数理方程1 (1)
数理方程练习题(1)
![数理方程练习题(1)](https://img.taocdn.com/s3/m/0ac2484be45c3b3567ec8baa.png)
一、填空题1.二阶线性偏微分方程xx xy yy x y Au Bu C u D u Eu Fu G +++++=(其中各系数均为x 和y 的函数)在某一区域的性质由式子:24B AC -的取值情况决定,取值为正对应的是( 双曲 )型,取值为负对应的是( 椭圆)型,取值为零对应的是( 抛物 )型。
2.在实际中广泛应用的三个典型的数学物理方程:第一个叫( 弦自由横振动 ),表达式为(2tt xx u a B u =),属于(双曲)型; 第二个叫( 热传导 ),表达式为( 2t xx u a B u =),属于( 椭圆 )型; 第三个叫(拉普拉斯方程和泊松方程),表达式为(0x x y yu u+=,(,)xx yy u u x y ρ+=-),属于(椭圆)型;二、选择题1.下列泛定方程中,属于非线性方程的是[ B ](A) 260t xx u u xt u ++=; (B) sin i t tt xx u u u e ω-+=; (C) ()220y xxxxy u x yuu +++=; (D) 340t x xx u u u ++=;2. 下列泛定方程中,肯定属于椭圆型的是[ D ](A)0xx yy u xyu +=; (B) 22x xx xy yy x u xyu y u e -+=;(C)0xx xy yy u u xu +-=; (D)()()()22sin sin 2cos xx xy yy x u x u x u x ++=; 3. 定解问题()()()()()()2,0,00,,0,0,,0tt xx x x t u a u t x lu t u l t u x x u x xϕφ⎧=><<⎪==⎨⎪==⎩的形式解可写成[ D ](A) ()01,coscos2n n a n at n x u x t a ll ππ∞==+∑(B) ()001,coscosn n n at n x u x t a b t a llππ∞==++∑(C) ()0,cos sin cos n nn n at n at n x u x t a b l l l πππ∞=⎡⎤=+⎢⎥⎣⎦∑(D) ()001,cos sin cos n n n n at n at n xu x t a b t a b l llπππ∞=⎡⎤=+++⎢⎥⎣⎦∑ 4. 若非齐次边界条件为12(0,)(),(,)()x u t t u l t t μμ==,则辅助函数可取[C ] (A) ()()12(,)W x t t x t μμ=+; (B) ()()21(,)W x t t x t μμ=+; (C) ()()()12(,)W x t x l t t μμ=-+; (D) ()()()21(,)W x t x l t t μμ=-+;三、求解下列问题(1)2,0,tt xx u a u t x =>-∞<<∞ ,其中a 为常数。
数理方程知识点总结
![数理方程知识点总结](https://img.taocdn.com/s3/m/3fb78b12dc36a32d7375a417866fb84ae45cc36d.png)
数理方程知识点总结数理方程是数学理论中的重要分支,其主要研究方向是解决各种类型的方程,包括一元多项式方程、二元一次方程以及各种变形形式的方程等。
数理方程的解决方法非常多元化,通常采用代数、几何、分析等多种方法进行解决,本文将对数理方程的相关知识点进行总结。
一、一元多项式方程1、一元n次多项式方程形如$f(x) = a_0x^n + a_1x^{n-1} + ... + a_{n-1}x + a_n = 0$,其中$a_0 \neq 0$, $n$为任意正整数,求出方程的根$x_1, x_2, ...,x_n$。
求解该方程的方法有以下几种:(1)牛顿迭代法牛顿迭代法的基本思想是:将一元n次多项式方程重新构造成$x = g(x)$的形式,并求该函数在曲线上的切线截距,不断通过切线截距逼近根的值。
具体算法如下:• 任选一个随机数$x_0$作为初值;• 计算$y = f(x)$在$x = x_0$处的导数$f'(x_0)$;• 根据切线公式$y = f(x_0) + f'(x_0)(x - x_0)$,计算出当$y = 0$时的$x$值$x_1$,即$x_1 = x_0 - f(x_0) / f'(x_0)$;• 重复上述过程,将$x_1$作为$x_0$,计算出$x_2$;• 重复以上步骤,直到$x_n$接近被求解的根。
(2)二分法二分法的基本思想是根据函数值的符号改变区间的端点,使函数在这个区间内单调递增或递减,从而迅速缩小待求解根所在的“搜索区间”,达到求解根的目的。
算法流程如下:• 选定区间$[a, b]$值满足$f(a)f(b) < 0$,即根在$[a, b]$区间内;• 取区间中点$c = (a + b) / 2$,计算$f(c)$;• 如果$f(c) = 0$,即找到根;• 如果$f(a)f(c) < 0$,即根在区间$[a, c]$内,则将$b$更新为$c$;• 如果$f(b)f(c) < 0$,即根在区间$[c, b]$内,则将$a$更新为$c$;• 重复以上过程,不断缩小区间,直到找到根或直到区间长度足够小时停止。
数理方程(PDF)
![数理方程(PDF)](https://img.taocdn.com/s3/m/60831c243868011ca300a6c30c2259010202f398.png)
un( x, t )
=
( An
cos
naπt
l
+
Bn
sin
naπt
l
)
sin
nπx
l
=
Nn
sin(ωnt
+
Sn )sin
nπx
l
其中
Nn
=
( An2
+
Bn2
)
1 2
,
Sn
=
arctg
An Bn
,
ωn
=
nπ a l
特点
最大振幅
初位相
频率
⑴ 弦上各点的频率 ωn 和初位相 Sn 都相同,因而没 有波形的传播现象。
+
Sn )sin
nπx
l
u其有⑴ 特(x中弦点,t 上)N是各n最由=点大无(u振的A穷(幅nx2频多,+t率)个B=nω2振∑)n12 幅,∞n=S和、1n初u初频=n位(位率a相xr,、相ctSt)gn初BAnn位, 相ω都频n各率相=不同nπ相l,a 同因的而驻没
波波⑵叠形弦加的上而传各成播点。现振象幅。| N
⑵ 弦上各点振幅
|
Nn
sin
nπx
l
|
,因点而异 节点
在
x
=
0
,
l n
,
2l n
,...
(n−1)l n
,l
处,振幅永远为0
腹点
在
x
=
l 2n
,
3l 2n
,...
(2
n−1)l 2n
处,振幅最大,为
Nn
un( x, t )
=
数理方程第1讲
![数理方程第1讲](https://img.taocdn.com/s3/m/841a64ca58f5f61fb73666fb.png)
CDx
v+Dv
x+Dx
10
L—每一回路单位的串联电感; C—每一单位长度的分路电容. i LDx v x CDx i+Di
v+Dv x+Dx
11
i v (v Dv) LDx t v i L x t
i LD x v x CDx i+Di
(1.4)
v+Dv x+Dx
12
div D (1.11) J—传导电流面密度,—电荷的体密度.
26
D rot H J t B rot E t div B 0 div D
(1.8) ( 1.9) (1.10) (1.11) (1.12)
D E B H J E
(1.13) (1.14)
1
第一章 一些典型方程和定解条件的推导 §1.1 基本方程的建立
2
例1 弦的振动 设有一根均匀柔软的细弦, 平衡时沿直线拉紧, 而且除受不随时间而变的张力作用外, 不受外 力影响. 下面研究弦作微小横向振动的规律. 所谓"横向"是指全部运动出现在一个平面上, 而且弦上的点沿垂直于x轴的方向运动. 所谓"微小"是指的振动的幅度及弦在任意位 置处切线的倾角都很小, 以致它们的高于一次 方的项都可略而不计.
32
例4 热传导方程 在物体中任取一闭曲面S, 它所包围的区域记 作V. 假设在时刻t区域V内点M(x,y,z)处的温度 为u(x,y,z,t), n为曲面元素DS的法向(从V内指向 V外). 由传热学中傅里叶实验定律可知, 物体在无穷 小时间段dt内, 流过一个无穷小面积dS的热量 dQ与时间dt, 曲面面积dS, 以及物体温度u沿曲 面dS的法线方向的方向导数三者成正比
数理方程 - 01 - 数理方程绪论
![数理方程 - 01 - 数理方程绪论](https://img.taocdn.com/s3/m/d0505772caaedd3383c4d3e2.png)
2015/10/13
11
通解(一般解)
• 一般来讲,一阶偏微分方程的解依赖一个任意函数, 二阶方程依赖两个任意函数。 • 通解或一般解:m 阶偏微分方程的解如果包含有 m 个任意函数。 • 注意:这 m 个函数不能合并,如 f + g 其实就相当于 一个任意函数。
2015/10/13
12
例
• 求 tuxt 2ux 2 xt 的通解
M1
M2 d
O
x
x+x
x
2015/10/13
15
受力分析
3. 惯性力:
▫ 惯性会使物体有保持原有运动状态的倾向,若是以该 物体为参照物,看起来就仿佛有一股方向相反的力作 用在该物体上,故称之为惯性力:F = -ma。 每点的质量为 dm ( x)dx ,每点的加速度为 a utt , 所有点求和得到积分,即惯性力为
2 ▫ 设 v ux ,则化为 vt v 2 x t
▫ 视 x 为参数,则为关于 v 的一阶常微分方程,
2 2 dt dt 2 2 3 t t ▫ 由求解公式可得 v e 2 xe dt G( x) t G ( x) xt 3
《数理方程》第一讲
![《数理方程》第一讲](https://img.taocdn.com/s3/m/99e264dbb14e852458fb573a.png)
通过Ω 的边界流出Ω 外的热量为Q2 , Ω 内温度变化所需要的热量为 Q3 。
10
9.1.2 热传导方程的导出
则
Q1
Q1 Q2 Q3
t2 t1
1.6
F ( x, y, z, t )dVdt
1.7
由热力学的Fourier实验定理得:
t2 u u dQ 2 k d dt Q2 k d dt t1 n n
1.13
16
9.1.2 热传导方程的导出
可得
U U 2U R GU C t L G t C t2 2U 2U U LC RC LG RGU 2 2 t x t 2U I 2I I U R L 2 x IR L t t t t x2 I I U 2U U 2 G C GU C x xt x t x
20
9.1 典型方程的建立
三类典型方程: 波动方程 热传导方程 Poisson方程
utt a 2 u f
ut a 2 u f
u g
21
9.2
定解条件与定解问题
utt a2 u f ut a2 u f
u g 三类方程 如果有解,则其解应该不唯一。 在这众多的解中确定出所需要的解,还需要 增加另外的条件,即定解条件,使之成为定 解问题,在此条件下,再来讨论适定性,即 存在性、唯一性和稳定性。
Q3
t2 t1
u u u k ( cos cos cos )dSdt t1 x y z t2 2u 2u 2u Q2 k 2 2 dvdt 2 t1 y z x
数理方程第1讲-69页PPT资料
![数理方程第1讲-69页PPT资料](https://img.taocdn.com/s3/m/e4a8fdba0912a21615792955.png)
4
方程(1.1)是在自变量x1,x2, …的n维空间Rn 中的一个适 当的区域D内进行考察的,我们要求能找出在D内恒 满足方程(1.1)的那些函数u。如果这种函数存在,那
和时间无关。弦是柔软有弹性的,即它不能抵抗弯矩, 因此在任何时刻弦的张力T总是沿着弦的切线方向。
u
F
△x
Q T
P
a
T
N
O
x
N'
x+△x
x
13
或
综合上述分析,由牛顿第二定律可得
a T si T n si F n x x ttu( 1 . 3 )
又 tanaux ,故 sia n taan ux 1ta2na 1ux2
,薄膜所形成的曲面方程为u=u(x,y)。
5. 拟线性偏微分方程:若非线性方程中未知多元函 数的所有最高阶偏导数都是线性的,而其系数含有 未知多元函数或其低阶偏导数,则称为拟线性偏微 分方程。如书中例1.8
6. 非齐次项和非齐次方程:在线性偏微分方程中, 不含未知函数及其偏导数的非零项称为非齐次项, 而含有该非齐次项的方程称之为非齐次方程。如书 中例1.1
3. 线性偏微分方程:如果一个偏微分方程对于未知 函数及它的所有偏导数来说都是线性的,且方程中 的系数都仅依赖于自变量,那么这样的偏微分方程 就称为线性偏微分方程。
例如: 书中例1.1、1.2
y2u2xy2uu1
x2
y2
(二阶线性偏微分方程)
否则称之为非线性偏微分方程。 书中例1.5
6
4. 半线性偏微分方程:若非线性方程中未知多元函 数的所有最高阶偏导数都是线性的,而其系数不含 有未知多元函数及其低阶偏导数,则称为半线性偏 微分方程。如书中例1.6
研究生课程数理方程(1)
![研究生课程数理方程(1)](https://img.taocdn.com/s3/m/7156e00e81c758f5f71f676d.png)
(4n 2n)! n!(2n n)!0!
(1)n (2n)! 22n (n!)2
(3.1.5)
P2n1 (0) 0
(3.1.6)
上页 下页 返回
前几个勒让德多项式在 [-1,1]上的图形如图所示。
第三章 第一节
Pn (x) P0 (x) P1 ( x)
P4 (x)
P2 (x)
O
P3 (x)
x
x
2
)
n
k
(1)
k
k 0
n
(1) k
k 0
n!
x2n2k
k!(n k)!
可得n阶勒让德多项式的一般形式:
n
Pn
(
x)
2
k 0
2n
(1) k!(n
k (2n 2k k)!(n
)! 2k
)!
xn2k
(3.1.2)
其中
n 2
表示
n 2
的整数部分,从而有 :
上页 下页 返回
第三章 第一节
P2n ห้องสมุดไป่ตู้x)
Pn
(x)
1 dn 2n n!dxn
(x2 1)n
,
n=0,1,2……
(3.1.1)
式(3.1.1)通常称为罗德利格斯(Rodrigues)表达 式,因此可以将前几个勒让德多项式具体写出来:
P0 (x) 1, P1(x) x,
上页 下页 返回
第三章 第一节
P2(x)
1 d2 222! dx2
第三章第三章第一节第一节上页上页上页下页下页下页返回返回返回313316第三章第三章第一节第一节上页上页上页下页下页下页返回返回返回前几个勒让德多项式在11上的图形如图所示
数理方程第一章答案
![数理方程第一章答案](https://img.taocdn.com/s3/m/b9caf2340b4c2e3f572763d2.png)
第一章. 波动方程§1 方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程()⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。
证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ∆。
现在计算这段杆在时刻t 的相对伸长。
在时刻t 这段杆两端的坐标分别为:),();,(t x x u x x t x u x ∆++∆++其相对伸长等于 ),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆-+-∆++∆+θ令→∆x ,取极限得在点x 的相对伸长为x u ),(t x 。
由虎克定律,张力),(t x T 等于),()(),(t x u x E t x T x =其中)(x E 是在点x 的杨氏模量。
设杆的横截面面积为),(x S 则作用在杆段),(x x x ∆+两端的力分别为x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程 tt u x x s x ⋅∆⋅)()(ρxESu t x =),(x x x x x ESu x x |)(|)(-∆+∆+利用微分中值定理,消去x ∆,再令0→∆x 得ux s x )()(ρx∂∂=xESu()若=)(x s 常量,则得22)(tu x ∂∂ρ=))((xu x E x∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为 .0),(,0),0(==t l u t u(2)若l x =为自由端,则杆在l x =的张力xu x E t l T ∂∂=)(),(|l x =等于零,因此相应的边界条件为xu ∂∂|l x ==0同理,若0=x 为自由端,则相应的边界条件为xu ∂∂∣00==x(3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。
《数理方程》课件
![《数理方程》课件](https://img.taocdn.com/s3/m/7c8520d279563c1ec4da7112.png)
a2
2u x2
f
(x,t)
其中 f (x,t) F
也称上式为一维(非齐次)波动方程
16
二、热传导问题
1. 问题描述 考察均匀且各向同性的导热体内温度分布情况。
2. 模型分析 ➢ 均匀:介质密度相同,为常数; ➢ 各项同性:物体的比热、热传导系数为常数; ➢ 体:三维问题; ➢ 物理规律:能量守恒定律、Fourier热传导实验定律 3. 导出方
❖ Chapter 1
1. PDE基础知识(阶,线性,齐次,分类等); 2. 定解问题的提法:基本概念,三类边界条件; 3. PDE解的基本性质。
1
❖ Chapter 2
1. ODE及Fourier级数的补充知识; 2. 定解问题的三类基于分离变量的求法:分离变量,特征函数,
边界条件齐次化; 3. Laplace方程的极坐标形式及其分离变量求解。
5
第一章 一些典型方程和定解条件的推导
1. 前言 2. 基本方程的建立 3. 初始条件与边界条件 4. 定解问题的提法
6
1. 前言
1.1 课程特点及其研究对象
数学物理方程,是指从物理学、力学及其他自然科学、 技术科学中所产生的偏微分方程,有时也包括与此有关的积分 方程,微分积分方程,甚至常微分方程等。
1. Laplace方程边值问题四种提法; 2. 第一、第二Green公式; 3. 调和函数的基本性质; 4. 特殊区域上的Green函数及其求解定解问题。
4
所需知识
高等数学 常微分方程 积分变换
课程评价(Grading Policies)
期末考试成绩 (80%左右)
平时成绩 (20%左右)
x
ds 1 ux 2 dx dx
数理方程1
![数理方程1](https://img.taocdn.com/s3/m/648c03a50029bd64783e2c60.png)
2.1 分类与化简 目标: 通过自变量变换,使方程的形式简化,甚至可以求 出其通解 ⎧ξ = ξ ( x, y ) 自变量变换 ⎨
α = (α1 ,L, α n ), α = α1 + L + α n .
半线性(Semi-Linear):主部(含最高阶导数的部分)线性
Aα ( x) Dα u + A ( x, u , Du, K , D ∑ α
=N 0
N −1
u ) = g ( x),
拟线性(Quasi-Linear):最高阶导数是线性的
∑ Aα ( x, u, Du,K, D α
=N
N −1
u)Dα u
x x0 y 0
∫
y
w( s, t )dsdt + f ( x) + g ( y )
( f , g为任意连续可微函数)
(4)u = u ( x, y ) : u x = u y 作变量代换s = x + y, t = x − y ⇒ u x = u s s x + ut t x = u s + ut u y = u s s y + ut t y = u s − ut ⇒ us = 0 ⇒ u = f (t ) ( f为任意函数) ⇒ u ( x, y ) = f ( x − y ) 一般地,au x + bu y = 0 (a, b为常数) ⇒ u = f (bx − ay )
b
b
解:设( x1 ,L, x n ) ∈ Ω(求解区域),若函数 u = u ( x1 ,L, x n )在Ω内足够光滑并且在Ω内 恒满足偏微分方程(*), 则称u为(*)的经典解
数理方程-总结复习及练习要点(1)
![数理方程-总结复习及练习要点(1)](https://img.taocdn.com/s3/m/3196df3e854769eae009581b6bd97f192279bf29.png)
数理方程-总结复习及练习要点(1)数理方程-总结复习及练习要点数理方程是数学中的一个重要分支,它研究的是各种用数学符号表示的方程簇,并探究其解法及相关性质。
在数学竞赛和高考中,数理方程是一个高频考查的内容,因此我们需要认真学习和掌握。
下面是数理方程的总结复习及练习要点。
一、知识点总结1. 一元一次方程:形如ax+b=0的方程,可以用解方程法、代入法、图像法等方法解决;2. 一元二次方程:形如ax²+bx+c=0的方程,可以用公式法、配方法、因式分解法、图像法等方法解决;3. 一元n次方程:形如a₁xⁿ+a₂xⁿ⁻¹+…+aₙ=0的方程,可以用因式分解法、求根公式、数形结合法等方法解决;4. 二元一次方程组:形如{ax+by=c,dx+ey=f}的方程组,可以用代数法、图像法、消元法等方法解决;5. 二元二次方程组:形如{ax²+by²+cx+dy+e=0,fx²+gy²+hx+iy+j=0}的方程组,可以用消元法、配方法等方法解决;6. 不等式:大于、小于、大于等于、小于等于等不同种类的不等式,可以分别用解不等式、求解集合、证明等方法解决。
二、练习要点1. 要经常进行例题训练,熟练记忆每种方程的解法以及相关性质;2. 要学会用复杂的方程题目中的一些特殊性质,如配方法中平方项差为完全平方、二次项系数一样等等;3. 要结合实际问题练习,尤其是二元一次方程组和不等式中,实际问题更容易引入数学领域;4. 要多用图像法、数形结合法等思维方式,能够脑补形状易于掌握方程性质;5. 在大型比赛中,要将时间合理分配,不要轻易卡在一些细节上,要有策略性地解决问题。
三、总结数理方程是数学考试的重要考点之一,掌握好方程的基本思想和方法,能够在比赛中占据更好的优势,同时也有助于我们更好地解决实际问题。
因此,我们要时常进行练习,加强对数理方程的理解和应用,才能在数学竞赛中获得更好的成绩。
数理方程-第1章第2章-研究生
![数理方程-第1章第2章-研究生](https://img.taocdn.com/s3/m/c4b055dd76eeaeaad1f3305e.png)
1 , 2 .
用
表
示单位长度弦的质量,则长为dx的一小段弦的质量为
dx 。 utt 是弦的加速度,及单位长度弦上所受的外力
大小为F(x,t).
则根据牛顿第二定律,有
dxutt FT , xdx sin 2 FT , x sin 1 F ( x, t )dx.
FT , xdx cos 2 FT , x cos 1 0.
utt a 2u xx , x , t 0, u ( x,0) ( x), ut ( x,0) ( x).
解:(1)化标准形,然后求通解
2 x at c1 x at dx 2 a 0 x at c x at dt 2
, xn ).
波动方程
热传导方程
utt a2uxx f ( x, t )
数理方程第一部分
![数理方程第一部分](https://img.taocdn.com/s3/m/0319d544d4d8d15abe234eda.png)
数理方程第一部分前言数学物理方程的研究对象是描述各种自然现象的微分方程、积分方程、函数方程等等。
通常,《数学物理方程》教材中所研究的内容,着重是偏微分方程的三类曲型方程的定解问题。
它产生于如振动和波动、流体流动、电磁场、弹性、热传导、粒子扩散等实际问题。
当前,数学技术已成为高科技的重要部分,数学建模、数值计算已越来越发挥重要作用,正在成为广大数学工作者特别是应用数学工作者和计算数学工作者广阔的用武之地,而数学物理方程是一门重要的基础课,是进一步学习现代数学知识的准备,是利用数学知识为经济建设服务的桥梁。
数理方程教材中主要讨论基本理论和求解这些问题的一些方法和技巧。
本讲义是根据课程设置需要及本课程特点而编写的。
由于理论内容涉及到的高等数学知识比较多且深,推导过程长,常使初学者难以掌握主要过程和整体思路,所以本讲义将重点放在这两个内容上。
对于较深入(主要是理论证明方面)的知识或例题将在课堂补充讲解。
另外,一些相对简单的推导过程留给读者(读者也可通过查阅参考书得到这些结果),一些繁琐而不重要的内容给予说明。
这样,一方面可以使解决问题的过程变得精悍,减少读者的学习负担,另一方面,可以使读者通过这些推导练习加深对理论内容的理解,起到由点到面,循序渐近的作用,增强学好这门课的信心。
由于准备仓促,遗漏及错误之处在所难免,在此作者表示歉意,并请读者指正。
主要参考书1.复旦大学数学系主编《数学物理方程》,人民教育出版社;(数学系本科生用书)2.戴嘉尊《数学物理方程》,东南大学出版社;(数学系本科生用书)3.华南理工大学研究生处《数学物理方法》,华南理工大学出版社(工科硕士研究生用书)4.杨秀雯等《数学物理方程与特殊函数》,天津大学出版社(工科硕士研究生用书)第一章典型方程和定解问题§1.1 一些典型方程的推导1.1.1 波动方程的推导例1.1.1 弦的波动方程。
解(1)假设长为l且均匀柔软的弦,两端固定,其上作用一外力,作微小横振动.(2)建立数学模型如图. 设时刻弦上处振幅为具有二阶边连续偏导数=(,),,在弦上t x u u x t取微段MM'.由弦均匀设线密度为ρ,由弦柔软知张力沿弦的切线方向,由弦作微小横振动可设),(,00t x f 度为设弦上横向连续外力密≈'≈αα───在时刻t 弦上点x处单位长度上的作用力大小,设微段的重心处横坐标为ξ,并),(0t f ξ以近似微段上各点处的力密度,则(如图)①水平方向合力: 取,0cos cos T T T T ≈'⇒=-''αα'=T T ②铅垂方向合力: 由牛顿第二定律得 .),(sin sin 0s t f T T ∆⋅+-''ξαα.),(),(,, (1.1.1)),(),(),( ),,~,,,0( 0,),( ),(),(),( ),(),()],(),([ ),(),()tan (tan ),(),()sin (sin ),(),(sin sin 0222222211010000单位质量上的横向力与弦的材料及张力有关其中或连续时当得并令故两边同除之间位于--=--=+∂∂=∂∂+''=''''''∆∆→→→∆→∆∆∆+''⋅∆≈∆+∆''''⋅∆≈∆+'-∆+'''⋅∆≈∆+-'''⋅∆≈∆+-'''⋅∆≈∆+-''ρρξξξξρξξξρξξρξααξρξααξρξααt x f t x f Ta f xu a t u t x f t x u a t x u u u x s x x x x x x x x t u s s t f x t u T t u s s t f t x u t x x u T t u s s t f T t u s s t f T t u s s t f T T xx tt tt xx tt xx tt x x tttttt称(1.1.1)为一维波动方程.当0≠f 时称为非齐次方程;当f =0时称为齐次方程.据题意给出弦上点所满足的偏微分方程及其它条件一并给出的定解问题:).<(0 )()0,(),()0,()0( 0),(,0),0()0 ,<(0 (I) 2⎪⎩⎪⎨⎧<=='=>==><+''=''l x t x u x x u t t l u t u t l x f u a u t xx tt ψϕ(3)求解(参§3.1);(4)检验(§9.1).(5)改善假设,重新推导方程.特别地,当弦的两端拉紧且弦只受重力作用时,,0g f ρ-=方程为g u a u xxtt-''='' 2,,g u g u tttt >>''''即远大于重力加速度因弦上的加速度故可忽略g ,而有 (1.1.2) 22222xua t u ∂∂=∂∂ .(2) ?1sin sin tan tan lim ?)tan (tan )sin (sin (1) : ., : 00推导上面的方程按单调减少且凸的微段吗换为上面为何能将问题进行推导的理以等价无穷小的手段这里是利用牛顿第二定程也可用其它方法推导方注=-'-'-'-'→'→αααααααααα 例1.1.1’ 弹性直杆的纵向振动问题(题3). 例1.1.1” 锥体杆的纵向振动(复旦P11)例 1.1.2 薄膜的振动问题(天大P133) 例1.1.3 三维波动问题(南京P6)1.1.2 热传导方程的推导1.梯度与方向导数: 设u u x y z l ==(,,),(cos ,cos ,cos ),具一阶连续偏导数0αβγ 则u 的梯度和u 沿)(0l l 或方向的方向导数分别为.)grad (gradu cos cos cos ),,,(=gradu 0l u l zuy u x u l u z u y u x u =⋅=++= γ∂∂β∂∂α∂∂∂∂∂∂∂∂∂∂2.高斯公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑∑Ω∑∑Ω--=++=++=∑++=++=++通量故有的外法线向量为其中dS n udS z u y u x u v z u y u x u n dS R Q P Rdxdy Qdzdx Pdydz v z R y Q x P ∂∂γ∂∂β∂∂α∂∂∂∂∂∂∂∂γβαγβα∂∂∂∂∂∂)cos cos cos ()d ( ).cos ,cos ,(cos )cos cos cos ()d (22222203.热传导:热量总是从温度高的地方流向温度低的地方;4.热传导学中的傅里埃(Fourier )实验定律:这实际上是将热量故应取负值相反而热量流向与温度增加即沿外法向故高且靠近曲面的点处温度向内有热量由体外流经曲面当物体内部温度低时例如产生的的方向相反而即取得最大值的方向流向和温度梯度的正向其中负号是由于热流的即三者成正比的法线方向的方向导数沿曲面及物体温度以曲面面积与时间的热量内流过一个无穷小面积物体在无限短的时间段(,,,0grad ,,,,.grad ),( ,,, n n n u nuu ludSdtnuk dQ n udS u dS dt dQ dS dt >⋅=-=∂∂∂∂∂∂∂∂).,, 过程如下面的推导进行计算也可只按热量值的相等按向量来运算例1.1.4 三维热传导方程的推导 解(1)假设:.,0生热量单位时间单位体积上产热源强度性假设物体均匀且各向同--f (2)建立数学模型:.,,.n S S其外法线方向为分片光滑的边界为区域假设物体对应的有界闭如图Ω设时刻t 物体上点M x y z u u x y z t u (,,)(,,,),.处的温度为且具有二阶连续偏导数由物体均匀可设密度=ρ为常数,由各向同性可设比热系数为常数c ──单位质量温度升高一个单位所需热量.则.,,(1.1.3) )( ),,,()(),,,( ,],,[),,,(,)],,,()([),,,( ,),,,( ],[)3(),,,(= ),,,(]),,,(),,,([ ],[)2( )( ],[)1( 0222222220222222210 0222222 021 2221 222222 2121212121212121ρρ∂∂∂∂∂∂∂∂∂∂∂∂∂∂ρ∂∂∂∂∂∂ρρρρ∂∂∂∂∂∂∂∂c f f c ka f zu y u x u a t u t z y x f zuy u x u k t z y x u c t t t z y x f u dvdt t z y x f z uy u x u k dvdt t z y x u c Q Q Q dvdtt z y x f Q t t dvdt t z y x u c dvdt t z y x u c dv t z y x u t z y x u c Q t t dvdt z uy u x u k dt dS n u k Q S t t t t tt t t t t t t t t t t t t t t S ==+++=+++='Ω+++='+==''=⋅-⋅=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩΩΩΩΩ其中即得的任意性连续及的二阶偏导数连续由假设即故由能量守恒定律有上物体内部产生的热量在时间区间需的热量上物体内部温度升高所在时间区间流入的总热量上通过在时间区间源入升源升入(1.1.4) )( ,0 ;,0 .(1.1.3) 2222222zu y u x u a t u f f ∂∂∂∂∂∂∂∂++==≠称齐次波动方程时当称为非齐次波动方程时当为三维波动方程称例 1.1.5 二维热传导方程的推导──请详细给出推导过程通过侧面流入热量为一方面则处温度为板上时刻的边界正向为域初始时刻温度分布为热量单位时间单位面积产生热源强度面上下底面绝热同性设平面薄板均匀且各向解, :),,(.),,(,)(,,: 0t M u M t D y x f Γ--ϕ)( ,),,()( )],,(),,([ , )()(])[=)cos sin ())cos()2cos(()cos cos ()cos cos ( 222220222212222221212121212121212121212121f yu x u a t u dt d t y x f dtt d y ux u k dt d t u c dtd t uc dtd t u c d t y x u t y x u c Q dtd y ux u k dt dy x u dx y u k dt dx y u dy x u k dtds y uds x u k dt ds y u ds x u k dtds y uds x u k dsdt y u x u k dsdt n u k Q t t Dt t D t t Dt t DDt t Dt t Dt t t tt t t t t t t t t t ++=++===⋅-⋅=+=+-=--=-+-=+=+==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΓΓΓΓΓΓΓ∂∂∂∂∂∂σσ∂∂∂∂σ∂∂ρσ∂∂ρσ∂∂ρσρσ∂∂∂∂∂∂∂∂∂∂∂∂ϕ∂∂ϕ∂∂ϕπ∂∂πϕ∂∂β∂∂α∂∂β∂∂α∂∂∂∂从而有故由能量守恒得内部升温需要的热量为另一方面升入例 1.1.6 一维热传导方程的推导──请详细给出推导过程,),( )],(),([ , = , ).(,)(),(,,, 2220002200001202202200000212121212121212121212121f x u a t u dt dx t x f dt dx xukS dt dx t u c dtdx tuc dx dt t u c dx t x u t x u c Q dt dx x ukS dt dx x u kS dt x u x u kS dt xuxukS Sdt nunu k Sdt nu kSdt nu kQ x f q t t l t t l t t l t t l lt t l t t l t t l x t t lx x t t lx x t t lx t t x t t lx +=+===⋅-⋅===⎥⎦⎤-⎢⎣⎡⎥⎦⎤-⎢⎣⎡=⎥⎦⎤+⎢⎣⎡=+=--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰========∂∂∂∂∂∂∂∂ρ∂∂ρ∂∂ρρ∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂ϕ从而有故由能量守恒得内部升温需热量为另一方面通过两端面流入热量为一方面则为初始时刻杆上温度分布热量单位时间单位长度产生热源强度线入的热量即单位时间单位面积流流入另一端有恒定热流一端温度为零侧面绝热设杆均匀各向同性升入状态下二维或三维的动态稳恒方程拉普拉斯位势方程二维或三维的方程泊松热传导方程波动方程归结为则可将以上推导的方程或或表示算子如果用小结 0 (Laplace) )( (Poisson) ,)Laplace ( : 2222222222222222222=∇=∇+∇=+∇=+++∇u f u fu tufu t uzy x y x x ∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂ 这就是本书所研究的主要方程类型.弦振动方程描述波的传播现象,它具有对时间是可逆的性质;热传导方程反映了热的传导,物质的扩散是不可逆现象;而拉普拉斯方程描述平衡的状态,定常的状态.这三种方程所描述的自然现象的本质十分不同,因而这三种方程的性质也十分不同.最后,我们指同前面讨论的三种情形虽然是相互排斥的,但并不包括二阶线性方程的所有情形.§1.2 初始条件与边界条件初始条件: 用以说明初始状态的条件.一般地,波动问题的初始条件有两个,即开始时的位移)(0M u t t ϕ==与开始时的速度 ,),(0件有一个而热传导问题的初始条M u t t t ψ='=即开始时体内各点温度).(0M u t t ϕ==边界条件: 用以说明边界上的约束情况的条件.1. 第一类边界条件如弦的振动问题中,当x =0端固定时,有u x ==00.又如杆上的热传导问题中,当x =0端温度分布为)()(0t f u t f x ==时有. 一般地,用S 表示一维的某端点或二维区域的边界线或三维区域的边界面,则有, ),(S P t P f u S∈=称为第一类边界条件. 2. 第二类边界条件如弦的振动问题中,当x =l 端自由时,有∂∂unx l==0.又如杆上的热传导问题中,当x =l 端与外界处于绝热状态时有∂∂unx l==0,而当端面有热流f t 0()流入时,有∂∂u nf t x l==().一般地,有,),(S P t P f nu S∈=∂∂称为第二类边界条件. 3. 第三类边界条件如弦的两端垂直固定在弹性支承上:.0)( 0 ,),( ,0),0,( ),()( :,0 02222000=-∂∂=-∂∂∂∂→∆>∂∂∆=-+∂∂∆====+=∆+=x x x x xx ku x uT uk x uT x t u x u x t u x u k x uT x x 或得有界由令故取为负值而弹性体恢复力向下为则此微段上的受力情况端取一微段在ξξρ.0)( 0 ,),( ,0)0,( ),()()( :),0](,[ 022220=+∂∂=-∂∂-∂∂→∆<∂∂∆-=-+∂∂-<∆∆+====-=∆+=x lx lx l x xl x ku x uT uk x uT x t u x u xt u x u k xuT x l x l l x 或得有界由令而弹性体恢复力向上为则此微段上的受力情况端取一微段在ξξρ如果在热传导过程中,物体Ω的内部和周围介质通过边界S 有热量交换,以u 1表示和物体接触的介质的温度,这时利用另一个热传导实验定律:从一介质流入另一介质的热量和两个介质的温度差成正比,即,)(11dSdt u u k dQ -=得S 上流速(单位时间单位面积通过的热量)为Su u k dSdt dQ)(11-=(*)其中k 1是两介质间的热交换系数.在物体内部任取一个无限贴近于边界S 的闭曲面Γ,由于在Γ内侧热量不能积累,所以在Γ上的热量流速应等于边界S 上的热量流速,而在Γ上由于热量dQ k u n dSdt dQ dSdt=-∂∂,得流速为=-k u n ∂∂Γ,假设内部温度低,则速度方向均向内,故有),/( )(111S k k u u n u u u k n u kS SS 的极限为Γ==⎪⎭⎫⎝⎛+⇒-=-Γσσσ∂∂∂∂一般地,有∂∂σu n u f P t P S+⎛⎝ ⎫⎭⎪=∈(,) S.称为第三类边界条件.对于以上的三类边界条件,当f =0称为是齐次边界条件,否则称为非齐次边界条件. 注意:第三类边界条件形式不能简单地视为第一类、第二类两类边界条件的和使用.§1.3 定解问题的提法解(古典解): 如果一个函数具有偏微分方程中所需要的各阶连续偏导数,并且代入 该方程能使它成为恒等式,则此函数称为该方程的解(古典解).定解条件: 初始条件与边界条件都称为定解条件。
数理方程
![数理方程](https://img.taocdn.com/s3/m/343e1bb183d049649b665861.png)
1. 基本概念偏微分方程: 含有未知多元函数及其偏导的方程,如2122121(,,,,;,,,;,)0n n u u u u F x x x u x x x x ∂∂∂∂=∂∂∂∂ 其中:12(,,,)n u u x x x =为多元函数.方程的阶:未知函数导数的最高阶数; 方程的次数:最高阶偏导的幂次;线性方程:未知函数及未知函数偏导数的幂次都是一次的称为线性方程,否则就是非线性的;自由项:不含未知函数及其导数的项;齐次方程:没有自由项的偏微分方程称为齐次方程,否则称为非其次的; 方程的解:若将某函数代入偏微分方程后,使方程化为一个恒等式,则该函数为方程的解;通解:包含任意独立函数的方程的解,且独立函数的个数等于方程的阶数; 特解:不含任意独立函数的方程的解. 例如:22()()sin cos u u x y x y∂∂+=∂∂为一阶非线性非齐次偏微分方程;u 为未知函数。
2222220u u ux y z ∂∂∂++=∂∂∂为二阶线性齐次方程; 二阶线性非其次偏微分方程22uy x x y∂=-∂∂的通解为 221(,)()()2u x y xy x y F x G y =-++其中,(),()F x G y 为两个任意独立的函数.注意:通解所含独立函数的个数=偏微分方程的阶数.2. 线性偏微分方程解的特征含有两个自变量的线性偏微分方程的一般形式为[](,)L u G x y =其中,L 为二阶线性偏微分算符,满足11221122[][].[][][].L cu cL u L c u c u c L u c L u =+=+(1).齐次线性偏微分方程解的特征a.当u 为方程的解,则()c u c R ⋅∈也为方程的解;b.12,u u 为方程的解,则1122c u c u +也为方程的解. (2). 非齐次线性偏微分方程解的特征a. I u 为非齐次方程的特解,II u 为齐次方程的通解,则I II u u +为非其次的通解;b. 若1122[](,),[](,).L u H x y L u H x y ==则1212[][](,)(,).L u L u H x y H x y +=+ (3).线性偏微分方程的叠加原理若k u 是方程[](1,2,)k L u f k ==的解(其中L 为二阶线性偏微分算符),如果级数1()kk k k cu c R ∞=⋅∈∑收敛,且二阶偏导数存在,则1k k k u c u ∞==⋅∑一定是1[]k kk L u c f ∞==⋅∑的解;特别地,若k u 是方程[]0L u =的解,则1k k k u c u ∞==⋅∑一定是[]0L u =的解.4.1数理方程的建立考虑一根均匀柔软的细弦沿x 轴绷紧,在平衡位置附近产生振幅极小的横振动,如图1.1所示.设(,)u x t 是平衡时坐标为x 的点t 时刻沿y 方向的位移,现在求弦上各点的运动规律.“采用隔离法”研究一小段(,)x x dx +与外界的相互作用以建立方程. 假设:(1)弦是完全柔软的,所以张力T 沿着弦振动波形的切线方向;(2)只讨论弦做横向振动,故忽略弦在水平方向的位移,弦的横向加速度为tt u ,单位长度的质量为ρ或线密度为ρ;(3)振动的振幅是极小的,因此张力与水平方向的夹角12,αα也是很小的,则332sin ,3!tan ,3cos 1 1.2!iiii i i i i i i αααααααααα=--≈=++≈=--≈ 而2tan [1()].T i i u uk ds dx dx x xαα∂∂==≈⇒=+=∂∂ 根据牛顿第二运动定律,在(纵向)水平方向上有21()cos ()cos 0()().T x dx T x T x dx T x T αα+-=⇒+=≡∈R在横向上有21sin sin ()()[]()().tt tt x dxxT T g ds ds u uuT g ds ds u xx ααρρρρ+--⋅=⋅∂∂⇒--⋅=⋅∂∂ 根据()()'()f x dx f x f x dx +-=,上式可以化简为2222[]()().tt tt u uT dx g ds ds u T g u x xρρρρ∂∂⋅-⋅=⋅⇒⋅-⋅=⋅∂∂即弦的横振动方程为2222.(,)tt xx xx u Tu a u g u a x ρ∂=⋅-==∂此式即为弦做微小横振动的运动方程,简称弦的振动方程,其中a 就是弦上振动传播的速度.图1.1所示讨论:①若弦的重量远远小于弦的张力,则重力加速度可以忽略不计,其运动方程为2.tt xx u a u =(*)此式称为弦的自由振动方程,也称为一维波动方程.②如果在弦的单位长度上还有横向外力(,)F x t 作用,则(*)式可以改为2(,).(**)tt xx u a u f x t =+则(**)式称为弦的受迫振动,其中(,)(,).F x t f x t ρ=③对于0t ≥,两端固定,则00,0x x l u u ====,弦在0t =时无纵向移动,0000,t t uu v t ==∂==∂。
南邮 数理方程1 定解问题
![南邮 数理方程1 定解问题](https://img.taocdn.com/s3/m/659f7872376baf1ffc4fad9b.png)
三种方程、 三种求解方法、 一个特殊函数
波动方程、 热传导方程、 拉普拉斯方程
分离变量法、 行波法、 格林函数法
贝赛尔函数
Refrences:
1.《数学物理方法》(第三版),梁昆淼 编 2.《矢量分析与场论》(第三版),谢树艺 3.《数学物理方程的MATLAB解法与可视化》 彭芳麟 4.《微分方程》 5.《高等数学》
定解问题的适定性 :
• 解的存在性:定解问题是否有解; • 解的唯一性:是否只有一解; • 解的稳定性:定解条件微小变动时,解是否有相应的微小变动。
3、定解问题=泛定方程+定解条件
定解问题
长为 的细弦两端固定,开始时弦上各点处于平衡位置, 在 处受到冲量 的作用 定解问题的适定性:解的存在性、解的唯一性和解的稳定性; 若 一个定解问题存在唯一且稳定的解,则此问题称为适定的。
三、恒定场方程
所谓的恒定场就是场量不随时间变化,而只与空间变量有关系(u(x,y,z))。
问题1:静电场 静电场表明电场强度 与时间无关,那么麦克斯韦方程组 根据静电场中电场E与电位u的关系:
根据矢量运算:
泊松方程 拉普拉斯方程
泊松方程 拉普拉斯方程
三类基本方程在直角坐标系中的表示
一、 波动方程
由此可得
合并(1)、(2)式可得:
从这个方程组消去v (或i), 即可得到i (或v)所满足的方程。
i 满足的微分方程:
课后作业,推导传输线方程
v 满足的微分方程:
方程(3)(4) 称为传输线方程.
在高频传输的情况下,电导与电阻所产生的效应可以忽略不 计,也就是说可令 G=R=0 , 此时方程(3 )与(4)可简化 为:
初始速度和初始位移分别为:
数理方程第一章-3讲解
![数理方程第一章-3讲解](https://img.taocdn.com/s3/m/e3bd9a1bd1f34693dbef3e01.png)
a2
(
2u x2
2u y2
2u z2
)
u t
a2 k c
—— 三维热传导方程
本课程内容,只涉及线性边界条件,且仅包括以下三类。
深圳大学电子科学与技术学院
第一类边界条件:物理条件直接规定了 u 在边界上的值,如
u S
f1
第二类边界条件:物理条件并不直接规定了 u 在边界上的值,而是规定了u 的法向微商在边界上的值,如
深圳大学电子科学与技术学院
知识补充:
弹性模量是指当有力施加于物体或物质时,其弹性变 形(非永久变形)趋势的数学描述。物体的弹性模量 定义为弹性变形区的应力-应变曲线的斜率。杨氏模 量指的是受拉伸和压缩时的弹性模量。
杨氏模量(Young‘s modulus)是描述固体材料抵抗形变 能力的物理量。一条长度为L、截面积为S的金属丝在 力F作用下伸长L。F/S叫应力,其物理意义是金属丝 单位截面积所受到的力; L/L叫应变,其物理意义是 金属丝单位长度所对应的伸长量。
dx
x
不考虑垂直杆方向的形变,根据Hooke定律,应力与应变成正
比,即 P E u x
代入
P x
2u t 2
2u t2
a2
2u x2
0 xl , t0
其中
a2 E
深圳大学电子科学与技术学院
例6:一根均匀杆,原长为l,一端固定,另一端沿杆的轴线方向被拉长e而静 止。突然松手,任其纵向振动。写出定解问题。
(3)对于稳恒场,上述边界条件的两端均不含时间 t ; (4)边界条件的推导,步骤与泛定方程的推导大致相同,但微元只能在边界上选取。
x
x
S 2u d x
t2
Sdx dm(微元质量)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、波动方程(弦振动方程)
问题1:均匀弦的微小横振动
u T2
数理方程
u ( x, t )
2 C
B
1
T1
utt a2uxx 0
a T/
自由振动方程
A
x x dx
2
x
utt a uxx f ( x, t ), f ( x, t )
F ( x, t )
受迫振动方程
数理方程
扩散强度:扩散运动的强度可用扩散强度 q 表示,也即定义为单位时间内通过 单位横截面积的原子或分子或质量。
扩散定律: q Du
dz
z
( x dx, y dy, z dz )
ut a 2 2 u F ( x, y, z; t )
输运方程
y
dy ( x , y , z ) dx
x
数理方程
问题2:热传导方程 类似于扩散,温度不均匀时,热量从温度高的地方向温度低的地方转移,这 就是热传导问题。此时要研究的是温度在空间的分布和随时间的变化 u (x , y , z ; t ) 热传导定律 :
q ku
数理方程
数学物理方程
Equations of Mathematical Physics
主讲:王 正 斌
南京邮电大学 、 理学院、应用物理系
:
wangzb@
答疑:周三中午11:30~13:00,教2#426
数理方程
Refrences:
1.《数学物理方法》(第三版),梁昆淼 编 2.《矢量分析与场论》(第三版),谢树艺 3.《数学物理方程的MATLAB解法与可视化》 彭芳麟 4.《微分方程》
Ett a 22 E 0
数理方程
二、输运方程
问题1:扩散方程
数理方程
扩散:就是由于浓度的不均匀使得物质从浓度高的地方流入浓度低的地方; 应用:制作半导体器件就是常用扩散法;
扩散梯度:在扩散问题中研究的是浓度 u 在空间中的分布和随时间的变化
u ( x, y, z; t ) 那么浓度的不均匀程度可以用浓度梯度 u 表示;
对于半导体器件的开发,引进了粒子“扩散和输运”的概念,很多数学理论和方 法在物理科学与技术领域都找到了归宿,数学与物理的亲缘关系越来越明显。 数学物理方法就这样应运而生了。
数理方程 物理的实践验证观点经常被数学所运用。同理, 数学的严谨 推理和周密分析方法也应为物理所借鉴 数理方程分类
波动方程 (双曲型偏微分方程) 线性偏微分方程 输运方程 (抛物型偏微分方程) 恒定场方程(椭圆型偏微分方程) 线性积分方程
数理方程 1.2、数学物理方程的导出
数学物理方程是把物理规律用数学语言表达出来(物理问题的 数学建模)
数学物理方程的导出步骤为:
(1) 首先确定所研究的物理量 u ( x,
y, z , t )
(2) 根据物理规律分析微元和相邻部分的相互作用(抓住主要 影响,忽略次要影响),这种相互作用在一个短时间段里如何 影响物理量 u (3) 用数学语言表达出这种相互影响,经简化整理就得到数 学物理方程。
是所谓的个性。例:半导体扩散工艺有两种工艺,一种是“恒定
表面浓度扩散”;另一种是 “限定源扩散”
数理方程
边界条件:为了求解具体的物理问题,还要研究物理量受周围环境的影响,而 周围环境影响总是通过边界才传给研究对象的,因此周围环境的影响体现于边 界所处的物理状况,这就是边界条件。 初始条件:为了求解物理量随时间的变化问题,还要考虑研究对象的特定历 史,也就是早先某个所谓的初始状态,也即初始条件。 定解问题:边界条件和初始条件反映了具体问题的特定环境和历史,也即个性。 在数学上,边界条件和初始条件合称为定解条件。把在给定的定解条件下求解数 学物理方程称为数学物理定解问题或简称为定解问题。
5.《高等数学》
数理方程
Warnings and Announcements
•Reading this book impairs your ability to drive a car or operate machinery. •This book has been found to cause drowsiness in laboratory animals.
电报方程
a 2 1/( LC )
理 想 传 输 线
数理方程
问题3:电磁波波动方程
E
k
H
D H J t
Maxwell Equations
结构方程
B 0 D D E
B H
B E t
Htt a 22 H 0
问题2:传输线方程 u ( x, t );
Rdx
Ldx
j ( x, t )
Cdx
Gdx
x
x dx
LCjtt j xx ( LG RC ) jt RGj 0 LCutt u xx ( LG RC )u t RGu 0
2 j a jxx 0 tt 2 u a u xx 0 tt
线性方程
数 理 方 程
数学角度
线性微分积分方程
非线性方程
数理方程 1.1、概述
共性:数理方程是把物理规律用数学语言描述出来,也就是研究
某个物理量在空间的分布规律和随时间变化的规律。简单地说, 就是用数学物理方程表达物理规律。这种物理规律反映的是同一 类物理现象的共同规律,也就是所谓的共性。 泛定方程:在数学上同一类物理现象的共性称为泛定方程。 个性:但同一类物理现象中,各个具体问题又具有特殊性,也就
•Caution: FLAMMABLE - Do not read while smoking or near a fire.
数理方程
数理方程这门学科的由来: 20世纪,物理学的基本概念和技术已经被应用到自然科学所有领域。 现在,物理学的原理、方法不仅在天文、地理学科有着广泛的应用,而且在 生命科学、环境科学、化学化工、信息科学等领域也出现了很大程度上的交 叉互融。物理学已经成为自然科学发展的重要基石。 随着科学的发展,对物理学提出了更高的要求。对于物理场及相关物理量 的描述,引进了数学中的偏微分方程。对于原子描述,引进了球函数的概念,