第五章控制系统的稳定性分析 _2
机械工程控制基础第五章系统稳定性分析

9/88
5.3 代数稳定性判据 劳斯判据
Logo
同时,如果劳斯阵列中第一 列所有项均为正号,则系统 一定稳定。
劳斯阵列为
sn a0 a2 a4 a6 s n1 a1 a3 a5 a7 s n2 b1 b2 b3 b4 s n3 c1 c2 c3 c4
由劳斯阵列的第一列看出:第一列中系数符号全为正
值,所以控制系统稳定。
16/88
Logo
5.3 代数稳定性判据 劳斯判据
例2 设控制系统的特征方程式为
s4 2s3 3s2 4s 3 0
试应用劳斯稳定判据判断系统的稳定性。
解:首先,由方程系数可知已满足稳定的必要条件。其次,排劳
阵列
s4 1 3 3
2/88
5.1 系统稳定性的基本概念
d
o
F
Logo
b
c
M
o
稳定性的定义:若控制系统在任何足够小的初始偏差的 作用下,其过渡过程随着时间的推移,逐渐衰减并趋于 零,具有恢复到原来状态的性能,则该系统是稳定的, 否则,该系统为不稳定。
3/88
Logo
5.2 系统稳定的充要条件
N(s)
X i s
+
G1 s
➢ 劳斯判据还说明:实部为正的特征 根数,等于劳斯阵列中第一列的系 数符号改变的次数。
12/88
5.3 代数稳定性判据 劳斯判据
Logo
劳斯判据的表述:
1.系统闭环传递函数特征方程式的系数没有为0的, 同时都是正数。(必要条件,要想系统稳定必 须满足这个条件)
2.劳斯阵列的第一列全部为正。(充分条件)
第五章_控制系统的稳定性分析

, c2
b1a5 a1b3 b1
, c3
b1a7 a1b4 b1
f1
e1d 2
e1
d1e2
这样可求得n+1行系数
14
这种过程需一直进行到第n行被算完为止,系数 的完整阵列呈现一个倒三角形。
注意:
为简化计算,可用一个正整数去除或乘某一整个 行,并不改变稳定性结论。
15
劳斯稳定判据
劳斯稳定判据是根据所列劳斯表第一列系数符 号的变化,去判别特征方程式根在S平面上的具体 分布,过程如下:
27
5.3.4劳斯-赫尔维茨稳定性判据的应用
判定控制系统的稳定性
[例5-7] 系统的特征方程为:s4 2s3 3s2 4s 5 0 ,判断系统的稳定性。
[解]:排列劳斯阵如下:
s4 1 3 5 s3 2 4 0
因阵第为一,a列i 不0全, (为i 正0,~所4)以,,且系劳统斯
不稳定。
8
0
3
j 2 , j2
S0
16
显然这个系统处于临界稳定状态。
22
5.3.2 劳斯判据的应用
稳定判据只回答特征方程式的根在S平面上的分布 情况,而不能确定根的具体数据。也即也不能保证系 统具备满意的动态性能。换句话说,劳斯判据不能表 明系统特征根在S平面上相对于虚轴的距离。但能判断 是否所有特征根都落在虚轴的左半平面.若用S=Z-1带 入特征方程中,求出的根的实部即为特征根距S=-1垂线 的距离.可判断稳定程度.
s2 1 5 0 由于劳斯阵第一列有两次符号变
2
如果系统不稳定,就会在任何微小的扰动作用下偏离原 来的平衡状态,并随时间的推移而发散。
因此,如何分析系统的稳定性并提出保证系统稳定的措施, 是自动控制理论的基本任务之一。
第5章 “控制系统的李雅普诺夫稳定性分析”练习题

第5章 “控制系统的李雅普诺夫稳定性分析”练习题及答案5.1 判断下列函数的正定性1) 2221231213()2322V x x x x x x x =++-+x 2) 222123121323()82822V x x x x x x x x x =++-+-x 3) 22131223()2V x x x x x x =+-+x解1) T T 211()130101V A -⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦x x x x x , 因为顺序主子式2120,50,13->=>- 2111302011--=> 所以0>A ,()V x 为正定函数。
2) T T 841()421111V -⎡⎤⎢⎥==--⎢⎥⎢⎥-⎣⎦x x Ax x x , 因为主子式8481218,2,10,0,70,10,421111-->==>=>--841421164421680111---=++---<- 所以A 不定,()V x 为不定函数。
3) T T 1212110()1001V -⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦x x Ax x x , 因为顺序主子式1110,10,1->=-<- 121211011001041--=--<所以A 为不定矩阵,()V x 为不定函数。
5.2 用李雅普诺夫第一方法判定下列系统在平衡状态的稳定性。
2211211222212212()()x x x x x x x x x x x x =-+++=--++解解方程组 22121122212212()0()0x x x x x x x x x x ⎧-+++=⎨--++=⎩只有一个实孤立平衡点(0,0)。
在(0,0)处将系统近似线性化,得**1111x x -⎡⎤=⎢⎥--⎣⎦,由于原系统为定常系统,且矩阵1111-⎡⎤⎢⎥--⎣⎦的特征根1s i =-±均具有负实部,于是根定理5.3可知系统在原点(0,0)附近一致渐近稳定。
MATLAB 第五章 2

程序
y 0 1 0 x
a=[-1 –1 0;0 –3 1;-1 –1 –3]; b=[0;-1;0]; c=[0 1 0]; d=[0]; k=dcgain(a,b,c,d) 结果 k = -0.3333
5.3.2 根轨迹作图与系统根轨迹分析 ⑴ 绘根轨迹 rlocus(num,den) 直接作图,k自动产生。 rlocus(num,den,k) 直接作图,k由人工给定。 r=rlocus(num,den) 返回闭环根轨矩阵至变量r,k自动产生。 [r,k]=rlocus(num,den,k) 返回闭环根轨矩阵至变量r,k由人工给定。 rlocus(a,b,c,d) or rlocus(a,b,c,d,k) 状态空间模型 r=rlocus(a,b,c,d) or [r,k]=rlocus(a,b,c,d,k)
⑵ 确定根轨迹图上某点的增益和闭环极点
[k,poles]=rlocfind(num,den) 用鼠标确定根轨迹图上的点。 [k,poles]=rlocfind(a,b,c,d) [k,poles]=rlocfind(num,den,p) 给定闭环极点,求相应的根轨迹增益 (最接近p的根轨迹)。 [k,poles]=rlocfind(a,b,c,d,p)
结果
4.一般响应函数 由给定系统数学模型,求任意输入信号时,系统的 时间响应。 lsim(num,den,u,t) or lsim(a,b,c,d,u,t) 求响应并作图 lsim(a,b,c,d,u,t,x0) 带初始状态,求响应并作图 [y,x]=lsim(num,den,u,t) or [y,x]=lsim(a,b,c,d,u,t) 求响应不作图,返回变量中
控制工程基础:第五章系统稳定性

∆2 = a1 a0 a3 a2 = a 1a 2 − a 0 a 3 > 0
∆n
L L L 0 0 0 M 0 an
a5 L
a4 L a3 L M O M 0
a1 ∆3 = a 0 0
a3 a2 a1
0 2 2 a 4 = a 1a 2 a 3 − a 4 a 1 − a 0 a 3 > 0 a3
− c2 =
劳斯表的列法
前两行为特征方程的系数,右移一位降两阶; 前两行为特征方程的系数,右移一位降两阶; 第三行起元素的计算为: 第三行起元素的计算为:分母为上一行第一 个元素; 个元素; 分子为一行列式,第一列为上两行的第一列, 分子为一行列式,第一列为上两行的第一列, 第二列为所计算元素右肩上元素。 第二列为所计算元素右肩上元素。次对角线 减主对角线元素。 减主对角线元素。 一行可同乘以或同除以某正数
c( t ) = ∑ c i e
i =1
k
pi t
+ ∑ e (A j cos ω j t + B j in ω j t )
j=1
r
σ jt
由上式知: 如果p 均为负值, 如果 i 和 σ i 均为负值 , 当 t
∞ 时 , c(t)
0。 。
自动控制系统稳定的充分必要条件: 系统特征方程的根全部具有负实部, 系统特征方程的根全部具有负实部, 闭环系统的极点全部在S平面左半部。 即:闭环系统的极点全部在S平面左半部。 系统特征方程
a4 a5 b3 c3 …
a6 a7 b4 c4 …
… … … …
a1 a5 a1a4 − a0 a5 = a1 a1 a1 a3 b1 b2 b1a3 − a1b2 = b1 b1 a1 a5 b1 b3 b1a5 − a1b3 = b1 b1
第五章控制系统的稳定性分析

劳斯判据的两种特殊情况:
1、某一行第一个元素为零,而 其余各元素均不为零、或部 分不为零;
2、某一行所有元素均为零。
2010年10月
控制工程基础—控制系统的稳定性分析
例4:Ds s4 3s3 s2 3s 1 0 判断系统稳定性
s4 1
s3 3
s2 0\
s1
3 3
s0 1
1
1
3
1
2010年10月
控制工程基础—控制系统的稳定性分析
一、劳斯判据特征方程?
系统特征方程为:
D s a0 sn a1sn1 a2 sn2 an1s an 0
稳定的必要条件: 特征方程中各项系数>0
稳定的充分条件: 劳斯阵列中第一列所有项>0
2010年10月
控制工程基础—控制系统的稳定性分析
k
n
xo t Dieit e jt E j cos jt Fj sin jt
因a部的0此x,系撤o对n反则统除i于 ,XNt零之就ao扰线0系输,不ssjsi对动n性a1统 入稳若1应定, xa响定特稳o1ba闭 1常即n0s应。征0定sns1环〈系 Gm得in将根G1的10t系统j2到,随中s充 ba, k统s11G齐时有s1s分若m传j2n间一次a必 0系11s递方na的个要 统n函 1程推s或1所 条数x移多件o特a有abn而个tm是 n征特X1发根1:s根s征oa散具n的 s根xab,有onm实 的这正t实 0部样实部,0
2010年10月
控制工程基础—控制系统的稳定性分析
系统稳定的充要条件
xi t
nt
xo t
t
t=0 t
xo 0
t
xoi 0
传递函数
《自动控制原理》第五章:系统稳定性

5.2 稳定的条件
当σi和λi均为负数,即特征根的 σi和λi均为负数, 均为负数 实部为负数,系统是稳定的; 实部为负数,系统是稳定的; 或极点均在左平面。 或极点均在左平面。
5.3 代数稳定性判据
定常线性系统稳定的充要条件 定常线性系统稳定的充要条件是特征方程的根具有负 充要条件是特征方程的根具有负 实部。因此,判别其稳定性,要解系统特征方程的根。为 实部。因此,判别其稳定性,要解系统特征方程的根。 避开对特征方程的直接求解,可讨论特征根的分布, 避开对特征方程的直接求解,可讨论特征根的分布,看其 是否全部具有负实部,并以此来判别系统的稳定性,这样 是否全部具有负实部,并以此来判别系统的稳定性, 也就产生了一系列稳定性判据。 也就产生了一系列稳定性判据。 其中最主要是E.J.Routh(1877 )h和Hurwitz( 其中最主要是E.J.Routh(1877年)h和Hurwitz(1895 E.J.Routh(1877年 年)分别提出的代数判据。 分别提出的代数判据 代数判据。
习题讲解: 习题讲解:
µ
G1
Q21
G1
h2
k1 k1 G1 ( s ) = , G1 ( s ) = (T1s + 1) (T1s + 1) k1k 2 G0 ( s ) = (T1s + 1)(T2 s + 1)
kp
G0 ( s ) G(s) = 1 + G0 ( s ) K p
5.4 Nyquist稳定性判据 Nyquist稳定性判据
系统稳定的条件? 系统稳定的条件?
5.2 稳定的条件
d n y (t ) d ( n −1) y (t ) dy (t ) 线性系统微分方程: 线性系统微分方程: n a + an −1 + L + a1 + a0 y (t ) n ( n −1) dt dt dt d m x(t ) d ( m −1) x(t ) dx(t ) = bm + bm−1 + L + b1 + b0 x(t ) m ( m −1) dt dt dt d n y (t ) d ( n −1) y (t ) dy (t ) + a( n −1) + L + a1 + a0 y (t ) = 0 齐次微分方程: 齐次微分方程: an n ( n −1) dt dt dt an s n + an −1s n −1 + L + a1s + a0 = 0 设系统k 设系统k个实根
第5章现代控制理论之系统运动的稳定性分析

由稳定性定义知,球域S(δ) 限制着初始状态x0的取值,球域
S(ε)规定了系统自由运动响应 xt xt; x0的, t0边 界。
简单地说:1.如果 x t; x0, t0 有界,则称 xe 稳定;
2.如果 x t; x0, t0 不仅有界,而且当t→∞时收敛于原点,则
5.1.1 平衡状态
李雅普诺夫关于稳定性的研究均针对平衡状态而言。
1. 平衡状态的定义
设系统状态方程为: x f x,t , x Rn
若对所有t ,状态 x 满足 x 0 ,则称该状态x为平衡状
态,记为xe。故有下式成立:f xe ,t 0
由平衡状态在状态空间中所确定的点,称为平衡点。
2.平衡状态的求法
由定义,平衡状态将包含在 f x,t 这样0 一个代数方程组
中。
对于线性定常系统 x A,x其平衡状态为 xe 应满足代数
方程 。Ax 0
只有坐标原点处是线性系统的平衡状态点。
对于非线性系统,方程 方程而定。
如:
x1 x2
x1 x1
x2
x
3 2
f x的,t 解 可0 能有多个,视系统
稳定性是系统的重要特性,是系统正常工作的必要条件。
稳定性是指系统在平衡状态下受到扰动后,系统自由运动 的性质。因此,系统的稳定性是相对于系统的平衡状态而 言的。它描述初始条件下系统方程是否具有收敛性,而不 考虑输入作用。
1. 线性系统的稳定性只取决于系统的结构和参数,与系统 初始条件及外作用无关; 2. 非线性系统的稳定性既取决于系统的结构和参数,也与 系统初始条件及外作用有关;
当稳定性与 t0 的选择无关时,称一致全局渐近稳定。
第五章 控制系统的稳定性

例 5 - 2. 设有下列特征方程 s 4 + 2s 3 + 3s 2 + 4s + 5 = 0
试用Routh判据判别该特征方程正实部根的个数。 判据判别该特征方程正实部根的个数。 试用 判据判别该特征方程正实部根的个数
解 : 列写 劳斯 阵列 : s4 s3 s2 s s
1 0
1 2
2× 3 - 4 2
s3 s2 s s0
1 0≈ε
- 3ε - 2
-3 2 0
改变一次
ε
2
改变一次
∴ 有两实部为正的根。
b.劳斯表某行全为零 说明特征方程中存在一些大小相等,但方向相反的 根。 可用全零行的前一行数值组成辅助方程 A' ( s ),并用 dA' ( s ) / ds 的系数代替全零行的各项,完成劳斯表 ,利用 的系数代替全零行的各项,完成劳斯表, 可解得那些对称根。 辅助方程 A' ( s )可解得那些对称根。
一幅 原 . 角 理 设 (S)是 变 的 项 之 ,除 S平 的 限 奇 复 量 多 式 比 在 面 有 个 F 点 ,为 值 续 则 数又 P为 (S)极 数 , Z为 (S) 外 单 连 正 函 . 设 F 点 目 F 的 点 目 其 包 重 点 重 点 目 以 F(S)的 零 数 , 中 括 极 与 零 数 , 及 全 部 点 零 均 布 S平 的 闭 线 S内 而 S不 过 极 与 点 分 在 面 封 轨 Γ , Γ 通 F(S)的 何 点 零 . 在 种 况 , 当 S以 时 方 任 极 与 点 这 情 下 点 顺 针 向 沿 S 运 , ΓS在 F(S)]平 上 映 ΓF按 时 方 包 原 Γ 动 [ 面 的 射 顺 针 向 围 点 次 的 数 N = Z- P N>0 N<0 N =0 表 ΓF顺 针 围 点 次 示 时 包 原 N 表 ΓF逆 针 围 点 次 示 时 包 原 N 表 ΓF不 围 点 示 包 原
现代机械控制工程 第五章 系统的稳定性

其中,ai>0 (i=0,1,2,…,n),即满足系统稳定的 必要条件。
劳斯稳定判据的判别过程如下:
n列出劳斯阵列 s a0 a2 sn-1 a1 a3 sn-2 b1 b2 sn-3 c1 c2 sn-4 d1 d2 …… s2 e1 e2 s1 f1 s0 g1
a1a2 a0a3 b1 a1 b2
K 0 6 5 K 0
即:当0<K<30时系统稳定。
例2:单位反馈系统的开环传递函数为:
K ( s 1) G( s) s(Ts 1)(5s 1)
求系统稳定时K和T的取值范围。 解:系统闭环特征方程为:
5Ts3 (5 T )s 2 (1 K )s K 0
系统稳定条件为:
T 0 K 0 (5 T )(1 K ) 5TK 0
T 0 5T 0 K 4T 5
劳斯阵列的特殊情况 劳斯阵列表某一行中的第一列元素等于 零,但其余各项不等于零或不全为零。 处理方法:用一个很小的正数 代替该行第 一列的零,并据此计算出阵列中的其余 各项。然后令 0,按前述方法进行判别。 如果零( )上下两项的符号相同,则系统存在 一对虚根,处于临界稳定状态;如果零 ( )上 下两项的符号不同,则表明有一 个符号变化,系统不稳定。
e t (a1 a2t ar t r 1)
当- < 0时,该输出分量指数单调衰减。 当- > 0时,该输出分量指数单调递增。 当- = 0时,该输出分量多项式递增。 对于一对r重复根-+j,相应的时域分量为:
e t (b1 b2t br t r 1 ) cos t (c1 c2t cr t r 1 ) sin t e t
[工学]控制工程基础第五章系统的稳定性
![[工学]控制工程基础第五章系统的稳定性](https://img.taocdn.com/s3/m/063b2600cfc789eb172dc863.png)
基本要求 1.了解系统稳定性的定义、系统稳定的条件。 2.掌握系统稳定性代数判据的必要条件和充要条件,学会应用代数判 据判定系统是否稳定。 3.掌握Nyquist判据。 4.掌握Bode判据。 5.理解系统相对稳定性概念,能够在Nyquist图和Bode图上加以应用。 本章重点 1.代数判剧、Nyquist判剧和Bode判剧的应用。 2.系统相对稳定性;相位裕度和幅值裕度在 Nyquist图和Bode图上的表 示法。 本章难点 Nyquist判剧及其应用。
劳斯阵列的计算顺序是由上两行组成新的一行。每行计算 到出现零元素为止。一般情况下可以得到一个n+1行的劳 斯阵列。而最后两行每行只有一个元素。
sn s n-1 s n-2 s n -3 s1 s0
an an -1 b1 c1 d1 e1
an - 2 a n -3 b2 c2
an - 4 a n -5 b3
Ck k nk Bk
dk
e k nkt sin dk t
从式可以看出,如果所有闭环极点都在s平面的左半面内, 即系统的特征方程式根的实部都为负,那么随着时间t的增 大,式中的指数项和阻尼指数项将趋近于零。即系统是稳 定的。
y (t ) A j e
j 1
q
p jt
Bk e k nkt cos dk t
k 1
r
k 1
r
Ck k nk Bk
dk
e k nkt sin dk t
系统稳定的充要条件:是特征方程的根均具有负的实 部。或者说闭环系统特征方程式的根全部位于[s]平面 的左半平面内。一旦特征方程出现右根时,系统就不 稳定。
2
第五章 控制系统的稳定性分析

第五章 控制系统的稳定性分析
5-2 控制系统稳定性判据 例 已知一调速系统的特征方程式为
试用劳斯判据判别系统的稳定性:S 3 + 41.5S 2 + 517 S + 2.3 × 10 4 = 0 解:列劳斯表
S3 S2 S1 S0 1 41.5 − 38.5 2.3 × 10 4 517 2.3 × 10 4 0 0
a n s n + a n −1 s n −1 + ⋯ + a 0 = 0 通过因式分解,总 对于特征方程: 通过因式分解, 对于特征方程:
第五章 控制系统的稳定性分析
5-2 控制系统稳定性判据
1) 列写罗斯计算表:任意一行的各项同时乘以一个正数,结果不变 列写罗斯计算表:任意一行的各项同时乘以一个正数, 。
第五章 控制系统的稳定性分析
5-2 控制系统稳定性判据 一.代数稳定判据
不必求解系统的特征方程, 不必求解系统的特征方程 ,通过对特征方程的系数进行分析来判 断系统的稳定性的方法。 断系统的稳定性的方法。
可 以 分 解 为 一 次 因 子 和 二 次 因 子 的 乘 积 的 形 式 , 即 : (s+a) 和 (s2+bs+c)相乘的形式。只有 、b、c都是非零的正值时,才能得到负 相乘的形式。 都是非零的正值时, 相乘的形式 只有a、 、 都是非零的正值时 实根或具有负实部的共轭复根。所以ai>0是判定系统稳定的必要条 实根或具有负实部的共轭复根 。 所以 是判定系统稳定的必要条 但非充分条件。罗斯-赫尔维茨稳定判据即是检验系统稳定的充 件,但非充分条件。罗斯 赫尔维茨稳定判据即是检验系统稳定的充 要条件。 要条件。 1、罗斯(Routh)稳定判据: 、罗斯( )稳定判据:
第五章控制工程基础

a3 b2
a5 b3
a7 L b4 L
b1
a1a2
a0a3 a1
, b2
a1a4
a0a5 a1
, b3
a1a6
a0a7 a1
sn3 c1 c2 c3 L M
c1
b1a3 a1b2 b1
, c2
b1a5 a1b3 b1
, c3
b1a7 a1b4 b1
s2 d1 d2 d3
s1 e1 e2
s0
X
o
(s)
1
G(s) G(s)H(s)
G(s) (s s1)(s s2 )L
(s sn )
c1 c2 L cn
n
ci
s s1 s s2
s sn i1 s si
则输出为:
n
xo (t) ciesit
<1>
i1
从<1>式可看出,要想系统稳定,系统的特征根si, 必须全部具有负实部。
A(0) 20,(0) 0
A() 0,() 270
其奈氏曲线为右图:
由图可见,开环Nyquist曲线顺时针包围(-1,j0)点一圈,即N=1:而开环特征根全部位于左半s平面,即P=0,由Nyquist判据知,
系统闭环不稳定。
第五章 控制系统的稳定性分析
5-4 系统的相对稳定性
一、相位裕量和幅值裕量
※※ 劳斯判据特殊情况
1. 劳斯表某一行中的第一项等于零,而该行的其余各项不等于零或 没有余项,这种情况的出现使劳斯表无法继续往下排列。解决的办法 是以一个很小的正数 来代替为零的这项,据此算出其余的各项,完 成劳斯表的排列。
2.劳斯表中出现全零行 则表示相应方程中含有一些大小相等符号相反的实根或共轭虚根。 这种情况,可利用系数全为零行的上一行系数构造一个辅助多项式 ,并以这个辅助多项式导数的系数来代替表中系数为全零的行。完 成劳斯表的排列。这些大小相等、径向位置相反的根可以通过求解 这个辅助方程式得到,而且其根的数目总是偶数的。
第五章稳定性分析

第五章稳定性分析第五章:控制系统的稳定性分析3.3.5 控制系统的稳定性分析稳定性的概念线性系统稳定的充要条件线性系统稳定的必要条件代数判据(⼀般情况,特殊情况,劳斯,赫尔维茨)劳斯判据的应⽤(确定稳定域判断稳定性,求系统的极点,设计系统中的参数3.3.5.1 稳定性的概念分析⼩球平衡点的稳定性定义:若线性控制系统在初始扰动的影响下,其过渡过程随着时间的推移逐渐衰减并趋向于零,则称该系统为渐近稳定,简称稳定。
反之,若在初始扰动的影响下,系统的过渡过程随时间的推移⽽发散,则称该系统不稳定。
3.3.5.2线性系统稳定性的充要条件设系统的微分⽅程模型为:分析系统的稳定性是分析在扰动的作⽤下,当扰动消失后系统是否能回到原来的平衡状态的性能,亦系统在作⽤下的性能,亦与系统的输⼊信号⽆关,只与系统的内部结构有关。
对上述微分⽅程描述的系统亦只与等式的左端有关,⽽与右端⽆关,亦:系统的稳定性是由下列齐次⽅程所决定:其稳定性可转化为上述齐次⽅程的解c(t)若则系统稳定,则系统不稳定。
分析齐次⽅程的解的特征。
由微分⽅程解的知识,上述⽅程对应的特征多项式为:设该⽅程有k个实根(i=1,2,…k)r对复根(i=1,2,…r)k+2r=n 且各根互异(具有相同的根时分析⽅法相同,推导稍繁琐)则上述齐次⽅程的⼀般解为:其中为常数,由式中的决定,分析可见:只有当时,否则。
注:只能是⼩于零,等于或⼤于均不⾏。
等于零的情况为临界稳定,属不稳定。
综:线性系统稳定的充要条件(iff)是:其特征⽅程式的所有根均为负实数或具有负的实部。
亦:特征⽅程的根均在根平⾯(复平⾯、s平⾯)的左半部。
亦:系统的极点位于根平⾯(复平⾯、s平⾯)的左半部。
从上⾯的充要条件可以看出:系统稳定性的判断只需计算上系统的极点,看其在s平⾯上的位置,勿需去计算齐次⽅程的解(当系统复杂时的计算可能很繁),勿需去计算系统的脉冲响应。
3.3.5.3 线性系统稳定的必要条件设系统特征⽅程式中所有系数均为实数,并设(若,对特征⽅程两端乘(-1)),可以证明上述特征⽅程中所有系数均⼤于零(即)是该特征⽅程所有根在s平⾯的左半平⾯的必要条件。
第5章控制系统的稳定性分析

设系统闭环传递函数为
Y (s) X (s)
bm sm an s n
bm1sm1 an1sn1
则系统的特征方程为
b1s b0 a1s a0
ansn an-1sn-1 a1s a0 0
(5-5)
例 某单位反馈系统的开环传递函数 G(s) k
则系统的闭环传递函数
s(Ts 1)
(5-7)
a0
an
s1s2 s3 s4
sn2 sn1sn
从式(5-7)可知,要使全部特征根s1, s2,···, sn-1,sn均具有负实部,就必须满足以下两个条件:
(1)特征方程的各项系数ai(i=0,1,2, ···,n) 都不等于零。因为若有一个系数为零,则必出 现实部为零的特征根或实部有正有负的特征根, 才能满足式(5-7) 。此时系统为临界稳定(根 在虚轴上)或不稳定(根的实部为正)。
均不为零。
2. 特征方程的各项系数ai符号一致。
以上只是判定系统稳定的必要条件,而非充要条件, 因为此时还不能排除有不稳定根的存在。
罗斯稳定判据可以用来校验特征方程是否满足系 统稳定的充分条件。罗斯判据的证明比较麻烦, 这里只介绍它的应用。
特征方程系数的罗斯阵列如下:
sn an an-2 an-4 an-6
图示小球处在a点时,是稳定平衡点,因为作用 于小球上的有限干扰力消失后,小球总能回到a 点,而小球处于b、c点时为不稳定平衡点, 因 为只要有干扰力作用于小球,小球便不再回到 点b或c点。
c
b
a 小球的稳定性
上述两个实例说明系统的稳定性反映在干扰消 失后的过渡过程的性质上。这样,在干扰消失 的时刻,系统与平衡状态的偏差可以看作是系 统的初始偏差。
第五章 控制系统稳定性分析

c1
b1a 3 a1b2 b1
5.2
Routh稳定判据
例1:系统特征方程如下,请判断该系统的稳定性。
二、计算示例
A s s 4 2s 3 3s 2 4s 3 0
解:1、该系统满足必要条件 2、计算Routh阵列如下:
s s
4 3
1 2
1 -2 3
3 4
3
3
(jω -s1 )当ω =0→+∞时, 其幅角增量为-π /2。
Im[G]
一、米哈伊洛夫稳定定理
b0 s m b1s m1 ... bm1s bm G ( s) a0 s n a1s n 1 ... an 1s an
特征方程
jω
A( s) an s n an 1s n1 a1s a0 0
A s a0 s n a1s n 1 a2 s n 2 an 1s an 0
s s s
n
a0
a2
a4
a6 Routh
b1
b2 b3
s n 1
n2 n 3
a1
a3
a5
a7 阵列
b1
b2
b3
c1
c2
s2 s1 s0
一直计算到最后一行算完为止。然后判断 阵列中第一列系数的符号,若全部>0,则系 b a a1b3 c2 1 5 统稳定;否则,第一列系数符号改变的次数, b1 就为特征方程在右半s平面的根数。
系统稳定性的初步概念
X o ( s ) bm s m bm 1s m 1 b1s b0 B( s) G ( s) n n 1 X i ( s ) an s an 1s a1s a0 A( s)
第五章 控制系统的稳定性分析(含习题答案)

f1 g1
劳斯阵列
注意:如果劳斯阵列第一列元素的符号不全 相同,则该列元素符号变化的次数,就是特 征方程所含实部为正的根的数目。
劳斯判据使用说明: ( 1)用一个正数去乘或除劳斯阵的某一整行,不会改变稳定性的结论。
4 3 2 例5-1 设控制系统的特征方程式为:D s s 8s 17 s 16s 5 0
Bl e
l 1
sin l t l Dr t r e r t sin r t r
r 0
n4 1
n2重实根
s pk
n3对不同的共轭复数根 s l jl
结论:控制系统稳定的充分必要条件:系统特征方程式的根全部具 有负实部。
5. 2 系统稳定的充要条件
s3, 4 2 j
系统特征方程具有两对共轭虚根,系统处于临界稳定。(不稳定,对应的 暂态分量为等幅振荡。)
劳斯判据使用说明:
例 5-3 : 已知单位反馈控制系统的开环传递函数为:G s 试应用劳斯判据判断预使系统稳定的K的取值范围。 解:根据题意,可得系统的闭环传递函数为:
K s s 2 s 1 s 2
大范围稳定:系统稳定与否,与初始偏差的大小无关。 小偏差稳定:初始偏差不超过一定范围的情况下,系统是稳定的。
5. 2 系统稳定的充要条件
一、系统稳定条件分析
系统扰动输入到输出之间的传递函数:
Xo s G2 s b0 s m b1s m 1 bm 1s bm M s N s 1 G1 s G2 s H s a0 s n a1s n 1 an 1s an D s
C s D s
闭环传递函数的特征方程:D(s)=0,特征方程的根即系统传递函数的极点。
控制工程基础课后习题答案

详细描述
通过调整系统的传递函数,可以改变系统的 频率响应特性。在设计控制系统时,我们需 要根据实际需求,调整传递函数,使得系统 的频率响应满足要求。例如,如果需要提高 系统的动态性能,可以减小传递函数在高频 段的增益。
06 第五章 控制系统的稳定性 分析
习题答案5-
习题答案
• 习题1答案:该题考查了控制系统的基本概念和组成。控制系统的基本组成包 括被控对象、传感器、控制器和执行器等部分。被控对象是实际需要控制的物 理系统或设备;传感器用于检测被控对象的输出状态,并将检测到的信号转换 为可处理的电信号;控制器根据输入的指令信号和传感器的输出信号,按照一 定的控制规律进行运算处理,并输出控制信号给执行器;执行器根据控制信号 对被控对象进行控制操作,使其达到预定的状态或性能要求。
控制工程基础课后习题答案
目 录
• 引言 • 第一章 控制系统概述 • 第二章 控制系统的数学模型 • 第三章 控制系统的时域分析 • 第四章 控制系统的频域分析 • 第五章 控制系统的稳定性分析 • 第六章 控制系统的校正与设计
01 引言
课程简介
01
控制工程基础是自动化和电气工 程学科中的一门重要课程,主要 涉及控制系统的基本原理、分析 和设计方法。
总结词
控制系统校正的概念
详细描述
控制系统校正是指在系统原有基础上,通过加入适当的 装置或元件,改变系统的传递函数或动态特性,以满足 性能指标的要求。常见的校正方法有串联校正、并联校 正和反馈校正等。校正装置通常安装在系统的某一环节 ,以减小对系统其他部分的影响。
习题答案6-
总结词
控制系统设计的一般步骤
习题答案5-
总结词
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sn s n −1 s n−2 s n−3 M s2 s1 s0
an a n −1 A1 B1 M D1 E1 F1
a n−2 a n−3 A2 B2 M D2
a n−4 a n−5 A3 B3 M
a n−6 a n−7 A4 B4
L L L L
控制工程基础
第五章 稳定性分析
式中:
an−1an−2 − an an−3 A1 = an−1
解
根据特征方程列写劳斯表:
s s
3 2
1
λ + µ −1 µ −1
0 0
s1 s
0
λ +1 λ (λ + µ ) λ +1 µ −1
控制工程基础
第五章 稳定性分析
要使系统稳定,则第一列元素为正,有
λ + 1 > 0 λ (λ + µ ) > 0 µ − 1 > 0
µ
解得:
λ > 0 µ > 1
设系统特征方程为:
D( s ) = an s n + an−1s n−1 + L + a1s + a0 = 0
(1) 列形式列写Routh表:
an a n −1 an−2 a n −3 an−4 a n −5 a n −6 a n−7
... ...
控制工程基础
第五章 稳定性分析
(2)对Routh表进行计算:
控制工程基础
第五章 稳定性分析
结论:
1、存在两个符号相异,绝对值相同的实根; 2、存在一对共轭纯虚根; 3、存在实部符号相异,虚部数值相同的两对 共轭复数根。
控制工程基础
第五章 稳定性分析
例: D( s ) = s 5 + 2 s 4 + 24s 3 + 48s 2 − 25s − 50 = 0 解:
s5 s4 s3 1 2 0 24 48 0 − 25 − 50 0
辅助 方程
F ( s ) = 2 s 4 + 48s 2 − 50 = 0
求导
s3 s2 s0
8
96 0 0
8s 3 + 96s = 0
24 − 50 0
s1 112.7 0 − 50
2s 4 + 48s 2 − 50 = 0
解得: s1.2
an−1an−4 − an an−5 A2 = an−1
M
A1an−3 − an−1 A2 B1 = A1
A1an−5 − an−1 A3 B2 = A1
M
控制工程基础
第五章 稳定性分析
(3)若劳斯计算表中,第一列各元素的符号都 相同,系统是稳定;若第一列各无符号不同, 则系统是不稳定的,其各符号依序改变的次数, 等于正实部特征根的个数。 系统稳定的充要条件: 系统稳定的充要条件:
例: D ( s ) = s 3 − 3s + 2 = 0 解: s 3
s2 s s
1
1 0 (ε ) −3− 2 2
−3 2
ε
0
可见,系统有两 个不稳定根。
0
控制工程基础
第五章 稳定性分析
(二) 特殊情况二 二
如果Routh计算表的任意一行中的所有元均为 零时。
处理:
由全零元素上一行元素列写辅助方程式源自对 辅助方程两端求导,再将辅助方程求导后的方程 系数代替全零行的元素,继承进行劳斯表计算。
= ±1
s3.4 = ± j5
控制工程基础
第五章 稳定性分析
三、劳斯判据的实用范围
1、实系数的代数方程式; 2、若系统有纯滞后环节时,则不能用该判据了。 2、只能提供闭环系统的绝对稳定性信息,不能反 映系统的相对稳定性。
由于第一列各元素符 号改变次数为2,所以 系统不稳定,且有两
11 0 0
s 2 − 30
个不稳定的根。
0
控制工程基础
第五章 稳定性分析
例2:设某系统的特征方程为:
s 3 + (λ + 1) s 2 + (λ + µ − 1) s + µ − 1 = 0
试确定待定参数 λ 及 µ ,以便使系统稳定。
1 0
λ
控制工程基础
第五章 稳定性分析
二、劳斯判据的特殊情况
(一) 特殊情况一
如果在Routh表中,某一行的第一个元素为 零,而该行又存在非零元素时。
处理:
用一个很小(任意小)正数来代替这一零元素, 然后计算Routh表。
控制工程基础
第五章 稳定性分析
结论:
(1)第一列元素符号改变的次数为不稳定根的个数; (2)第一列元素符号不改变,系统为临界稳定。
控制工程基础
第五章 稳定性分析
第二节 劳斯判据
Routh早在1884年就提出了一种避免求解特征 方程的根,而通过根与系数的关系来讨论特征根的 分布。
一、Routh判据
1、系统稳定的必要条件
(1)特征方程的各项系数都不等于零; (2)特征方程的各项系数的符号相同。
控制工程基础
第五章 稳定性分析
2、系统稳定的充要条件
Routh表中第一列各元素的符号均为 正且值不零。
控制工程基础
第五章 稳定性分析
例1:系统的特征方程为:
s + s − 19 s + 11s + 30 = 0
4 3 2
其系数符号不同,不满足稳定的必要条件, 系统不稳定。
s4 解: s3 s s
1 0
1 − 19 1 12 30 30 0 0
30 0