息(形)
图象上点的坐标特点(数)
对应关系和变化规律
.
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
函数的图象
对于一个函数,若把自变量与函数的每对对应值分别作 为点的横、纵坐标,那么坐标平面内由这些点组成的图 形,就是这个函数的图象。从这个图象中可以方便地看 出当自变量增大时,函数值怎样变化.即函数的增减性。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
变量与函数
在事物运动变化过程中,变化的量叫变量。不变的量叫 常量。变量一般表示为字母,但字母不一定是变量。
数值不断 变化的量
变量
数值固定 不变的量
常量
习题:一个大小不断变化的圆的半径为r,它的面积 S=πr2,其中变量有______,常量有_____.
直线y=kx+b1可以看作y=kx+b2向上(b1>b2)或向下 (b1<b2)平移|b1-b2|个单位长度得到的.
习题:直线y=-2x向上平移3个单位长度可以得到直线 ________;向下平移2个单位长度可得直线________。
直线y=-2x-3向上平移3个单位长度可得到直线________; 向下平移4个单位长度可得直线________。
y =k1 x +b1
y
6
4
y =k2 x +b2
-5
2
O -2
.
5
x
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去

一次函数复习课课件

一次函数复习课课件

一次函数的性质
01
02
03
单调性
由斜率决定,当斜率$k > 0$时,函数单调递增;当 斜率$k < 0$时,函数单 调递减。
奇偶性
一次函数既不是奇函数也 不是偶函数。
无界性
一次函数的值域是全体实 数。
一次函数的图像
绘制方法
通过选取几个不同的$x$值,代入一 次函数中求得对应的$y$值,然后在 平面坐标系中描点作图。
助人们保持健康。
在交通方面,一次函数可以用 来计算出行时间和路线,提高
出行效率。
一次函数在经济中的应用
在经济学中,一次函数被广泛应用于 成本、收益和利润的计算。
在市场营销中,一次函数可以用来预 测市场需求和销售量。
在投资领域,一次函数可以用来计算 投资回报率和风险。
在财务规划中,一次函数可以用来计 算收入和支出,帮助个人或企业制定 合理的财务计划。
一次函数的图像
一次函数是函数的一种,其数学表达 式为y=kx+b,其中k、b为常数,且 k≠0。
一次函数的图像是一条直线,其斜率 为k,截距为b。
一次函数的性质
一次函数具有线性性质,即随着x的增 加或减少,y也以固定的斜率增加或减 少。
复习一次函数的表达式与系数
一次函数的表达式
一次函数的表达式为y=kx+b,其 中k为斜率,b为截距。
一次函数在科技中的应用
在计算机科学中,一次函数被广泛应用于算法设计和数 据结构。
在工程学中,一次函数可以用来计算材料用量和设计参 数。
在物理学中,一次函数可以用来描述物体的运动规律和 变化趋势。
在通信技术中,一次函数可以用来调制信号和传输数据 。
05

第12章一次函数期末复习一次函数的图象及其性质课件

第12章一次函数期末复习一次函数的图象及其性质课件
一条 直线 .特别地,正比例函数y=kx(k≠0)的图象 是一条过 原点 的直线.
复习要点 3.正比例函数y =kx的图象及其性质
当k>0时,y随着x的增大而增大;图象经过第三、一象限.
当k<0时,y随着x的增大而减小;图象经过第二、四象限.
y
y
y=kx
O
x
y=kx
O
x
复习要点
4.一次函数y=kx+b与正比例函数y=kx图象的关系
A.y=-2x+3
B.y=-2+3x
C.y=-3x-2
D.y=3-2x
4.一次函数y=mx+|m-1|的图象过点(0,2),且y
随x的增大而增大,则m=( B ).
A.-1 B.3 C.1 D.-1或3
练习巩固
5.点A(4,m) ,B(4.7,n)都在直线y=2.3x-5上,则
m与n之间的关系是( B ).
Ox
∴ m+1=-1<0
A.
B.
y
即k<0
y
∵ m<-2 ∴-m>2
O x∴ 1-m>1 +2>0
C.
即b>0
Ox
D.
10.直线y=kx+2与y=2x+k在同一坐标系内的
大致图象是( D ).
y
k>0
k<0
O
x
y k>0
k<0
O
x
A. y k<0 k>0
O
x
B.
y k<0 k<0
b>0
O
x
C.
D.
y
y=kx+b y=kx
O
x
y=kx+b
复习要点 8.用待定系数法求一次函数解析式一般步骤: (1)先设出一次函数解析式为y=kx+b; (2)将已知两点的坐标代入所设的解析式,建立

北师大版初二上-一次函数讲义全精选全文

北师大版初二上-一次函数讲义全精选全文

可编辑修改精选全文完整版第四章:一次函数◆4.1函数1.函数的概念一般地,在一个变化过程中有两个变量x和y,如果给定一个x值,相应地就确定了一个y 值,那么我们称y是x的函数.其中x是自变量,当自变量取一个值时,另一个变量就有唯一确定的值与它对应,这也是我们判断两个变量是否构成函数关系的依据.辨误区自变量与另一个变量的对应关系若y是x的函数,当x取不同的值时,y的值不一定不同.如:y=x2中,当x=2,或x=-2时,y的值都是4.[例1-1] 下列关于变量x,y的关系式:①x-3y=1;②y=|x|;③2x-y2=9.其中y是x 的函数的是< >.A.①②③ B.①② C.②③ D.①②[例1-2] 已知y=2x2+4,<1>求x取错误!和-错误!时的函数值;<2>求y取10时x的值..谈重点函数中变量的对应关系当自变量取一个值时,另一个变量就会有唯一的值与之相对应;当另一个变量取某一数值,则自变量并不一定有唯一的值与之相对应,所以另一个变量与自变量并不是一一对应的关系.2.函数关系式用来表示函数关系的等式叫做函数关系式,也称为函数解析式或关系表达式.谈重点函数关系式中的学问①函数关系式是等式.②函数关系式中指明了哪个是自变量,哪个是函数.通常等式右边的代数式中的变量是自变量,等式左边的一个字母表示函数.③函数的解析式在书写时有顺序性.例如,y=x+1是表示y是x的函数.若写成x=y-1就表示x是y的函数.也就是说:求y与x的函数关系式,必须是用只含变量x的代数式表示y,即得到的等式<解析式>左边只含一个变量y,右边是含x的代数式.[例2]已知等腰三角形的周长为36,腰长为x,底边上的高为6,若把面积y看做腰长x的函数,试写出它们的函数关系式.3.自变量的取值范围<1>使函数有意义的自变量的全体取值叫做自变量的取值范围.<2>自变量的取值范围的确定方法:首先,要考虑自变量的取值必须使解析式有意义.当解析式是整式时,自变量的取值范围是全体实数;当解析式是二次根式时,自变量的取值范围是使被开方数不小于0的实数;当解析式中含有零整数幂或负整数指数幂时,自变量的取值应使相应的底数不为0;其次,当函数解析式表示实际问题时,自变量的取值还必须使实际问题有意义.[例3]若等腰三角形的周长为50 cm,底边长为x cm,一腰长为y cm,y与x的函数关系式为y=错误!<50-x>,则变量x的取值范围是__________.4.函数的表示方法函数的表示方法一般有三种:列表法、图象法、解析法,以解析法应用较多.有的函数可以用三种方法中的任何一种来表示,而有的只能用其中的一种或两种来表示.<1>列表法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值,这种表示函数关系的方法称为列表法.<2>图象法:通过建立平面直角坐标系,以自变量取的每一个值为横坐标,以相应的函数值为纵坐标,描出每一个点,由所有这些点组成的图形称为这个函数的图象,这种表示函数关系的方法称为图象法.<3>解析法:用式子表示函数关系的方法称为解析法,这样的式子称为函数的解析式.析规律函数的三种表示方法三种表示方法各有优缺点,应用时要视具体情况,选择适当的表示方法,或将三种方法结合使用.①列表法:优点是能明显地显现出自变量与对应的函数值,缺点是取值有限;②图象法:优点是形象、直观、清晰地呈现出函数的一些性质,缺点是求得的函数值是近似的;③解析法:优点是简明扼要、规范准确,并且可以根据解析式列表、画图象,进而研究函数的性质;缺点是有些函数无法写出解析式,只能列出表格或画出图象来表示.[例4] 你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x ,瓶中水面的高度为y ,下面能大致表示上面故事情节的图象是< >.5.怎样判定函数关系<1>从关系式判定函数由函数的定义知道,在某个变化过程中,有两个变量x 和y ,对于x 每一个确定的值,y 都有且只有一个值与之对应,当x 取不同的值时,y 的值可以相等也可以不相等,但如果一个x 的值对应着两个不同的y 值,那么y 一定不是x 的函数.根据这一点,我们可以判定一个关系式是否表示函数.<2>从表格中判定函数根据函数的定义知道,从表格中理解函数仍然是先看是否只有两个变量,再看对于变量x 每一个确定的值,y 是否都有唯一的值和它对应,也就是说x 若取相同的值,y 必须是相同的值.<3>从图象上判定函数根据函数的定义知道,每一个x 值只能对应唯一的一个y 值,因此要判断哪些图形表示的是函数,只要在所给的自变量的取值范围内任作一条垂直于x 轴的直线,若直线与所给图形只有一个交点,则说明这个图形表示的是函数,若交点不止一个,则一定不是函数.[例5-1] 下列表格中能反映y 是x 的函数的是< >.A x -1 1 2 3 -1 y 0 2 4 8 10B x 0 1 2 3 0 y -2 2 3 4 6C x 2 2 2 2 2 y -1 0 1 1 3D x -1 1 2 3 4 y 0 2 4 8 10[例5-2] y x 6.如何判断同一函数学习了函数的概念,判断两个函数是否表示同一函数要看它们是不是满足以下三个条件:<1>自变量的取值范围完全相同.<2>函数值的取值范围完全相同.<3>变形后,两个函数的解析式是一致的,即自变量和函数的对应关系完全相同.如果两个函数满足以上三个条件,那么它们是同一函数.解答这类问题的关键是正确理解上述的三个条件.☆函数的自变量取值范围和解析式为函数的两个基本条件,判断两个函数是否相等的关键是看自变量取值范围和解析式.自变量取值范围和函数值分别相同的函数不一定是相等函数.[例6-1] 下列函数中,与y =x 表示同一个函数的是< >.A .y =错误!B .y =|x |C .y =<错误!>2D .y =错误![例6-2]下列各组函数中,哪些是同一函数:①y x =与1y x =+;②1,y x x =-为实数,与1,y x x =-为自然数;③24y x =-与22y x x =-+④11y x =+与11u x =+; ⑤2y x x =2y x =; ⑥2||y x =与2,02,0x x y x x ≥⎧=⎨-<⎩; 7.函数图象的实际应用函数的图象是由点组成的,每个点都具有实际意义,利用函数的图象可以反映实际问题中的关系,同样通过观察函数的图象也可以得到关于实际问题的相关信息.可以说,函数的图象是我们解决实际问题的有效手段和重要的工具.解决函数图象选择问题的关键是在阅读反映实际问题的文字语言的同时,对图象进行观察、分析,获取有效的解题信息.解答这类问题主要是利用数形结合的思想分析问题、解决问题.[例7]父亲节,学校"文苑"专栏登出了某同学回忆父亲的小诗:"同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还."如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,那么下面与上述诗意大致吻合的图象是< >.………………………………………………………………………………◆4.2一次函数与正比例函数1.一次函数的定义若两个变量x,y之间的关系式可以表示成y=kx+b<k,b为常数,k≠0>的形式,则称y是x的一次函数<x是自变量>.谈重点一次函数的条件函数是一次函数必须符合下列两个条件:<1>关于两个变量x,y的次数是1;<2>必须是关于两个变量的整式.[例1]下列函数中,是一次函数的是< >.A.y=7x2B.y=x-9 C.y=错误! D.y=错误!2.正比例函数的定义对于一次函数y=kx+b,当b=0,即y=kx<k为常数,且k≠0>时,我们称y是x的正比例函数.辨误区一次函数与正比例函数的关系需要注意的是正比例函数是一次函数的特殊情况,特殊之处在于b=0,且k≠0,因此,正比例函数一定是一次函数,但一次函数并不一定是正比例函数.[例2]下列函数中,是正比例函数的是< >.A.y=-2x B.y=-2x+1 C.y=-2x2D.y=-错误!辨误区正比例函数的判断要判断一个函数是否是正比例函数,首先看它是否为一次函数,也就是能否转化为y=kx +b<k≠0>的形式;其次要清楚正比例函数是特殊的一次函数,函数解析式能否转化为y=kx<k≠0>的形式.3.根据条件列一次函数关系式列函数关系式是培养数学应用能力和抽象思维能力的一种方法,解决这类问题的基本思路为:首先要认真审题,抓住关键词,找出问题中的变量并用字母表示,然后根据题意列出函数关系式.点技巧如何列函数关系式列关系式时,一定要先知道两个变量,并且弄清谁是自变量.[例3] 甲、乙两地相距30 km,某人从甲地以每小时4 km的速度走了t h到达丙地,并继续向乙地走.<1>试分别确定甲、丙两地距离s1<km>及丙、乙两地距离s2<km>与时间t<h>之间的函数关系式.<2>它们是什么函数.4.一次函数与正比例函数的联系与区别若两个变量x,y之间的关系可以表示成y=kx+b<k,b为常数,k≠0>的形式,则称y是x 的一次函数,特别地当b=0时,称y是x的正比例函数,显然正比例函数是一次函数,而一次函数不一定是正比例函数,正比例函数是一次函数的特殊情况.区别:①正比例函数是一次函数,但一次函数不一定是正比例函数;②正比例函数的图象一定经过原点及经过两个象限,但一次函数一般不经过原点,通常情况下要经过三个象限.__①两种函数的图象都是一条直线;②两种函数的增减性相同;③当b=0时,一次函数转化为正比例函数,因此正比例函数是一次函数的特例.[例4-1]在下列函数中,x是自变量,哪些是一次函数?哪些是正比例函数?<1>y=3x;<2>y=错误!;<3>y=-3x+1;<4>y=x2.[例4-2] 已知正比例函数中自变量每增加一个单位,函数值就减少2个单位,求函数的解析式.5.用一次函数解决实际问题函数与我们的生活息息相关,生活中的许多问题可以通过函数得以解决,如何才能正确地确定两个变量之间的函数关系式呢?具体地说和列一元一次方程解应用题基本相似,即弄清题意和题目中的数量关系,找到能够表示应用题全部含义的一个相等的关系,根据这个相等的数量关系式,列出所需的代数式,从而列出两个变量之间的关系式.辨误区写解析式,定自变量的范围通常确定一个函数,不仅要确定这个函数的解析式,还要确定这个函数的自变量的取值范围.[例5] 一天老王骑摩托车外出旅游,刚开始行驶时,油箱中有油9 L,行驶了1 h后发现已耗油1.5 L.<1>求油箱中的剩余油量Q<L>与行驶的时间t<h>之间的函数关系式,并求出自变量t的取值范围;<2>如果摩托车以60 km/h的速度匀速行驶,当油箱中的剩余油量为3 L时,老王行驶了多少千米?………………………………………………………………………………◆4.3一次函数的图象1.函数的图象对于一个函数,我们把它的自变量x与对应的变量y的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组成的图形就叫做该函数的图象.谈重点函数图象与点的坐标的关系<1>函数图象上的任意点P<x,y>必满足该函数关系式.<2>满足函数关系式的任意一对x,y的值,所对应的点一定在该函数的图象上.<3>判定点P<x,y>是否在函数图象上的方法是:将点P<x,y>的坐标代入函数表达式,如果满足函数表达式,这个点就在函数的图象上;如果不满足函数的表达式,这个点就不在函数的图象上.[例1] 判断下列各点是否在函数y=2x-1的图象上.A<2,3>, B<-2,-3>.2.函数图象的画法画函数图象的一般步骤:<1>列表:列表给出自变量与函数的一些对应值,通常把自变量x的值放在表的第一行,其对应函数值放在表的第二行,其中x的值从小到大.<2>描点:以表中每对对应值为坐标,在平面直角坐标系内描出相应的点.描点时一般把关键的点准确地描出,点取得越多,图象越准确.<3>连线:按照自变量从小到大的顺序,把所描的点用平滑的曲线连接起来.释疑点平滑曲线的特点所谓的"平滑曲线",现阶段可理解为符合图象的发展趋势、让人感觉过渡自然、比较"平""滑"的线,实际上有时是直线.[例2] 作出一次函数y=-2x-1的图象.分析:取几组对应值,列表,描点,连线即可.解:列表:x …-2-101…y …31-1-3…描点:以表中各组对应值作为点的坐标,在坐标系中描出相应的点.连线:把这些点连起来.注:一次函数y=-2x-1的图象是直线,连线时,两端要露头.3.一次函数的图象和性质<1>一次函数的图象和性质①一次函数的图象:一次函数y=kx+b<k≠0>的图象是一条直线.由于两点确定一条直线,因此画一次函数的图象,只要描出图象上的两个点错误!,过这两点作一条直线就行了.我们常常把这条直线叫做"直线y=kx+b".②一次函数中常量k,b<k≠0>:直线y=kx+b<k≠0>与y轴的交点是<0,b>,当b>0时,直线与y轴的正半轴相交;当b<0时,直线与y轴的负半轴相交;当b=0时,直线经过原点,此时一次函数即为正比例函数.一次函数y=kx+b中的k,决定了直线的倾斜程度,k的绝对值越大,则直线越接近y轴,反之,越靠近x轴.③一次函数y=kx+b<k≠0>的性质:当k>0时,直线y=kx+b从左向右上升,函数y的值随自变量x的增大而增大;当k<0时,直线y=kx+b从左向右下降,函数y的值随自变量x的增大而减小.<2>正比例函数的图象和性质①正比例函数的图象:一般地,正比例函数y=kx<k是常数,k≠0>的图象是一条经过原点的直线,我们称它为直线y=kx.在画正比例函数y=kx的图象时,一般是经过点<0,0>和<1,k>作一条直线.②正比例函数y=kx的性质:当k>0时,直线y=kx经过第一、三象限,从左往右上升,即y随x的增大而增大;当k<0时,直线y=kx经过第二、四象限,从左往右下降,即y随x 的增大而减小.[例3-1]作出一次函数y=-3x+3的图象.[例3-2]若一次函数y=<2m-6>x+5中,y随x增大而减小,则m的取值范围是________.[例3-3]下图表示一次函数y=kx+b与正比例函数y=kx<k,b是常数,且k≠0>图象的是< >.4.k,b的符号与直线所过象限的关系学习了一次函数y=kx+b<k≠0>,我们知道一次函数图象经过哪些象限是由k,b的符号决定的.一般分为四种情况:<1>k>0,b>0时,图象过第一、二、三象限;<2>k>0,b<0时,图象过第一、三、四象限;<3>k<0,b>0时,图象过第一、二、四象限;<4>k<0,b<0时,图象过第二、三、四象限.析规律 k,b的符号与直线的关系根据一次函数y=kx+b中k,b的符号可以确定图象所经过的象限;根据函数图象所经过的象限,可以确定k,b的符号.解决有关问题,应熟练把握k,b的符号与函数图象所经过象限的几个类型,并能灵活应用.[例4-1] 一次函数y=kx+b的图象经过第二、三、四象限,则正比例函数y=kbx图象经过哪个象限?[例4-2]如图是一次函数y=kx+b的图象的大致位置,试分别确定k,b的正负号,并判断一次函数y=<-k-1>x-b的图象所经过的象限.5.一次函数图象与坐标轴的交点一次函数的图象是直线,这条直线与x轴交于点错误!,与y轴交于点<0,b>.考查直线与两坐标轴的交点的问题常见的有三类:<1>判定直线所过的象限,一般给出函数关系式,判定直线经过哪几个象限或确定不经过哪个象限.<2>求直线的解析式,一般先设出函数关系式为y=kx+b<k≠0>,把已知的两点的坐标分别代入,求出k,b的值即可.<3>求两交点与坐标轴围成的三角形的面积,由于这个三角形是直角三角形,利用面积公式即可.[例5] 如图,已知直线y=kx-3经过点M<-2,1>,求此直线与x轴,y轴的交点坐标,并求出与坐标轴所围的三角形的面积.6.关于一次函数的最值问题对于一般的一次函数,由于自变量的取值范围可以是全体实数,因此不存在最大、最小值<简称"最值">,但在实际问题中,因题目中的自变量受到实际问题的限制,所以就有可能出现最大值或最小值.求解这类问题,先分析问题中两个变量之间的关系是否适合一次函数模型,再在自变量允许的取值范围内建立一次函数模型.运用一次函数解决实际问题的关键是根据一次函数的性质来解答.除正确确定函数表达式外,利用自变量取值范围去分析最值是解题的关键."在生活中学数学,到生活中用数学",是新课标所倡导的一个主旨之一,在考题中,有许多利用数学知识求解生活中的实际问题的试题,考查同学们利用所学知识求解实际问题的能力.[例6] 某报刊销售亭从报社订购晚报的价格是0.7元,销售价是每份1元,卖不掉的报纸可以以每份0.2元的价格退回报社,若每月按30天计算,有20天每天可卖出100份报纸,其余10天每天只能卖出60份,但每天报亭从报社订购的份数必须相同,报亭每天从报社订购多少份报纸,才能使每月所获得的利润最大?………………………………………………………………………………◆4.4一次函数的应用1.确定一次函数表达式<1>借助图象确定函数的表达式先观察直线是否过坐标原点,若过原点,则为正比例函数,可设其关系式为y=kx<k≠0>;若不过原点,则为一次函数,可设其关系式为y=kx+b<k≠0>;然后再观察图象上有没有明确几个点的坐标.对于正比例函数,只要知道一个点的坐标即可;对于一次函数,则需要知道两个点的坐标;最后将各点坐标分别代入y=kx或y=kx+b中,求出其中的k,b,即可确定出其关系式.<2>确定正比例函数、一次函数表达式需要的条件①由于正比例函数y=kx<k≠0>中只有一个未知系数k,故只要一个条件,即一对x,y的值或一个点的坐标,就可以求出k的值,确定正比例函数的表达式.②一次函数y=kx+b<k≠0>有两个未知系数k,b,需要两个独立的关于k,b的条件,求得k,b的值,这两个条件通常是两个点的坐标或两对x,y的值.[例1]如图,直线AB对应的函数表达式是< >.A.y=-错误!x+3 B.y=错误!x+3 C.y=-错误!x+3 D.y=错误!x+3点技巧用待定系数法求直线解析式由图象观察可知该函数为一次函数,故应设成y=kx+b<k≠0>的形式,再将A,B两点坐标代入该关系式,即可求出k,b,从而确定出具体的关系式.2.待定系数法<1>定义:先设出式子中的未知系数,再根据条件求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知数也称为待定系数.<2>用待定系数法求解析式的一般步骤:①根据已知条件写出含有待定系数的解析式;②将x,y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程<组>,得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求函数的解析式.[例2-1] 一次函数图象如图所示,求其解析式.[例2-2] 在直角坐标系中,一次函数y=kx+b的图象经过三点A<2,0>,B<0,2>,C<m,3>,求这个函数的表达式,并求m的值.解:根据题意,得2k+b=0①,b=2, km+b=3②,把b=2代入①,得2k+2=0,即k=-1;把b=2,k=-1代入②,得m=-1.故函数的表达式为y=-x+2.3.一次函数的实际应用<1>通过图象获取信息通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和分析,观察函数图象时,首先要看横轴、纵轴分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系.释疑点函数图象中的特殊点观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助.<2>一次函数图象的应用一次函数和正比例函数是我们接触到的最简单的函数,它们的图象和性质在现实生活中有着广泛的应用.利用一次函数和正比例函数的图象解决问题是本节的一个重点,这部分内容在中考中占有重要的地位.谈重点函数y=kx+b图象的变化形式在实际问题中,当自变量的取值范围受到一定的限制时,函数y=kx+b<k≠0>的图象就不再是一条直线.要根据实际情况进行分析,其图象可能是射线、线段或折线等等.[例3-1]甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y<m>与挖掘时间x<h>之间的关系如图所示,请根据图象所提供的信息解答下列问题:<1>乙队开挖到30 m时,用了________ h.开挖6 h时甲队比乙队多挖了__________ m.<2>请你求出:①甲队在0≤x≤6的时段内,y与x之间的函数关系式;②乙队在2≤x≤6的时段内,y与x之间的函数关系式.<3>当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?[例3-2] 某单位急需用车,但又不准备买车,他们准备和一个体车主或一国有出租车公司签订月租车合同.设汽车每月行驶x km,应付给个体车主的月费用为y1元,应付给国有出租车公司的月费用是y2元,y1,y2分别与x之间的函数关系图象<两条射线>如图,观察图象回答下列问题:<1>每月行驶的路程在什么范围内时,租国有出租车公司的车合算?<2>每月行驶的路程等于多少时,租两家车的费用相同?<3>如果这个单位估计每月行驶的路程为2 600 km,那么这个单位租哪家车合算?析规律函数图象交点规律两函数图象在同一坐标系中,当取相同的自变量时,下方图象对应的函数的函数值小;交点处的函数值相等.4.一次函数和一元一次方程的关系当一次函数y=kx+b<k≠0>中的函数值为0时,可得0=kx+b即kx+b=0,这在形式上变成了求关于x的一元一次方程,也就是说,当一次函数y=kx+b的函数值为0时,相应的自变量的值即为方程kx+b=0的解;若从图象上来看,则可看做函数y=kx+b的图象与x轴的交点的横坐标,即为方程kx+b=0的解.由此可见,方程与函数是密不可分的.[例4] 某汽车生产厂对其生产的A型汽车进行耗油量实验,实验中汽车视为匀速行驶.已知油箱中的余油量y<L>与行驶时间t<h>的关系如下表,与行驶路程x<km>的关系如下图.请你根据这些信息求A行驶时间t<h>012 3油箱余油量y<L>1008468525一次函数y=kx+b<k≠0>的图象可以看做由直线y=kx平移|b|个单位长度而得到<当b >0时,向上平移;当b<0时,向下平移>.实际上就是指一次函数y=kx+b的图象沿y轴平移时,在b的位置上按照"上加下减"的规律进行.如:一次函数l1:y=错误!x+2的图象可以看做是由正比例函数l:y=错误!x的图象沿y轴向上平移2个单位长度得到的;一次函数l2:y=错误!x-2的图象可以看做是由正比例函数l:y=错误!x的图象沿y轴向下平移2个单位长度得到的.思考:函数图像左右移动解析式如何变化呢?[例5] 如图所示,将直线OA向上平移1个单位长度,得到一个一次函数的图象,那么这个一次函数的解析式是__________.析规律平移中的函数解析式解决平移问题可以对性质进行记忆直接运用,也可以找出平移后借助坐标系运用待定系数法求解.平移前后k的值不变,改变的是b的值.6.函数、方程和不等式的完美结合从"数"的角度看,由于任何一元一次方程都可以转化为ax+b=0<a,b为常数,且a≠0>的形式,所以解一元一次方程可以看做:当一次函数y=ax+b的值为0时,求相应的自变量的值;反之,求自变量x为何值时,一次函数y=ax+b的值为0,只要求出方程ax+b=0的解即可.由于任何一元一次不等式都可以转化为类似ax+b>0或ax+b<0的形式,所以解一元一次不等式可以看做:当一次函数y=ax+b的值大<小>于0时,求自变量相应的取值范围;反之,求一次函数y=ax+b的值何时大<小>于0时,只要求出不等式ax+b>0或ax+b<0的解集即可.从一元一次方程、一元一次不等式与一次函数的关系可以看出,三者最终能用函数观点统一起来,并且达到一种完美的结合,这种结合,又常常在一些考题中得以体现.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数的图象和性质一、知识要点:1、一次函数:形如y=kx+b (k≠0, k, b为常数)的函数。

注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。

2、图象:一次函数的图象是一条直线,(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-,0)(2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x 平行。

3、性质:(1)图象的位置:(2)增减性k>0时,y随x增大而增大k<0时,y随x增大而减小4.求一次函数解析式的方法求函数解析式的方法主要有三种(1)由已知函数推导或推证(2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。

(3)用待定系数法求函数解析式。

“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况:①利用一次函数的定义构造方程组。

②利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b 平行于y=kx,即由k来定方向。

③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。

④利用题目已知条件直接构造方程。

二、例题举例:例1.已知y=,其中=(k≠0的常数),与成正比例,求证y与x也成正比例。

证明:∵与成正比例,设=a(a≠0的常数),∵y=, =(k≠0的常数),∴y=·a=akx,其中ak≠0的常数,∴y与x也成正比例。

例2.已知一次函数=(n-2)x+-n-3的图象与y轴交点的纵坐标为-1,判断=(3-)是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。

解:依题意,得解得 n=-1,∴=-3x-1,=(3-)x, 是正比例函数;=-3x-1的图象经过第二、三、四象限,随x的增大而减小;=(3-)x的图象经过第一、三象限,随x的增大而增大。

说明:由于一次函数的解析式含有待定系数n,故求解析式的关键是构造关于n的方程,此题利用“一次函数解析式的常数项就是图象与y轴交点纵坐标”来构造方程。

例3.直线y=kx+b与直线y=5-4x平行,且与直线y=-3(x-6)相交,交点在y轴上,求此直线解析式。

分析:直线y=kx+b的位置由系数k、b来决定:由k来定方向,由b来定与y轴的交点,若两直线平行,则解析式的一次项系数k相等。

例 y=2x,y=2x+3的图象平行。

解:∵y=kx+b与y=5-4x平行,∴k=-4,∵y=kx+b与y=-3(x-6)=-3x+18相交于y轴,∴b=18,∴y=-4x+18。

说明:一次函数y=kx+b图象的位置由系数k、b来决定:由k来定方向,由b来定点,即函数图象平行于直线y=kx,经过(0, b)点,反之亦成立,即由函数图象方向定k,由与y轴交点定b。

例4.直线与x轴交于点A(-4,0),与y轴交于点B,若点B到x轴的距离为2,求直线的解析式。

解:∵点B到x轴的距离为2,∴点B的坐标为(0,±2),设直线的解析式为y=kx±2, ∵直线过点A(-4,0),∴0=-4k±2, 解得:k=±,∴直线AB的解析式为y=x+2或y=-x-2.说明:此例看起来很简单,但实际上隐含了很多推理过程,而这些推理是求一次函数解析式必备的。

(1)图象是直线的函数是一次函数;(2)直线与y轴交于B点,则点B(0,);(3)点B到x轴距离为2,则||=2;(4)点B的纵坐标等于直线解析式的常数项,即b=;(5)已知直线与y轴交点的纵坐标,可设y=kx+,下面只需待定k即可。

例5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,求正比例函数和一次函数的解析式。

分析:自画草图如下:解:设正比例函数y=kx,一次函数y=ax+b,∵点B在第三象限,横坐标为-2,设B(-2,),其中<0,∵=6,∴AO·||=6,∴=-2,把点B(-2,-2)代入正比例函数y=kx,得k=1 把点A(-6,0)、B(-2,-2)代入y=ax+b,得解得:∴y=x, y=-x-3即所求。

说明:(1)此例需要利用正比例函数、一次函数定义写出含待定系数的结构式,注意两个函数中的系数要用不同字母表示;(2)此例需要把条件(面积)转化为点B的坐标。

这个转化实质含有两步:一是利用面积公式AO·BD=6(过点B作BD⊥AO于D)计算出线段长BD=2,再利用||=BD及点B在第三象限计算出=-2。

若去掉第三象限的条件,想一想点B的位置有几种可能,结果会有什么变化?(答:有两种可能,点B可能在第二象限(-2,2),结果增加一组y=-x, y=(x+3).例6.已知正比例函数y=kx (k<0)图象上的一点与原点的距离等于13,过这点向x轴作垂线,这点到垂足间的线段和x轴及该图象围成的图形的面积等于30,求这个正比例函数的解析式。

分析:画草图如下:则OA=13,=30,则列方程求出点A的坐标即可。

解法1:设图象上一点A(x, y)满足解得:;;;代入y=kx (k<0)得k=-, k=-.∴y=-x或y=-x。

解法2:设图象上一点A(a, ka)满足由(2)得=-,代入(1),得(1+)·(-)=.整理,得60+169k+60=0.解得 k=-或k=-.∴ y=-x或y=-x.说明:由于题目已经给定含有待定系数的结构式y=kx,其中k为待定系数,故解此例的关键是构造关于k的方程。

此例给出的两个解法代表两种不同的思路:解法1是把已知条件先转化为求函数图象上一点的坐标,构造方程解出,再求k;解法2是引进辅助未知数a,利用勾股定理、三角形面积公式直接构造关于a、k的方程组,解题时消去a,求出k值。

例7.在直角坐标系x0y中,一次函数y=x+的图象与x轴,y轴,分别交于A、B两点,点C 坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D两点的一次函数的解析式。

分析:由已知可得A点坐标(-3,0),B点坐标(0,),点C是确定的点(1,0),解题的关键是确定点D的坐标,由点D在x轴上,以∠BCD=∠ABD的条件,结合画草图可知∠BCD的边BC确定,顶点C确定,但边CD可以有两个方向,即点D可以在C点右侧,也可以在C点左侧,因此解此题要分类讨论。

解:∵点A、B分别是直线y=x+与x轴和y轴交点,∴A(-3,0),B(0,),∵点C坐标(1,0)由勾股定理得BC=,AB=,设点D的坐标为(x, 0),(1)当点D在C点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴=∴=- - - - ①∴=∴8-22x+5=0∴x1=, x2=,经检验:x1=, x2=,都是方程①的根。

∵x=,不合题意,∴舍去。

∴x=,∴D点坐标为(, 0)。

设图象过B、D两点的一次函数解析式为y=kx+b,∴∴所求一次函数为y=-x+(2)若点D在点C左侧则x<1,可证△ABC∽△ADB,∴∴- - - - ②∴8-18x-5=0∴x1=-, x2=,经检验x1=-, x2=,都是方程②的根。

∵x2=不合题意舍去,∴x1=-,∴D点坐标为(-, 0),∴图象过B、D(-, 0)两点的一次函数解析式为y=4x+综上所述,满足题意的一次函数为y=-x+或y=4x+.例8.已知:如图一次函数y=x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB 的垂线交AB于点E,交y轴于点D,求点D、E的坐标。

解:直线y=x-3与x轴交于点A(6,0),与y轴交于点B(0,-3),∴OA=6,OB=3,∵OA⊥OB,CD⊥AB,∴∠ODC=∠OAB,∴cot∠ODC=cot∠OAB,即∴OD===8.∴点D 的坐标为(0,8),设过CD 的直线解析式为y=kx+8,将C( 4,0)代入 0=4k+8, 解得 k=-2 ∴直线CD :y=-2x+8,由 解得∴点E 的坐标为(,-)说明:由于点E 既在直线AB 上,又在直线CD 上,所以可以把两直线的解析式联立,构成二元一次方程组,通过解方程组求得。

一次函数综合提高题 第一部分:灵活应用1.如果一次函数y=mx+1与y=nx -2的图象相交于x 轴上一点,那么m ∶n=2.一次函数3y x =+与2y x b =-+的图象交于y 轴上一点,则b = .3. 直线y mx n =+如图所示,化简:2m n m -= . 4.如图,相交于P (2,2)点的互相垂直的直线1l 与x 轴的正半轴交点为A ,2l 与y 轴的正半轴交点为B ,则四边形OAPB 的面积为_____.5.平行四边形ABCD 的对角线交点O 为直角坐标系的坐标原点,点A (-2,-1),点B (21,-1),则点C 和D 的坐标分别为_______ 6.已知点P (x ,-2)和点Q (3,y )不重合,则当P 、Q 关于_________对称时,x=-3,y=2;当PQ 垂直y 轴,x________,y_________. 7.若一次函数32y x m =+和12y x n =-+的图象都经过点(20)-,,且与y 轴分别交于B C 、两点,那么ABC △的面积是8.若函数2(1)2y m x m =++-与y 轴的交点在x 轴的上方,且10m m <,为整数,则符Oyxy mx n =+(第3题)合条件的m 有9.点P 坐标为(a -2,63+a ),且点P 到两坐标轴的距离相等,则点P 的坐标是10.已知直线233y x =-+与x 轴交于点A ,与y 轴交于点B ,直线2y x b =+经过点B 且与x 轴交于点C ,求ABC △的面积.11.已知一次函数y=kx+b 的图象过点(1,2),且与y 轴交于点P ,若直线y=-0.5x+2与y 轴的交点为Q ,点Q 与点p 关于x 轴对称,求这个函数解析式.12.已知直线y=2x+1.(1)求已知直线与y 轴交点M 的坐标;(2)若直线y=kx+b 与已知直线关于y 轴对称,求k ,b 的值.13.已知y+2与x 成正比例,且x=-2时,y=0.(1)求y 与x 之间的函数关系式; (2)画出函数的图象;(3)观察图象,当x 取何值时,y ≥0?(4)若点(m ,6)在该函数的图象上,求m 的值;(5)设点P 在y 轴负半轴上,(2)中的图象与x 轴、y 轴分别交于A ,B 两点,且S △ABP=4,求P 点的坐标.14.已知y+a 与x+b (a ,b 为是常数)成正比例.(1)y 是x 的一次函数吗?请说明理由; (2)在什么条件下,y 是x 的正比例函数?15.如图,直线L :221+-=x y 与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点 C (0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动。

相关文档
最新文档