基于特征点的最近邻配准算法
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 3 错误的配准
实验验证最近邻与次近邻比值选在 0. 4~0. 65之间比较合适.
4 结论
在图像拼接中核心的技术是图像配准 ,配准的精度直接影响图像拼接的效果. 本文主要利用基于图像
第 27卷第 2期
戚世贵 ,等 :基于特征点的最近邻配准算法
71
特征点的方法进行图像配准 ,在配准过程中主要是寻找对应的匹配特征点对 ,主要采用最近邻搜索算法来 寻找配准特征点对 ,为了能够提高搜索效率和精度 ,主要采用在 K - D 树搜索算法基础上进行改进的搜索 算法 BBF算法 ,试验证明 BBF算法比 K - D 树搜索算法在高维度空间搜索效率有很大提升 ,搜索的准确 率很高.
Tr(H) 2 D et ( H )
=
(α +β) 2 αβ
=
(γβ +β) 2 γβ2
=
(γ + 1) 2 γ,
(8)
对 γ取一阀值 ,当 γ大于阀值时即作为边缘特征点删除.
1. 3 特征点方向确定
一个特征点方向的确定需要考虑它周围一个窗口内所有点 ,把最多点的投票方向作为它的主方向. 对
图像 L ( x, y) ,其梯度值 m ( x, y)和方向 θ( x, y)可以通过像素点的差值得到 :
图 2 配准结果
进一步对最近邻与次近邻比值参数进行修改 ,可得到如下结果 (见表 1) 。
表 1 各种比值的配准结果比较
比值
0
0. 1
0. 2
0. 3
0. 4
0. 5
0. 6
0. 7
0. 8
0. 9
1
匹配
0
47
93
127
152
172
192
206
237
304
693
比值大于 0. 7时 ,从结果图像中看出明显的错误匹配 ,如图 3所示.
图 1 BBF与受限的 K - D 树比较
图 1是从 100000个特征点库中得到的 [ 10 ] ,其中 BB F搜索算法的最大叶子结点为 200,受限的 K - D 树的最大叶子结点为 480,平均搜索次数为 1000次. 从上图可以看出随着维数的增加 ,受限的 K - D 树搜 索性能下降.
( 10 )
在特征点周围所在的一个区域内 ,据样本点的梯度方向生成一个方向直方图 ,这个方向直方图用
36位来代表 360度的方向. 每个样本点根据其梯度值的大小 ,同时依据高斯权重圆窗口加权求和的大小
加到直方图中 ,直方图的最高峰值点对应的方向即作为特征点的主方向. 对于直方图中高于最高峰 80%
率值 ,但在垂直方向曲率值较小 ,可以利用这个性质将边缘处的低对比度特征点过滤掉. 要用到 2 ×2 的
Hessian矩阵 H
Dxx Dxy
H=
.
(5)
Dxy Dyy
矩阵 H的特征值与 D 的主曲率值是成比例的 ,可以借助于 Harris和 Stephens在 1988年提出的方法 ,
不必直接计算矩阵 H的特征值 , 只需考虑矩阵 H 的两个特征值的比值即可. 假设 α是矩阵 H 较大的特征
1 S IFT特征点提取
尺度不变特征点 ( Scale Invariance Feature Transform 2SIFT)是由 David Lowe提出的. 利用 SIFT方法从 图像中提取出的特征点对图像缩放和旋转保持不变 ,对光线 、噪声 、仿射变化具有鲁棒性 ,特征点描述符具 有很高的独特性. 研究表明 [9 ] SIFT方法相对其他特征点提取方法如 Harris特征点 、KLT特征点等具有优
值 ,β是矩阵 H较小的特征值 ,可以通过下面公式计算出 α、β的比值 γ.
T r( H ) =Dxx +Dyy =α +β,
(6)
D et ( H ) = Dxx Dyy - (Dxy ) 2 =αβ,
(7)
其中 T r(H )表示矩阵 H的迹 , D et ( H)表示矩阵 H行列式的值. 令 α =γβ,则有 :
越性. SIFT提取过程可以分为 4个步骤.
1. 1 求取缩放空间中的极值点作为侯选特征点 首先对图像进行必要的预处理 ,接着对图像用不同的采样距离形成一个金字塔分层结构 ,即第一次采
样时每 0. 5个像素进行采样 ,意味着将原来图像放大一倍 ,第一次采样的图像作为第一组的图像 ,然后以 成倍的采样距离即 1、2、4个像素再分别对图像进行采样产生第二 、三 、四组的图像. 这样就形成了一个金 字塔形状的分层结构. 高斯函数如下 :
关键词 :特征点 ;图像配准 ; K - D 树 ; BB F 中图分类号 : TP391 文献标识码 : A
0 引言
图像拼接有着广泛的应用前景 ,如将多幅图像拼接成一幅图像 ,就要用到图像拼接技术. 图像拼接中 最核心技术是图像配准. 图像配准技术当前主要有基于块的配准 [ 1, 2 ] 、比值配准法 [ 3 ] 、网格配准法 [ 4 ] 、基于 特征的配准法 [ 5, 6 ] ,每种方法各有优缺点 ,存在的主要问题是依据何种原则对两幅图像进行精确快速的 配准.
如果通过限制 K - D 树中叶子结点数 ,对叶结点设一个最大数目可以缩短搜索时间. 但是这种改进方 法只是根据 K - D 树的结构来决定叶结点的检查顺序 ,只考虑已存储的结点位置 ,并没有考虑被查询结点 的位置. BBF搜索算法是在 K - D 树基础上用一个优先级队列实现以结点和被查询结点距离递增的顺序 来搜索结点 ,结点和被查询结点的距离是指它们之间的最短距离. 当沿一个方向的分支搜索一结点时 ,优 先级队列会被加入一个成员 ,该成员记录了该结点相关的信息 ,包括当前结点在树中的位置和该结点与被 查询结点之间的距离. 当一个页结点被搜索到后 ,从队列的队首删除一项 ,然后再搜索包含最近邻结点的 的其他分支.
(1. 许昌学院 计算机科学与技术学院 ,河南 许昌 461000; 2. 中国科学院 国家授时中心 ,陕西 临潼 710600)
摘 要 :利用尺度不变特征点的提取方法提取特征点 ,并对 SIFT方法提取出的特征点用最 近邻算法进行配准 ,在搜索最近邻特征点和次近邻特征点时使用了在 K - D 树搜索算法基础上 进行改进的搜索算法 BBF (Best B in First)算法. 实验证明该算法具有配准精度高 ,鲁棒性好的 特点.
G ( x, y,σ)
πσ - ( x2 + y2) /2σ2 =2 1 2e
(1)
对形成的金字塔分层结构用高斯内核函数进行滤波形成高斯金字塔分层结构 , 对各层图像进行高斯
收稿日期 : 2007 - 09 - 29 基金项目 :许昌学院青年资金项目 (2007040) 作者简介 :戚世贵 (1973—) ,男 ,河南新乡人 ,讲师 ,硕士 ,研究方向 :图像处理 ,虚拟现实.
x
+
1 xT 2
52 D 5x2 x,
(2)
对其求导得到极值点
x=
-
52 D - 1 5x2
5D 5X
,
(3)
对应的极值点为
D ( x)
=D + 1 2
5D T 5x
x.
(4)
将所有 |D ( x) | < 0103的低对比度侯选极值点过滤掉 ,图像中像素点的取值范围为 [ 0, 1 ].
边缘特征点剔除过程中 ,在图像边缘的特征点在高斯差函数的峰值处与边缘交叉处有一较大的主曲
68
许昌学院学报
2008年 3月
滤波时采用不同的高斯滤波因子. 将每组中相邻图像相减生成高斯差图像 (D ifferent of Gaussian2DOG) , 然
后利用高斯差金字塔分层结构提取出图像中的极值点作为侯选特征点.
求取高斯差图像中的极值时 ,样本像素点要与相邻的 8个像素点进行比较 ,还要和金字塔分层图像中
3 实验结果
图 2 ( a)和 ( b)有 40%的重叠 ,利用 NN 方法对两幅图像进行特征点匹配 ,匹配前对两幅图像用 SIFT
70
许昌学院学报
2008年 3月
算法提取出各自的特征点集. 其中最近邻距离与次近邻距离比值设置为 0. 6,在图 2 ( a)中用 SIFT方法找 到 693个特征点 ,在图 2 ( b)中找到 774个特征点 ,匹配的特征点结果为 192对 ,如图 2 ( c)所示 ,匹配的特 征点对之间用直线相连接.
本文采用基于特征的配准算法对 SIFT方法提取出的特征点用最近邻算法进行配准. 主要是在尺度不 变特征点 ( Scale Invariance Feature Transfo rm - SIFT) [ 7, 8 ]的提取方法提取特征点的基础上 ,利用特征点的 相关几何信息实现两幅图像的配准. 使得在高维空间搜索效率有较大提升. 基于特征的配准法一般分为三 个过程 : ①特征提取 ; ②利用一组参数对特征作描述 ; ③利用特征的参数进行特征匹配. 在两幅图像中用同 一种特征提取法提取出特征点 ,根据相似性原则对两幅图像中的特征点进行匹配.
图像旋转 、光线变化 、噪声 、仿射变化等具有鲁棒性 ,这就为下面的图像配准打下了很好的基础.
第 27卷第 2期
戚世贵 ,等 :基于特征点的最近邻配准算法
69
2 图像配准
2. 1 NN 算法 我们称待配准的图像为基准图像 ,将与基准图像配准的图像为后续图像. 由于图像背景模糊或特征点
没有被检测到等各种原因 ,使得很多特征点在后续图像中不能得到正确的匹配. 如采取为样本特征点与最 近邻特征点的距离设置一个阀值 ,小于该阀值即判断特征点和样本特征点匹配 ,从而实现特征点间的匹配 并可以过滤掉某些不正确匹配的特征点 ,但执行效果并不太理想 ,因为某些待匹配特征点具有很大的差异 性 ,也有可能被过滤掉. 我们采用最近邻算法 (Nearest Neighbor - NN ) [ 10 ]进行配准 ,即采用样本特征点的 最近邻特征点距离与次近邻特征点距离的比值来对特征点进行匹配.
第 27卷 第 2期 2008年 3月
许昌学院学报 JOURNAL OF XUCHANG UN IVERSITY
Vol. 27. No. 2 M ar. 2008
文章编号 : 1671 - 9824 ( 2008) 02 - 0067 - 05
基于特征点的最近邻配准算法
戚世贵 1 , 戚素娟 2
我们采用一种在 K - D 树搜索算法基础上改进的搜索算法 BB F (B est - B in - First)来搜索样本特征点 的最近邻和次近邻特征点.
K - D 树搜索算法是二叉检索树的扩展 , K - D 树的每一层将空间分成两个. 树的顶层结点按一维进 行划分 ,下一层结点按另一维进行划分 ,以此类推 ,各个维循环往复. 划分要使得存储在子树中大约一半的 结点落入一侧 ,而另一半落入另一侧. 当一个结点中的点数少于给定的最大点数时 ,划分结束. K - D 树搜 索算法大部分时间花费在检查结点上 ,并且对高维空间搜索效率降低.
最近邻特征点是指与样本特征点具有最短欧几里德距离的特征点. 次近邻特征点是指具有比最近邻 距离稍长的欧几里德距离的特征点. 用最近邻与次近邻比值来进行特征点的匹配可以取得很好的效果 ,从 而达到稳定的匹配. 2. 2 BBF搜索算法
如何找到特征点的最近邻和次近邻是 NN 算法的关键. 穷举法能够找到最精确的最近邻距离 ,但是数 目特别大时 ,计算量会以指数级别增长 ,实用性就大打折扣.
m ( x, y) = (L ( x + 1, y) - L ( x - 1) , y) ) 2 + (L ( x, y + 1) - L ( x, y - 1) ) 2 ,
(9)
θ( x, y) = tan- 1 ( (L ( x, y + 1) - L ( x, y - 1) ) / (L ( x + 1, y) - L ( x21, y) ) ) .
上下相邻图层中的各 9个像素点进行比较 ,共需要与 26个像素进行比较.
1. 2 稳定特征点的确定
需要剔除候选特征点中不稳定的特征点 ,不稳定的特征点分布于图像边缘或是一些低对比度的特征
点. 剔除低对比度的特征点时 ,对缩放空间函数 D ( x)泰勒展开 (最高到 2次项 ) .
D ( x)
=D
+
5D 5x
的峰值可能有多个 ,这时就复制该特征点让它具有多个方向.
1. 4 特征点描述符的确定
根据特征点周围的像素点得到特征点的描述符 ,在特征点周围确定一个 4 ×4的窗口 ,每个窗口内具
有 8个方向 ,即描述符是一个 4 ×4 ×8 = 128维的向量.
经过以上四个步骤之后 ,一幅图像就可以用 SIFT方法提取出稳定的特征点 ,并且提取出的特征点对